

Designing software for a million users – It’s not about the
technology

Professor Ian Sommerville

School of Computer Science, University of St Andrews, St Andrews, Scotland

Scotland was probably the first country in the world to deploy a nation-
al digital learning environment in 2006. This was an innovative and
pioneering system but suffered from two fatal flaws. There were prob-
lems with the system’s usability and it was a closed system. It offered a
set of applications that were designed in the early years of the 21st cen-
tury. Much more effective and usable applications had become freely
available on the Internet before the system was deployed.
Our goal was to specify a replacement for this original system that
avoided the flaws in its design and which provided a range of opportu-
nities for teachers to use digital technologies to support learning in their
classrooms. We wanted to create an open system that could integrate
the web services and applications that teachers and students really
wanted to use.
Potentially, this system has a large user base. There are more than 3000
schools in which it will be deployed ranging from tiny rural schools
with a handful of pupils and a couple of teachers to huge city school
campuses, with thousands of students. There are more than 50,000
teachers and almost potential student users. As an aim was to use the
system to involve parents in their childrens’ education, there are more
than a million potential users of the system.
The key challenges that we faced were not technical problems. Issues
we had to address were a very wide range of user abilities, complex
system governance, a hostile user base, heterogeneous hardware and a
desire to avoid political risk in deploying the system.
For many types of user-facing system, the technology is not the prob-
lem – it’s the socio-technical stuff that causes the real difficulties. So-
cio-technical factors are the reason why many technically excellent sys-
tems don’t really work that well. They’re the reason why so many
software-intensive systems projects are late, over-budget and fail to
realise their objectives. As engineers, I think it’s time that we faced up
to these issues and thought about how we can better understand how
they affect the systems that we are creating.

Proceedings of STPIS'15

©Copyright held by the author(s) 1

Requirements for a digital learning environment

As part of the development process, I reckoned that we could use a me-
thodical approach to deriving the requirements by using and adapting
standard requirements engineering methods. These methods all involve:

• Understanding the business need and the environment where the sys-
tem will be deployed.

• Scoping the system and establishing its boundaries
• Engaging with stakeholders to talk about the requirements for the

system. These engagements may be facilitated with models of the ex-
isting system or the system that is being proposed.

• Documenting the requirements and checking these, to some extent at
least, meet the business need and stakeholder requirements.

In our initial discussions, it became clear that there would be problems
with activities that are fundamental to requirements engineering meth-
ods:

• Scoping the system. Some people thought the system should simply
be a portal to generic tools; others believed that it would be more ap-
propriate to orient the system around some model of pedagogy and
yet others thought that the system should be the core of a whole
school automation system.

• Engaging with stakeholders. The previous system was not well re-
ceived by teachers and there was considerable political interference
in its operation. This meant that many stakeholders were disenchant-
ed and unwilling to spend time in engaging with us.

• System modelling. Whilst engineers are comfortable with abstrac-
tions and models, these are actually quite alien to many people, espe-
cially if their education is in arts and humanities rather than science.
They find it very difficult to relate models to reality.

These problems meant that conventional requirements engineering
methods were effectively useless so we turned to an approach devel-
oped as part of agile development – user stories.
User stories were originally developed as part of so-called Extreme
Programming (XP), an agile method of software engineering. In that
method, a user story was a description of an interaction that a user
might have with a system and this description was used to decide on the

Socio-Technical Perspective in IS Development

Edited by S. Kowalski, P. Bednar and I. Bider 2

system features that could be implemented. We used higher-level sto-
ries that stimulated discussion about the system.
User stories were a great success. All of the members of the group
could relate to them and they were effective in communicating our vi-
sion to a wider community. An unexpected bonus of using these stories
was that politicians and civil servants with no technical or educational
background could relate to them. The Scottish Secretary for Education
commented how the stories brought the system to life for him and how
refreshing it was to receive a report on a technical topic that he could
understand.
The advantage of the user stories for the teaching community was that
we made a point of developing stories for all stages of use of the sys-
tem – from early years to young adults. We did not therefore require
teachers to imagine how some scenario might be translated to their
needs.

1 System architecture

Our final system architecture was designed around four fundamental
principles:
1. Everything should be provided as a service. This means that every-

thing is replaceable and distributable.
2. We would require the implementation of as few services as possible.

For political reasons, we needed to have an authentication service so
that the system could track, to some extent, who is doing what. We
needed a set of configuration services to create different versions of
the DLE and, again for political reasons, we needed storage services,
to allow for local control.

3. Users could configure their own version of the environment. This
configuration would not require detailed technical knowledge. Con-
figuration could be at a local authority level, a school level or an in-
dividual teacher level.

4. Services could be loosely or tightly integrated. Tightly integrated
services could use the system’s authentication and storage services;
loosely integrated services used their own authentication (which
could be Google or Facebook authentication) and managed their own
storage.

These led to the development of a layered architecture for the system as
shown in Figure 1.

Proceedings of STPIS'15

©Copyright held by the author(s) 3

Figure 1. A layered architecture for a DLE

Lessons learned

There are four ‘take-away’ messages that reflect some of the socio-
technical issues that I’ve discussed here:

• Methods may be useful where systems are being developed for a
clearly defined purpose in a single managed organisation but in more
complex organisations, they don’t work.

• Most users don’t care about new systems. The key challenges for
engineers are finding ways to communicate with these users and
building systems that are flexible enough to adapt to different styles
of use.

• Governance is critical – if at all possible, reduce governance com-
plexity as much as you can.

• User stories work – are by far the best way that I have found to
communicate with a wide user community that has diverse back-
grounds and experience.

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage
Logging and monitoring

Application storage
Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Socio-Technical Perspective in IS Development

Edited by S. Kowalski, P. Bednar and I. Bider 4

