
Well-definedSoftware Process as Vehicle to Understand
Effectiveness of Formal Methods

Shigeru Kusakabe, Yoichi Omori, and Keijiro Araki

Grad. School of Information Science and Electrical Engineering, Kyushu University
744, Motooka, Nishi-ku, Fukuoka-shi, 819-0395, Japan

Abstract. In addition to software development techniques such as formal meth-
ods, software process is important for effectively developing quality software. In
the literature, we have well-defined process templates which provide mechanisms
for measuring, controlling, managing, and improving the way we develop soft-
ware. Well-defined process templates can serve as a vehicle to integrate advanced
software engineering techniques, such as formal methods, into actual software
development. We expect that students who have mastered such a well-defined
process template can effectively use formal methods and understand the effec-
tiveness of formal methods. In this paper, we report on a trial case of team soft-
ware process in which students tried using a model-oriented formal specification
language in a lightweight way for their project. We generated a hypothesis that
students with some process capabilities understand the effectiveness of rigorously
writing specifications in a formal specification language while students with less
capabilities do not.

1 Introduction

Formal methods are useful to effectively develop quality software. However, students
who have been taught formal methods seem to seldom use them in their actual software
development process. We need methods to convince students of the effectiveness of
formal methods in their actual software development.

In addition to formal methods, software process is important in order to effectively
develop quality software. For example, there is a claim “effective processes provide a
vehicle for introducing and using new technology in a way that best meets the objec-
tives” in a document of process improvement framework [1]. We have been working on
the effective methodology to introduce formal methods into actual software develop-
ment. One approach is a combination of a formal method and a well-defined customiz-
able process template which has mechanisms of measuring and analyzing process data
as well as mechanisms of process improvement. Such a well-defined process template is
useful in gaining perspective for the impact of formal methods and evaluating the actual
effectiveness by using process data. We expect that students who have mastered such
a well-defined process template can effectively use formal methods and understand the
effectiveness of formal methods in their actual software development process.

Our current focus is the combination of a model-oriented formal method we can use
in a lightweight way and a well-defined customizable process template supported by a
process improvement framework [2, 3]. An example of model oriented formal methods

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 51



is VDM and an example of well-defined customizable personal process templates is
PSP (Personal Software Process) [4] which is a base process template for a team level
process TSP (Team Software Process) [5, 6]. Many of recent developers are familiar
with semi-formal modeling notations such as diagrams in UML. We expect that model-
oriented formal methods are a good candidate with which developers customize their
process as a part of their process improvement without filling a wide gap.

In this paper, we report lessons learned from a trial case of team software pro-
cess in which students tried using a model-oriented formal specification language in a
lightweight way for their project. As we have not collected strong evidence as in con-
trolled experiments, we discuss our trial descriptively here. In Section 2, we explain our
approach of integrating formal methods into well-defined software processes. In Sec-
tion 3, we explain PSP and our trial of the combination of VDM and PSP. In Section
4, we explain TSP and our trial of the combination of VDM and the introductory TSP,
before concluding in Section 5.

2 Formal Methods and Well-defined Process

2.1 Well-defined Software Process Framework

We use TSP and PSP, developed and managed by CMU (Carnegie Mellon Univer-
sity) SEI (Software Engineering Institute), as our baseline process templates. These
are widely known as scalable, measurable and customizable processes [7]. They have a
strong relation to the organization level process improvement model, CMMI (Capabil-
ity and Maturity Model Integration). PSP and TSP are streamlined in the CMMI frame-
work [8]. CMMI builds organizational capability, TSP improves team performance,
and PSP builds individual skill and discipline. The CMMI framework has Measure-
ment and Analysis (MA) process area in its set of process areas, so that we can measure
and analyze the impact of the introduction of new technology such as formal methods
when using the process templates related to CMMI. We evaluate the impact of formal
methods on development process according to the process data collected through the
measurement and analysis mechanism in the process improvement framework.

2.2 Lightweight Formal Methods

There are various ways of using formal methods in design flows. In this paper, we use
a light weight approach in which the rigor level of the design flow is Level 3 or 4
according to the seven levels of increasing rigor of design flows proposed in [9]:

Level 1: Conventional design flow, with informal specifications.
Level 2: Conventional design flow, with semi-formal specifications.
Level 3: Formal design flow, with formal specifications and without tool support. This

is basically a conventional design flow in which formal specifications replace informal/semi-
formal ones. Most of quality control and quality assurance remain achieved using
conventional quality steps.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 52



Level 4: Formal design flow, with formal specifications and lightweight checking tools.
The specifications are written in formal languages equipped with syntax and static
semantics checkers, which can detect shallow mistakes (e.g., syntax errors, unde-
clared identifiers, type inconsistencies, etc.).

Level 5: Formal design flow, with formal specifications and bug hunting tools.
Level 6: Formal design flow, with formal specifications and proof tools.
Level 7: Formal design flow, with formal specifications, proofs, and proof checking

tools.

There are no direct relationships between this rigor level and the levels in CMMI,
capability level and maturity level. However, we can use formal methods for the impor-
tant process elements such work-products and practices in process improvement.

We basically recommend a lightweight approach when starting to use formal meth-
ods. In a lightweight approach, we develop a formal specification and then work-products
int the next level from the specification informally. Lightweight approaches to formal
methods seem cost effective and likely to be adopted in a wider range of actual develop-
ment, while the specific level of rigor depends on the goal of the project. In lightweight
formal methods, we do not rely on very rigorous means, such as theorem proofs. In-
stead, we use adequately less rigorous means, such as writing specification in a formal
specification, evaluating pre/post conditions and testing the specification, to increase
our confidence in the specification.

3 Formal Methods and Well-defined Personal Process

3.1 PSP: Personal Software Process

We briefly introduce PSP without going into the details, as the details of PSP can be
found in the literature [4]. PSP has different levels of process practice and can be used
in education of process development and improvement as well as in actual projects. In
a standard training course of PSP, development of process is divided into three levels.
PSP0 features on measurement practices, PSP1 on estimation practices, and PSP2 on
quality practices as shown in Fig. 1.

As shown in Fig. 2, PSP0 and PSP1 consist of the following phases: planning, de-
tailed design, code, compile, test, and postmortem. PSP2 has extra two review phases:
planning, detailed design, design review, code, code review, compile, test, and post-
mortem. In PSP2, four specification templates are provided: operational, functional,
state and logic specification templates. Developers can improve quality of their prod-
ucts by using these specification templates and reviewing them with a review checklist
in PSP2. Fig. 3 shows scripts of Detailed Design and Design Review phases in PSP2.
Developers can measure and analyze the effectiveness of these templates and activities
related to these templates through the measurement and analysis mechanism in PSP.

Once developers have established their development process as in PSP2, we expect
they are ready to introduce formal methods in their process improvement. PSP was
developed based on the CMM (CMMI’s predecessor), and designed to be CMM level
5. PSP has a process improvement mechanism as in CMM. In the continuous repre-
sentation of CMMI, the set of process areas for level 2 includes MA, Measurement

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 53



Fig.1. Development steps in PSP

and Analysis process area. For example, we can focus on the defect types which are
frequently injected and expensive to fix according to the process data once we have
established such practices in PSP that reflects MA in CMMI. In addition, we can cus-
tomize the baseline process template to include the work-products and activities with
formal methods effective in preventing injection of defects of the specific defect types
[2].

3.2 PSP with VDM

The four specification templates in PSP can be replaced with those written in for-
mal specification languages. One instance is an approach with a model-oriented for-
mal method VDM, one of the longest-established formal methods for the develop-
ment of computer-based systems. By using VDM, we can enhance and improve the
work-products and activities in Detailed Design and Design Review phases. We can
use the standard language the VDM Specification Language (VDM-SL) and dialects
such as VDM++, which supports the modeling of object-oriented and concurrent sys-
tems. There exist textbooks corresponding to these languages such as [10, 11]. Sup-
port for VDM includes commercial and academic tools for analyzing VDM specifi-
cations, including support for testing and code generation [12, 13]. In VDM, we can
write explicit-style executable specifications as well as implicit-style non-executable
specifications. For explicit-style executable specifications, we can use the interpreter to
evaluate pre/post conditions in the specifications and test the specifications.

In our trial using VDM in a personal process [2], the developer changed the level
of rigor in the design flow from Level 2 to Level 3 or 4. He used VDM++ instead of
UML, and used VDMTools for syntax and type checking, and testing key parts of the
specification potentially related to specific concerns. He spent more effort in design and

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 54



Fig.2. Phases and process flow in PSP

design review, and less on coding and testing after introducing VDM into his process.
By introducing formal methods like VDM, we can expect a reduction of undesirable
behaviors like designing in coding, a reduction of defects and consequent reduction
of time spent in testing, while we need extra effort for work-products and activities
related to VDM. He successfully reduced the number of defects he had focused on
without degrading his productivity. He had the impression that without a defined process
template like PSP he could not have made a process improvement plan with formal
methods.

4 Formal Methods and Well-defined Team Process

4.1 TSP: Team Software Process

After considering the lessons learned from our trial on PSP mentioned above, we con-
tinue to extend our trial to a team-level software development process, TSPi (Team
Software Process introduction) [6]. While TSP is a scalable team process usable for a
large scale industry project, TSPi is a subset of TSP and suitable for a small team in an
academic setting. In TSPi, we strategically develop the target product throughout the
multiple development cycles as shown in Fig. 4. We start from the development of the
basic requirements and restart the next development cycle for the updated requirements
after finishing one development cycle in an incremental manner.

Each cycle is divided into eight phases, launch/re-launch, strategy development,
planning, requirements, design, implementation, testing, and postmortem phase. TSPi
is a defined and customizable team process, and has scripts that cover issues such as
what kind of work to be done in each phase and how to collect process data. As TSPi is

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 55



Fig.3. Scripts of Detailed Design and Design Review Phases in PSP2

a defined process that can be tailored, we can integrate formal methods with TSPi, and
evaluate the effectiveness using its process data.

4.2 TSPi with VDM

In this case, we focus on problems related to design activities among team members. In
TSPi, one or two members develop a high-level design, and each member is assigned
his/her task based on the high-level design. Each member develops the detailed design
for his/her task before proceeding to the coding task in the coding phase. In our trial,
we compare the defect data when using the normal TPSi design flow with those when
we enhance the design flow with VDM in order to observe the effectiveness of using
VDM.

In this case, the team used VDM as follows.

1. The team members follow the standard script and templates for the design phase in
TSPi.

2. The team members complete reviews and inspections.
3. The team members collect and the record the defect data for the design phase.
4. The team members redo the design using VDM.
5. The team members use VDMTools for syntax and type checking of their design. In

addition, they use the tool for animating the selected part of the design.
6. The team members collect and the record the defect data additionally found by

using VDM.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 56



Fig.4. TSP/TSPi process structure

Among the defects, we picked up the defects related to interface, data type, and
functionality in the discussion below. This means we exclude the minor defects like
typing errors. During the standard TSPi design flows, they found 2 defects in the high-
level design and 37 defects in the detailed design. By using VDM, they additionally
found 23 defects. These were the defects of the high-level design itself and the defects of
the detailed design caused due to the flaw in the high-level design. While the members
might not be practiced in reviewing and inspecting, they missed defects in the design of
the normal design flow using non-formal and semi-formal notations.

Ideally, members of TSPi are expected to be practiced with their personal software
process capabilities. Students are required to follow the monitoring practices like spe-
cific practices in Measurement and Analysis process area in CMMI-DEV throughout
the PSP course. They also need to submit reports that require capabilities like those
in Causal Analysis and Resolution process area. In our TSPi trial, members were not
equally practiced with their personal software process capabilities. A few of them were
practiced and the rest of them were not. According to our impression from interviews
with the members, more practiced team members seemed to understand the effective-
ness of formal methods more concretely while less practiced member seemed to feel
more vaguely. We generated a hypothesis that students with higher process capabilities
understand effectiveness of rigorously writing specifications in a formal specification
language while students with lower capabilities do not.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 57



5 ConcludingRemarks

We have been working on the effective methodology of introducing formal methods
into the actual software development process. We reported our trial case of software
process in which students tried using a model-oriented formal method in a lightweight
way for their project. We only have very limited data so far. However, we generated a
hypothesis from our trial case that students with some process capabilities can better
understand the effectiveness of rigorously writing specifications using formal method
while students with less capabilities do not. We will continue and extend our effort to
collect evidence to support our hypothesis.

Acknowledgment

This work was partly supported by KAKENHI, Grant-in-Aid for Scientific Research(S)
24220001.

References

1. CMMI Product Team, CMMI for Development, Version 1.3, CMU/SEI-2010-TR-033, 2010.
2. S. Kusakabe, Y. Omori and K. Araki. A Combination of a Formal Method and PSP for Im-

proving Software Process, Proc. of TSP Symposium 2012, CMU/SEI-2012-SR-015, 2012.
3. S. Kusakabe, H. Lin, Y. Omori, and K. Araki, Generating Supportive Hypotheses in Intro-

ducing Formal Methods using a Software Processes Improvement Model, Proc. of the ICSE
2014 Workshops - 2nd FME Workshop on Formal Methods in Software Engineering (For-
maliSE 2014), pp.24-30, 2014

4. W. S.Humphrey. PSP: A Self-improvement Process For Software Engineers, Addison-
Wesley, 2005.

5. Team Software Process, http://www.sei.cmu.edu/tsp/
6. W. S. Humphrey. Introduction to the Team Software Process, Addison-Wesley, 2000.
7. C. Jones. Software Engineering Best Practices, 1st ed. New York, NY, USA: McGraw-Hill,

Inc., 2010.
8. J. McHale, and D. Wall. Mapping TSP to CMMI, Carnegie Mellon University Software

Engineering Institute Technical Report CMU/SEI-2004-TR-014, 2005.
9. Hubert Garavel, Susanne Graf, Formal Methods for Safe and Secure Computers Systems,

BSI Study 875, 2003
10. J. Fitzgerald and P. G. Larsen. Modelling Systems: Practical Tools and Techniques in Soft-

ware Development. Cambridge University Press, 1998.
11. P. G. Larsen, P. Mukherjee, N. Plat, M. Verhoef, and J. Fitzgerald. Validated Designs For

Object-oriented Systems. Springer Verlag, 1998.
12. VDMTools, http://vdmtools.jp/en/
13. Overture Tool, http://overturetool.org/

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 58




