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Abstract. In this paper, we propose a simple and effective solution for
the entity matching problem involving data records of healthcare profes-
sionals. Our method depends on three attributes that are available in
most data sources in the medical domain: name, specialty and address.
We apply a blocking technique to avoid comparisons, three matchers for
conciliating the data records and a rule-based heuristic to combine the
matchers. We performed experiments involving data from three Brazilian
Web sources of healthcare professionals. Our results show that our solu-
tion is able to avoid unnecessary comparisons and provides good results.
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1 Introduction

With the increasing amount of data available on the Web, especially in social
media networks and online catalogs of products and services, a recent challenge
in Computer Science is the identification of data records related to the same
real world entities. For example, a product offered on a website may appear
in another one under a different name or description. Furthermore, multiple
websites with similar functionality may offer different products. The conciliation
of such products is a core task towards price monitoring [1, 14].

The task of disambiguation is also crucial in scenarios in which it is necessary
to map all records related to a person considering her personal information such
as name, occupation and address. In these cases, the task can be very complex
due to existence of homonyms, incomplete data and multiple ways to represent
the same information. Some examples of scenarios in which this task is performed
are gathering all profiles of a same person in multiple social networks [19] and
collecting all papers or co-authors of a same author [9, 21].

The task of integrating all records related to a given person is known as entity
matching (also called data matching, entity resolution and record linkage) and
can be defined as [15]:

Given two datasets A and B from two semantically related data sources SA and
SB, the entity matching problem consists in finding all matches between data



records in A×B that refer to the same entity in the real world.

A similar problem is duplicate detection in which the matching is performed over
records from the same dataset [4, 5, 13].

Due to today’s widespread use of medical management systems and the pop-
ularization of medical service websites, the medical domain is rich in applications
that demand entity matching solutions for the integration of records of health-
care professionals. This task is important for many reasons that range from
providing better search facilities to fraud detection.

In this paper, we propose a problem-oriented method for integrating data
from healthcare professionals available on distinct Web sources, which is based
on simple string matching strategies and adopts an overlapping blocking mech-
anism for reducing the number of comparisons between the records. For its as-
sessment, we use data from three Brazilian Web sources: two general purpose
healthcare professional directories, Apontador1 and Doctorália2, and the Na-
tional Directory of Health Establishments maintained by the Brazilian Ministry
of Health, CNES 3. In summary, the main contributions of this paper are:

– A simple and effective solution for integrating data from healthcare profes-
sionals;

– A case study involving real data composed of 406,564 records collected from
three distinct data sources;

– A detailed discussion over the main implementation issues and decisions
involved in our method for entity matching in the medical domain.

Our method is generic for the medical domain and depends only on attributes
that are usually available in most Web sources that provide information on
healthcare professionals.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on the core tasks involved in the entity matching problem. Section 3
presents our method and describes its implementation details. Section 4 dis-
cusses our experimental results. Finally, Section 5 presents our conclusions and
some insights for future work.

2 Background

According to Christen [5], the process for solving the entity matching problem
can be divided into five steps: (i) data pre-processing, (ii) indexing, (iii) record-
pair comparison, (iv) classification and (v) evaluation. The first step involves
the data preparation to ensure a standardized formatting for all involved data
sources. The following three steps comprise the main tasks involved in the actual
process of comparing the data records, whereas the last one consists of evalu-
ating the quality of the results. Next, we briefly provide some background on

1 http://www.apontador.com.br
2 http://www.doctoralia.com.br
3 http://cnes.datasus.gov.br



specific tasks, namely blocking, matcher selection and matcher combination, that
support the three main steps of the entity matching process. For more details,
we refer the reader to [5] and to some surveys on entity matching found in the
literature [3, 8, 15].

Blocking. The purpose of blocking is to reduce the number of comparisons
among the data records. It consists of defining a strategy to group the records
in blocks so that only pairs of records in the same block are compared, avoiding
the quadratic cost of comparing all pairs. A good blocking strategy minimizes
the number of comparisons but does not separate related records into differ-
ent blocks. A blocking strategy can either assign each record to just one block
or set multiple blocks for each record (blocking with overlapping). In [11], the
authors propose the Sorted Neighborhood Method, which is considered one of
the first blocking methods described in the literature. The Canopy Clustering
method [17] provides a clustering-based approach for blocking. For more details,
Draisbach and Naumann [7] present a comparison of state-of-the-art blocking
methods.

Matcher Selection. Matchers are algorithms that measure the similarity be-
tween a pair of records. There are two kinds of matchers: context-based and
value-based matchers. Context-based matchers use structural information, such
as graph distances, to define the similarity of a pair of records. A popular ap-
plication of context-based matchers is the disambiguation of authors through
co-authorship graph analysis, such as the solution proposed in [12]. On the
other hand, value-based matchers establish a similarity degree between a pair of
records by using only attribute values. The most popular value-based matchers
are based on string comparison. For example, the Fragment Comparison algo-
rithm [18] compares the components of author names as they appear in biblio-
graphic citation records in order to decide whether they refer to the same author
or not. This algorithm is robust to typing errors, abbreviations and variations in
the sequence of name components. A comparison of string metrics for matching
names and records is presented in [6].

Matcher Combination. This task consists in combining the values resulting
from several distinct matchers to decide whether or not a pair of records is re-
lated to each other. The most popular solutions for combining matchers can
be classified into three types: numerical, rule-based and flow-based. Numerical
combinations apply a mathematical function to combine the involved matchers,
as described in [10] and [20]. Rule-based combinations rely on logical operations
and thresholds specifically defined for each case [2, 16]. Finally, flow-based com-
binations involve complex rules and many steps to perform the combination, like
in the MOMA method [22].

We have implemented simple and effective solutions for each one of the above
tasks, as described in the next section.



3 Proposed Method

In this section, we describe our solution for the entity matching problem in the
medical domain. Our method relies on three specific attributes, name, specialty
and address, of which name plays a major role in the matching process. We start
by introducing the concept of name relevance that is central to our method.
Then, we describe our solution for the three main tasks involved in the match-
ing process discussed in the previous section: blocking, matcher selection and
matcher combination. Finally, we discuss some strategies to reduce the execu-
tion cost of the whole process.

Name Relevance. To define the concept of name relevance, we consider that
a person’s name consists of several components. For example, the name “luiz
fernando magalhaes carvalho” consists of four components: “luiz”, “fernando”,
“magalhaes” and “carvalho”. Informally, we can say that the relevance of a per-
son’s name depends on the discrimination power of each one of its components.
Thus, let D be the set of datasets being matched and N the set of all names
found in any dataset in D. For each name component c in N , its relevance is a
value between 0 and 1 given by the ratio of its frequency and the frequency of
the most frequent name component r in N , as expressed by:

relevance(c) = frequency(c)/frequency(r)

The relevance of a name C is given by the sum of the relevance of each of its
components ci. If the resulting value is greater than 1, it is set to 1, so that the
relevance of each name is also a value between 0 and 1, as expressed by:

relevance(C) =
∑

ci ∈ C

relevance(ci)

relevance(C) =

{
relevance(C), if relevance(C) < 1

1, otherwise

As we show next, the relevance of a name component is used to avoid un-
necessary comparisons within a block whereas the relevance of a (full) name is
used in the matcher combination.

Blocking. Blocking is a strategy to group records in blocks so that only records
in the same block are compared. The blocking strategy of our method consists
in creating one block for each name component found in any data source in D.
As each block B is associated with a name component c, B contains all records
that include a name with a name component c. Thus, this is a blocking strategy
that implements an overlapping scheme, as each record is assigned to all blocks
related to its name components, which means that each record is compared with
all records that have at least one name component in common. This strategy is
based on the assumption that if two records are related, they have at least one



name component in common.

Matcher Selection. Having blocked all records, we need to use a matcher to
measure the similarity of each record pair. For each one of the three attributes
considered (name, specialty and address), we have implemented a matcher that
returns a score between 0 and 1. Thus, for each record pair, three specific scores
are produced: name similarity score, specialty similarity score and address sim-
ilarity score. These scores are then combined in order to define whether the
records are related or not. Since all three attributes are strings, their respec-
tive matchers are based on string comparison strategies empirically chosen for
this specific purpose. Considering that the matching strategy for the attributes
specialty and address are simpler, we describe them first.

Our matchers for the attributes address and specialty are based on the Leven-
shtein edit distance. Their returning scores have been defined as the complement
of this metric, which measures the rate of changes that must be performed in
two strings to make them identical. For example, given a pair of addresses A1
and A2, the corresponding address similarity score is computed as:

Levenshtein distance(A1, A2) = 1− Levenshtein distance(A1, A2)

Unlike the address and specialty matchers, the name matcher is more complex
and comprises four steps. Since names usually present typing errors, abbrevia-
tions, minor variations and missing components, we need a more sophisticated
strategy to be able to properly match them. In addition, the first and last names
are usually more reliable than the other names component and should be ac-
cordingly weighted. Thus, for our name matcher, we have developed a four step
heuristic algorithm based on the Fragment Comparison algorithm [18] that sat-
isfies all these conditions. The first three steps of the algorithm compare, respec-
tively, the first name, the last name and the other names components of each
pair of records, producing three similarity scores that range from 0 and 1. Then,
the last step combines the three scores.

The first name and last name scores are similarly computed based on the Lev-
enshtein edit distance. If the first (last) name in both records is not abbreviated,
the first (last) name score is the Levenshtein similarity between them. On the
other hand, if the first (last) name is abbreviated in one or both records, the first
(last) name score is 1 if the first letter in both name components is the same or 0
otherwise. The similarity score for the other names components is computed as
the rate of matched names among the remaining names. A match occurs when
either two of the remaining names have a Levenshtein similarity above 0.8 in
the case of non-abbreviated names or the first letters are the same in case of
abbreviations. As the priority is the matching of non-abbreviated names, it is
performed first, as shown in Algorithm 1.

Finally, after we have the individual scores for first name, last name and
other names, the full name similarity score is computed as a linear combination
of these three scores. We consider that the other names score is less relevant
than the first and last name scores and set its weight to a lower value. We



Algorithm 1 Other names comparison step in the name comparison matcher.
numberRemaining ← size(name1) + size(name2)− 4
for all x ∈ otherNames(name1) do

for all y ∈ otherNames(name2) do
threshold ← 0.8
if (matched(x) == 0) and (matched(y) == 0) then

if (length(x) > 1) and (length(y) > 1) then
if Levenshtein(x, y) ≥ threshold then

matched(x) ← 1
matched(y) ← 1
matches ← matches + 2

for all x ∈ otherNames(name1) do
for all y ∈ otherNames(name2) do

if (matched(x) == 0) and (matched(y) == 0) then
if (length(x) == 1) or (length(y) == 1) then

if firstLetter(x) == firstLetter(y) then
matched(x) ← 1
matched(y) ← 1
matches ← matches + 2

other names score ← matches / numberRemaining

then use entropy to calibrate the weights of the first and last name scores, based
on the intuition that a name component with larger uncertainty is more relevant.

Matcher Combination. After we have compared each pair of records in each
block, we decide whether they are related or not based on the three similar-
ity scores computed by the matchers and on the relevance of the corresponding
full names. The solution proposed is a heuristic based on logical operations and
thresholds that have been empirically defined. In the next section we show the
details of the combination algorithm.

Pruning Comparisons. We also propose two heuristics for pruning unneces-
sary comparisons. The first heuristic consists in discarding blocks that are asso-
ciated with low relevance name components. A threshold B defines the number
of blocks to be discarded, i.e., the number of blocks for which no comparison
is performed between their records. As stated before, each block is associated
with a name component and for each such name we have computed its relevance.
The B skipped blocks are those associated with names with small relevance. If
a name is too popular, its respective block is large and the cost of comparing
all its record pairs is huge. In addition, a popular name presents very low dis-
crimination power, so it is likely that the matching rate within its block is very
low. The second heuristic does not compare two records if the similarity score
between two names is below a threshold S, that is, it does not compare the other
two attributes, specialty and address. If the name similarity score produced by
each matcher is smaller than S, it is very unlikely that the records are related, so
it is not necessary to proceed with the remaining comparisons and the matcher
combination. In the next section we describe how the values of B and S have
been chosen.



4 Experimental Evaluation

4.1 Experimental Setup

Data Collected. We collected data about Brazilian healthcare professionals
from three data sources: Apontador, Doctorália and CNES. After collecting the
data, we extracted the attributes name, specialty and address. We selected only
records of professionals from the state of Minas Gerais in order to reduce the
data volume and make the calibration process easier. We believe that there is no
significant difference between the data distribution among Brazilian states and
our results should be closer to those from the whole country. Table 1 shows the
total number of records collected from each data source.

Table 1. Total number of records collected from each data source.

Data Source Apontador Doctorália CNES

Records Collected 14,060 10,324 382,180

Blocking Parameters. The ideal value of B should minimize the number of
comparisons but avoiding to separate related records that have in common only
names associated with the largest B blocks. Therefore, if the value of B is too
small, it does not avoid unnecessary comparisons. On the other hand, if the value
of B is too large, some similar pairs may not be compared, although several
comparisons are avoided. We then performed the following experiments.

First, we measured the amount of comparisons avoided by each value of
B. Fig. 1(a) shows the percentage of comparisons avoided as a function of B
considering that if B is equal to zero, no comparison is avoided, resulting in more
than 11.6 billion comparisons. The results show that the rate of comparisons
decreases fast initially, but the pace slows down in the range between B = 5 and
B = 14. As it is not clear the stabilizing value, we chose the value B = 5 that
avoids 76% of the original number of comparisons.

Next, we verified whether B = 5 was appropriate. Fig. 1(b) shows, for each
similarity name range, the percentage of record pairs pruned for B = 5 that were
also in another block and, therefore, are compared anyway. The results show that
the larger the name similarity, the larger the number of comparisons. Thus, we
can conclude that the threshold B = 5 prunes unnecessary comparisons and
guarantees that pairs with related names are compared in non-pruned blocks.

According to Fig. 2(a), which shows the similarity distribution for the at-
tribute name, the frequency of similar names decreases fast from 0.6, indicating
that this is a good threshold to separate the actual similar names from random
matches. Thus, S was set to 0.6.

Matchers and Combination Algorithm. As already described, for each pair
of records compared, the matcher combination algorithm returns a binary value



(a) Rate of comparison avoided (b) Rate of skipped pairs compared in
other blocks

Fig. 1. Experiments results for choosing the value of B.

(a) Name similarity distribution (b) Specialty similarity distribution

(c) Adress similarity distribution (d) Full name relevance distribution

Fig. 2. Distribution of the scores considered in the algorithm for matchers combination.

indicating whether the two records match. Its implementation considers the sim-
ilarity scores of the attributes name, specialty and address, and the relevance of
the respective full names.

We start by defining the parameters for determining the matching score of
a name. As already mentioned, we consider the first and last name components
more relevant and thus set the weight of the other names component to 0.3.
We then measure the entropy of the first and last name components, and set
their weights based on the assumption that the higher their entropy, the higher
their weight should be. We have found an entropy of 1.15 for the first name
component and of 0.7 for the last name component. Thus, we proportionally set
their weights to 0.43 and 0.27 respectively, resulting in the following expression
for the name similarity score:

nameScore = ((0.43× scoreF irstName) + (0.27× scoreLastName)+

(0.3× scoreOtherNames))



Fig. 2(a)-(c) show the distribution of the similarity scores of the three at-
tributes for a random sample of one million pairs. Note that for the attributes
specialty and address, the sample also present a name similarity above 0.6. We
also observe that the highest frequencies are associated with values smaller than
the similarity threshold, showing the effectiveness of our heuristic. We have also
measured the correlation between the matchers’ returned values, but the results
were smaller than 0.1, indicating that there was no correlation among them. As
a consequence, the thresholds for each attribute type may be independently de-
fined and set to a different value. We then present a histogram of the relevance
scores for the 406,564 full names (Fig. 2(d)) extracted from our datasets. We
can see that the threshold for name relevance should be lower to avoid missing
relevant pairs, but we still have a large number of irrelevant pairs associated
with lower scores.

Our heuristic strategy was empirically set by sampling the results. It is based
on logical operators and thresholds, and considered the following assumptions:

– We divided all full names in the dataset into two groups: relevant names and
non-relevant names. We consider a name as relevant if its relevance value is
equal or greater than 0.2. This threshold sets 15% of the names as relevant.

– We set a threshold for each one of the three matchers in order to separate
record pairs with similar attribute values.

– We set specific thresholds for the attribute name considering the cases in
which the names are relevant and not relevant. For relevant names, the
threshold is 0.8. Otherwise, it is set to 0.9.

– For the specialty and address attributes, the thresholds were set to 0.8 and
0.75, respectively.

– If the name similarity of a record pair is greater or equal than its threshold
and the similarity of one of the other two attributes (specialty or address)
also satisfies its respective threshold, the records are considered related, re-
gardless of the similarity score of the third attribute.

Based on the above assumptions, Algorithm 2 below describes our implemen-
tation for the matcher combination.

Algorithm 2 Algorithm for matcher combination.
if relevance(name1) ≥ 0.2 and relevance(name2) ≥ 0.2 then

if nameSimilarity > 0.8 and (specialtySimilarity > 0.8 or addressSimilarity > 0.75)
then

MATCH
else

if nameSimilarity > 0.9 and (specialtySimilarity > 0.8 or addressSimilarity > 0.75)
then

MATCH



4.2 Experimental Results

In this subsection, we present a characterization of the records classified as
matches and assess the accuracy of our method by sampling the results. In
this execution of our method, with the thresholds B = 5 and S = 0.6, about
119.5 million comparisons have been performed, resulting in a total of 799,877
matched pairs, whereas approximately 118.6 million pairs have been classified
as not matched.

Table 2 shows the percentage of pairs found by our method that present exact
match for each attribute combination, i.e., they would be matched if an exact
match approach were employed. For example, 21.5% of the pairs matched by our
method present identical names and addresses, so they would be also matched by
an exact match solution that considered only the attributes name and address.
Moreover, only 2.1% of the related records have presented an exact match and
more than 16,500 records (2.1%) do not have even the same name. Thus, the
exact match approach would not be a good solution as many record pairs that
have been matched (and are likely to be related) would not be matched.

Table 2. Percentage of pairs of records matched by our algorithm that presents exact
match for each set of attributes.

Percentage of exact matches 97.9 71.3 21.6 69.7 21.5 2.2 2.1

Name X X X X

Specialty X X X X

Address X X X X

As we do not have a labeled dataset, we have sampled the dataset and labeled
it manually. Since the number of not matched pairs is huge, it is not feasible to
label a representative percentage of them. Thus, we have only labeled those
records most likely to be incorrectly classified, i.e., we selected the 300,000 most
similar pairs of unmatched records and manually labeled 1% of them. For the
set of matched records, we have also selected the 300,000 least similar matched
pairs and also manually labeled 1% of them. We have also assumed that the
importance order of the attributes is name, followed by specialty and then by
address. Thus, the similarity of a pair of records for the sample selection was
computed as the combination value of the name, specialty and address similarities
weighted by 5, 3 and 1, respectively. We notice that there are some pairs for which
we have not been able to decide whether they were related or not. We refer to
these pairs as unknown.

Table 3 shows the results evaluation considering the aforementioned sampling
of 1% of the records most likely to be incorrectly classified. As we cane see, the
results are quite good and, as the false negative rate is just 5%, our future efforts
should aim those records that although related are not matched by our method.



Table 3. Results evaluation of the 6000 labeled pairs, 3000 from the matched set and
3000 from the not matched set.

Real value

Predicted value

Percentage of Related Not related Unknown Total

Matched 95.31 1.43 3.26 100

Not Matched 5.13 93.43 1.43 100

5 Conclusions

In this paper, we have proposed a simple and effective method for solving the
entity matching problem involving data records of healthcare professionals. Our
contributions are centered on the three main tasks involved in the matching pro-
cess: blocking, matcher selection and matcher combination. Our blocking strat-
egy adopts an overlapping mechanism for reducing the number of comparisons
between related records. Our matchers are based on existing string matching
functions especifically tuned for the problem at hand. Finally, our matcher com-
bination strategy is based on an empirically designed heuristic algorithm. We
have evaluated our method by conducting a case study involving data from
three Brazilian Web sources of healthcare professionals. Our results show that
our method has achieved a true positive rate of over than 95% and a true negative
rate of over 93%.

As future work, we aim to improve our matchers by hierarchically labeling
the medical specialties and splitting addresses into components such as street,
number, city and state. We also aim to investigate a graph-based approach as
an alternative to address the entity matching problem in the medical domain.
Furthermore, we want to investigate the problem of data fusion, i.e., as in many
situations the data related to a same entity might also present some conflict, it
is very important to apply a method for deciding which information is correct
and updated. Finally, we plan to compare our method with other existing entity
matching approaches.
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