=Paper= {{Paper |id=Vol-1388/umap2015_posters_demos_preface.pdf |storemode=property |title=None |pdfUrl=https://ceur-ws.org/Vol-1388/demo_preface.pdf |volume=Vol-1388 }} ==None== https://ceur-ws.org/Vol-1388/demo_preface.pdf
   Proceedings	
  of	
  the	
  Posters	
  and	
  Demos	
  at	
  the	
  23rd	
  Conference	
  on	
  User	
  
         Modelling,	
  Adaptation	
  and	
  Personalisation	
  (UMAP	
  2015)	
  
                         29th	
  June	
  -­‐	
  3rd	
  July,	
  2015,	
  Dublin,	
  Ireland	
  
                                                               	
  

                              Alexandra	
  I.	
  Cristea*	
  and	
  Nava	
  Tintarev**	
  
                                                          	
  
                                     *University	
  of	
  Warwick,	
  UK	
  
                                      a.i.cristea@warwick.ac.uk	
  

                                      **	
  University	
  of	
  Aberdeen,	
  Scotland	
  
                                               n.tintarev@abdn.ac.uk	
  

                                                               	
  

	
                                  	
  
Preface	
  
	
  

The	
  23rd	
  International	
  Conference	
  on	
  User	
  Modelling,	
  Adaptation	
  and	
  Personalization	
  (UMAP	
  2015)	
  
was	
  held	
  in	
  Dublin,	
  Ireland,	
  between	
  29th	
  of	
  June	
  and	
  the	
  3rd	
  of	
  July,	
  2015.	
  	
  Poster	
  and	
  
demonstration	
  papers	
  contain	
  original	
  and	
  unpublished	
  accounts	
  of	
  innovative	
  research	
  ideas,	
  
preliminary	
  results,	
  industry	
  showcases,	
  and	
  system	
  prototypes,	
  addressing	
  both	
  the	
  theory	
  and	
  
practice	
  of	
  User	
  Modelling,	
  Adaptation	
  and	
  Personalization.	
  	
  

A	
  total	
  of	
  21	
  submissions	
  were	
  received.	
  Similarly	
  to	
  the	
  main	
  tracks	
  of	
  the	
  conference,	
  each	
  of	
  them	
  
was	
  reviewed	
  by	
  at	
  least	
  three	
  members	
  of	
  the	
  Program	
  Committee.	
  	
  Submissions	
  have	
  been	
  
assessed	
  based	
  on	
  their	
  originality	
  and	
  novelty,	
  potential	
  contribution	
  to	
  the	
  research	
  field,	
  potential	
  
impact	
  in	
  particular	
  use	
  cases,	
  and	
  the	
  usefulness	
  of	
  presented	
  experiences,	
  as	
  well	
  as	
  their	
  overall	
  
readability.	
  	
  

For	
  these	
  proceedings,	
  11	
  papers	
  (6	
  posters,	
  5	
  demos)	
  were	
  accepted	
  based	
  on	
  this	
  process,	
  for	
  
presentation	
  at	
  the	
  UMAP	
  2015	
  conference,	
  on	
  the	
  1st	
  of	
  July	
  2015.	
  

Posters:	
  
   • Anthony	
  Cruickshank,	
  Subramanian	
  Ramamoorthy	
  and	
  Richard	
  Shillcock.	
  Predicting	
  
       actions	
  using	
  a	
  probabilistic	
  model	
  of	
  human	
  decision	
  behaviours	
  

       Abstract:	
  Computer	
  interfaces	
  provide	
  many	
  different	
  optimal	
  methods	
  for	
  completing	
  tasks.	
  
       However,	
  though	
  users	
  have	
  a	
  large	
  degree	
  of	
  freedom,	
  typically	
  they	
  will	
  settle	
  on	
  a	
  smaller	
  set	
  
       of	
  preferred	
  solutions.	
  Designing	
  an	
  interface	
  agent	
  to	
  provide	
  assistance	
  in	
  this	
  environment	
  
       thus	
  requires	
  not	
  only	
  knowledge	
  of	
  the	
  objectively	
  optimal	
  solutions,	
  but	
  also	
  recognition	
  that	
  
       users	
  act	
  from	
  habit	
  and	
  that	
  adaptation	
  to	
  an	
  individual's	
  subjectively	
  optimal	
  solutions	
  is	
  
       required.	
  We	
  present	
  a	
  dynamic	
  Bayesian	
  network	
  model	
  for	
  predicting	
  a	
  user's	
  actions	
  by	
  
       inferring	
  whether	
  a	
  decision	
  is	
  being	
  made	
  by	
  deliberation	
  or	
  through	
  habit.	
  The	
  model	
  adapts	
  
       to	
  individuals	
  in	
  a	
  principled	
  manner	
  by	
  incorporating	
  observed	
  actions	
  using	
  Bayesian	
  
       probabilistic	
  techniques.	
  We	
  demonstrate	
  the	
  model's	
  effectiveness	
  using	
  specific	
  
       implementations	
  of	
  deliberation	
  and	
  habitual	
  decision	
  making,	
  that	
  are	
  simple	
  enough	
  to	
  
       transparently	
  expose	
  the	
  mechanisms	
  of	
  our	
  estimation	
  procedure.	
  We	
  show	
  that	
  this	
  
       implementation	
  achieves	
  >90%	
  prediction	
  accuracy	
  in	
  a	
  task	
  with	
  a	
  large	
  number	
  of	
  optimal	
  
       solutions	
  and	
  a	
  high	
  degree	
  of	
  freedom	
  in	
  selecting	
  actions.	
  

       •     Dario	
  De	
  Nart,	
  Dante	
  Degl'Innocenti	
  and	
  Carlo	
  Tasso.	
  Introducing	
  Distiller:	
  a	
  Lightweight	
  
             Framework	
  for	
  Knowledge	
  Extraction	
  and	
  Filtering	
  

       Abstract:	
  Semantic	
  content	
  analysis	
  is	
  an	
  activity	
  that	
  can	
  greatly	
  support	
  a	
  broad	
  range	
  of	
  user	
  
       modelling	
  applications.	
  Several	
  automatic	
  tools	
  are	
  available,	
  however	
  such	
  systems	
  usually	
  
       provide	
  little	
  tuning	
  possibilities	
  and	
  do	
  not	
  support	
  integration	
  with	
  different	
  systems.	
  
       Personalization	
  applications,	
  on	
  the	
  other	
  hand,	
  are	
  becoming	
  increasingly	
  multi-­‐lingual	
  and	
  
       cross-­‐domain.	
  In	
  this	
  paper	
  we	
  present	
  a	
  novel	
  framework	
  for	
  Knowledge	
  Extraction,	
  whose	
  
       main	
  goal	
  is	
  to	
  support	
  the	
  development	
  of	
  new	
  strategies	
  and	
  technologies	
  and	
  to	
  ease	
  the	
  
       integration	
  of	
  the	
  existing	
  ones.	
  
       •     Aidan	
  Jones,	
  Susan	
  Bull	
  and	
  Ginevra	
  Castellano.	
  Teacher	
  Scaffolding	
  of	
  a	
  Student's	
  Self-­‐
             regulated	
  Learning	
  using	
  an	
  Open	
  Learner	
  Model	
  

       Abstract:	
  This	
  paper	
  describes	
  a	
  study	
  of	
  a	
  teacher's	
  scaffolding	
  to	
  support	
  reflection	
  and	
  self-­‐
       regulated	
  learning	
  (SRL)	
  with	
  an	
  open	
  learner	
  model	
  (OLM)	
  in	
  a	
  geography	
  based	
  task	
  on	
  a	
  touch	
  
       screen.	
  The	
  study	
  was	
  carried	
  out	
  in	
  6	
  one-­‐on-­‐one	
  sessions	
  with	
  students	
  between	
  the	
  ages	
  of	
  
       10	
  and	
  11.	
  We	
  present	
  examples	
  of	
  teachers	
  scaffolding	
  students'	
  SRL	
  behaviours	
  using	
  the	
  
       OLM,	
  demonstrating	
  how	
  an	
  OLM	
  can	
  be	
  used	
  to	
  prompt	
  the	
  learner	
  to	
  monitor	
  their	
  
       developing	
  skills,	
  set	
  goals,	
  and	
  use	
  appropriate	
  tools.	
  

       •     Fahim	
  A.	
  Salim,	
  Killian	
  Levacher,	
  Owen	
  Conlan	
  and	
  Nick	
  Campbell.	
  Examining	
  Multimodal	
  
             Characteristics	
  of	
  Video	
  to	
  Understand	
  User	
  Engagement	
  

       Abstract:	
  Video	
  content	
  is	
  being	
  produced	
  in	
  ever	
  increasing	
  quantities	
  and	
  offers	
  a	
  potentially	
  
       highly	
  diverse	
  source	
  for	
  personalizable	
  content.	
  A	
  key	
  characteristic	
  of	
  quality	
  video	
  content	
  is	
  
       the	
  engaging	
  experience	
  it	
  offers	
  for	
  end	
  users.	
  This	
  paper	
  explores	
  how	
  different	
  characteristics	
  
       of	
  a	
  video,	
  e.g.	
  face	
  detection,	
  paralinguistic	
  features	
  in	
  the	
  audio	
  track,	
  extracted	
  from	
  different	
  
       modalities	
  in	
  the	
  video	
  can	
  impact	
  how	
  users	
  rate	
  and	
  thereby	
  engage	
  with	
  the	
  video.	
  These	
  
       characteristics	
  can	
  further	
  be	
  used	
  to	
  help	
  segment	
  videos	
  in	
  a	
  personalized	
  and	
  contextually	
  
       aware	
  manner.	
  Initial	
  experimental	
  results	
  from	
  the	
  study	
  presented	
  in	
  this	
  paper	
  provide	
  
       encouraging	
  results.	
  

       •     Cameron	
  Summers	
  and	
  Phillip	
  Popp.	
  Large	
  Scale	
  Discovery	
  of	
  Seasonal	
  Music	
  From	
  User	
  
             Data	
  

       Abstract:	
  The	
  consumption	
  history	
  of	
  online	
  media	
  content	
  such	
  as	
  music	
  and	
  video	
  offers	
  a	
  rich	
  
       source	
  of	
  data	
  from	
  which	
  to	
  mine	
  information.	
  Trends	
  in	
  this	
  data	
  are	
  of	
  particular	
  interest	
  
       because	
  they	
  reflect	
  user	
  preferences	
  as	
  well	
  as	
  associated	
  cultural	
  contexts	
  that	
  can	
  be	
  
       exploited	
  in	
  systems	
  such	
  as	
  recommendation	
  or	
  search.	
  This	
  paper	
  classifies	
  songs	
  as	
  seasonal	
  
       using	
  a	
  large,	
  real-­‐world	
  dataset	
  of	
  user	
  listening	
  data.	
  Results	
  show	
  strong	
  performance	
  of	
  
       classification	
  of	
  Christmas	
  music	
  with	
  Gaussian	
  Mixture	
  Models.	
  

       •     Robert	
  Moro	
  and	
  Maria	
  Bielikova.	
  Utilizing	
  Gaze	
  Data	
  in	
  Learning:	
  From	
  Reading	
  Patterns	
  
             Detection	
  to	
  Personalization	
  

       Abstract:	
  Although	
  a	
  lot	
  of	
  attention	
  has	
  been	
  dedicated	
  towards	
  improvement	
  of	
  the	
  modeling	
  
       of	
  learners’	
  knowledge	
  within	
  learning	
  systems,	
  recommendation,	
  or	
  personalization,	
  there	
  is	
  
       less	
  attention	
  on	
  improvement	
  of	
  the	
  learning	
  content	
  itself	
  and	
  providing	
  support	
  to	
  learning	
  
       content	
  creators.	
  In	
  addition,	
  the	
  complexity	
  of	
  learning	
  systems	
  requires	
  utilization	
  of	
  novel	
  
       sources	
  of	
  implicit	
  feedback,	
  such	
  as	
  gaze	
  data	
  in	
  order	
  to	
  model	
  learners’	
  interactions	
  in	
  their	
  
       entirety.	
  In	
  this	
  poster	
  paper,	
  we	
  present	
  a	
  framework	
  for	
  collection	
  of	
  gaze	
  data	
  and	
  its	
  
       utilization	
  in	
  the	
  learning	
  systems	
  environment.	
  We	
  focus	
  on	
  the	
  analysis	
  of	
  reading	
  patterns	
  for	
  
       the	
  detection	
  of	
  problematic	
  parts	
  of	
  text	
  and	
  present	
  results	
  of	
  a	
  preliminary	
  evaluation	
  in	
  a	
  
       web-­‐based	
  learning	
  system	
  ALEF.	
  

	
  

	
  
	
  

	
  
Demos:	
  
  • Cornelius	
  A.	
  Ludmann,	
  Marco	
  Grawunder	
  and	
  H.-­‐Jürgen	
  Appelrath.	
  OdysseusRecSys:	
  
     Collaborative	
  Filtering	
  based	
  on	
  a	
  Data	
  Stream	
  Management	
  System	
  

           Abstract:	
  The	
  development	
  of	
  algorithms	
  for	
  online	
  Collaborative	
  Filtering	
  (CF)	
  in	
  the	
  past	
  
           few	
  years	
  enables	
  to	
  add	
  new	
  rating	
  data	
  to	
  existing	
  models.	
  The	
  Recommender	
  System	
  
           (RecSys)	
  task	
  changes	
  from	
  calculating	
  recommendations	
  from	
  a	
  static	
  and	
  finite	
  dataset	
  to	
  
           continuously	
  processing	
  rating	
  data.	
  Instead	
  of	
  using	
  stream	
  processing	
  frameworks	
  to	
  
           implement	
  CF	
  algorithms,	
  we	
  present	
  a	
  prototype	
  that	
  extends	
  the	
  open	
  source	
  Data	
  Stream	
  
           Management	
  System	
  (DSMS)	
  Odysseus	
  in	
  a	
  generic	
  and	
  domain-­‐independent	
  way.	
  The	
  user	
  
           can	
  build	
  a	
  custom	
  RecSys	
  that	
  benefits	
  from	
  existing	
  DSMS	
  features	
  by	
  defining	
  a	
  
           continuous	
  query	
  with	
  a	
  declarative	
  query	
  language.	
  

       •   Panagiotis	
  Germanakos,	
  Marios	
  Belk,	
  Argyris	
  Constantinides	
  and	
  George	
  Samaras.	
  The	
  
           PersonaWeb	
  System:	
  Personalizing	
  E-­‐Commerce	
  Environments	
  based	
  on	
  Human	
  Factors	
  

           Abstract:	
  This	
  demonstration	
  paper	
  presents	
  the	
  PersonaWeb	
  system,	
  an	
  adaptive	
  
           interactive	
  system	
  that	
  personalizes	
  the	
  visual	
  and	
  interaction	
  design	
  aspects	
  of	
  E-­‐
           Commerce	
  product	
  views	
  based	
  on	
  individual	
  differences	
  in	
  cognitive	
  processing.	
  The	
  
           PersonaWeb	
  system	
  consists	
  of	
  three	
  main	
  components:	
  i)	
  the	
  user	
  modeling	
  component	
  in	
  
           which	
  explicit	
  and	
  implicit	
  user	
  data	
  collection	
  methods	
  are	
  performed	
  for	
  eliciting	
  the	
  users’	
  
           cognitive	
  processing	
  factors;	
  ii)	
  the	
  content	
  management	
  component	
  for	
  creating	
  and	
  
           managing	
  structured	
  Web	
  content;	
  and	
  iii)	
  the	
  adaptive	
  user	
  interface	
  that	
  is	
  responsible	
  for	
  
           performing	
  rule-­‐based	
  mechanisms	
  for	
  deciding	
  and	
  communicating	
  a	
  personalized	
  visual	
  
           and	
  interaction	
  design	
  according	
  to	
  the	
  users’	
  cognitive	
  characteristics.	
  

       •   Guibing	
  Guo,	
  Jie	
  Zhang,	
  Zhu	
  Sun	
  and	
  Neil	
  Yorke-­‐Smith.	
  LibRec:	
  A	
  Java	
  Library	
  for	
  
           Recommender	
  Systems	
  

           Abstract:	
  The	
  large	
  array	
  of	
  recommendation	
  algorithms	
  proposed	
  over	
  the	
  years	
  brings	
  a	
  
           challenge	
  in	
  reproducing	
  and	
  comparing	
  their	
  performance.	
  This	
  paper	
  introduces	
  an	
  open-­‐
           source	
  Java	
  library	
  that	
  implements	
  a	
  suite	
  of	
  state-­‐of-­‐the-­‐art	
  algorithms	
  as	
  well	
  as	
  a	
  series	
  
           of	
  evaluation	
  metrics.	
  We	
  empirically	
  find	
  that	
  LibRec	
  performs	
  faster	
  than	
  other	
  such	
  
           libraries,	
  while	
  achieving	
  competitive	
  evaluative	
  performance.	
  

       •   Alejandro	
  Montes	
  García,	
  Natalia	
  Stash	
  and	
  Paul	
  De	
  Bra.	
  Adaptive	
  applications	
  to	
  assist	
  
           students	
  with	
  autism	
  in	
  succeeding	
  in	
  higher	
  education	
  

           Abstract:	
  This	
  demo	
  shows	
  adaptation	
  of	
  presentation	
  and	
  information	
  for	
  students	
  
           entering	
  a	
  university,	
  especially	
  for	
  students	
  with	
  autism.	
  These	
  students	
  not	
  only	
  have	
  
           specific	
  information	
  need,	
  they	
  are	
  also	
  more	
  concerned	
  about	
  their	
  privacy.	
  We	
  use	
  WiBAF	
  
           (Within	
  Browser	
  Adaptation	
  Framework)	
  for	
  user	
  modeling	
  and	
  adaptation	
  to	
  give	
  users	
  
           control	
  over	
  the	
  sharing	
  of	
  their	
  data.	
  
       •    Khalil	
  Muhammad,	
  Aonghus	
  Lawlor,	
  Rachael	
  Rafter	
  and	
  Barry	
  Smyth.	
  Generating	
  
            Personalised	
  and	
  Opinionated	
  Review	
  Summaries	
  

            Abstract:	
  This	
  paper	
  describes	
  a	
  novel	
  approach	
  for	
  summarising	
  user-­‐generated	
  reviews	
  for	
  
            the	
  purpose	
  of	
  explaining	
  recommendations.	
  We	
  demonstrate	
  our	
  approach	
  using	
  
            TripAdvisor	
  reviews.	
  

We	
  thank	
  all	
  authors	
  for	
  submitting	
  and	
  presenting	
  their	
  works,	
  and	
  members	
  of	
  the	
  Program	
  
Committee	
  for	
  providing	
  their	
  valuable	
  time	
  and	
  expertise	
  for	
  reviewing	
  and	
  selecting	
  the	
  papers.	
  All	
  
their	
  efforts	
  made	
  UMAP	
  2015	
  poster	
  and	
  demo	
  results	
  possible.	
  

	
  

Alexandra	
  I.	
  Cristea	
  

Nava	
  Tintarev	
  

	
  

	
                                            	
  
PROGRAM	
  COMMITTEE	
  

Kenro	
               Aihara	
            National	
  Institute	
  of	
  Informatics	
  
Omar	
                Alonso	
            Microsoft	
  
Liliana	
             Ardissono	
         University	
  of	
  Torino	
  
Hideki	
              Asoh	
              AIST	
  
Mathias	
             Bauer	
             mineway	
  GmbH	
  
Maria	
               Bielikova	
         Slovak	
  University	
  of	
  Technology	
  in	
  Bratislava	
  
Pradipta	
            Biswas	
            Wolfson	
  College,	
  Cambridge	
  University	
  
Robin	
               Burke	
             DePaul	
  University	
  
Iván	
                Cantador	
          Universidad	
  Autónoma	
  de	
  Madrid	
  
Federica	
            Cena	
              Department	
  of	
  Computer	
  Science,	
  University	
  of	
  Torino	
  
Min	
                 Chi	
               North	
  Carolina	
  State	
  University	
  
David	
               Chin	
              University	
  of	
  Hawaii	
  
Mihaela	
             Cocea	
             School	
  of	
  Computing,	
  University	
  of	
  Portsmouth	
  
Paolo	
               Cremonesi	
         Politecnico	
  di	
  Milano	
  
Sidney	
              D'Mello	
           University	
  of	
  Notre	
  Dame	
  
Paul	
                De	
  Bra	
         TU/e	
  
Marco	
               De	
  Gemmis	
      Dipartimento	
  di	
  Informatica	
  -­‐	
  University	
  of	
  Bari	
  
Ernesto	
             Diaz-­‐Aviles	
     IBM	
  Reseach	
  
Vania	
               Dimitrova	
         School	
  of	
  Computing,	
  University	
  of	
  Leeds	
  
Peter	
               Dolog	
             Department	
  of	
  Computer	
  Science,	
  Aalborg	
  University	
  
Benedict	
            Du	
  Boulay	
      Informatics	
  Department,	
  University	
  of	
  Sussex	
  
Casey	
               Dugan	
             IBM	
  T.J.	
  Watson	
  Research	
  
Fabio	
               Gasparetti	
        Artificial	
  Intelligence	
  Laboratory	
  -­‐	
  ROMA	
  TRE	
  University	
  
Mouzhi	
              Ge	
                Universitaet	
  der	
  Bundeswehr	
  Munich	
  
Cristina	
            Gena	
              Department	
  of	
  Computer	
  Science,	
  University	
  of	
  Torino	
  
Werner	
              Geyer	
             IBM	
  T.J.	
  Watson	
  Research	
  
Bradley	
             Goodman	
           The	
  MITRE	
  Corporation	
  
Eelco	
               Herder	
            L3S	
  Research	
  Center	
  
Dietmar	
             Jannach	
           TU	
  Dortmund	
  
Robert	
              Jäschke	
           L3S	
  Research	
  Center	
  
W.	
  Lewis	
         Johnson	
           Alelo	
  Inc.	
  
Judy	
                Kay	
               University	
  of	
  Sydney	
  
Styliani	
            Kleanthous	
        University	
  of	
  Cyprus	
  
Bart	
                Knijnenburg	
       University	
  of	
  California,	
  Irvine	
  
Tsvi	
                Kuflik	
            The	
  University	
  of	
  Haifa	
  
Pasquale	
            Lops	
              University	
  of	
  Bari	
  
Bernd	
               Ludwig	
            Chair	
  for	
  Information	
  Science	
  
Gordon	
              McCalla	
           University	
  of	
  Saskatchewan	
  
Tanja	
               Mitrovic	
          Intelligent	
  Computer	
  Tutoring	
  Group,	
  University	
  of	
  Canterbury,	
  Christchurch	
  
Riichiro	
            Mizoguchi	
         Japan	
  Advanced	
  Institute	
  of	
  Science	
  and	
  Technology	
  
Elena	
               Not	
               FBK-­‐irst	
  
Aditya	
              Pal	
               IBM	
  
Georgios	
            Paliouras	
         Institute	
  of	
  Informatics	
  &	
  Telecommunications,	
  NCSR	
  "Demokritos"	
  
Luiz	
  Augusto	
     Pizzato	
           Octosocial	
  Labs	
  
Katharina	
           Reinecke	
          University	
  of	
  Zurich	
  
Lior	
            Rokach	
           BGU	
  
Alan	
            Said	
             Recorded	
  Future	
  
Olga	
  C.	
      Santos	
           aDeNu	
  Research	
  Group	
  (UNED)	
  
Giovanni	
        Semeraro	
         Dipartimento	
  di	
  Informatica	
  -­‐	
  University	
  of	
  Bari	
  Aldo	
  Moro	
  
Bracha	
          Shapira	
          Ben-­‐Gurion	
  University	
  
Barry	
           Smyth	
            University	
  College	
  Dublin	
  
Myra	
            Spiliopoulou	
     U.	
  Magdeburg	
  
Ben	
             Steichen	
         University	
  of	
  British	
  Columbia	
  
Dhavalkumar	
     Thakker	
          University	
  of	
  Leeds	
  
Marko	
           Tkalcic	
          Johannes	
  Kepler	
  University	
  Department	
  of	
  Computational	
  Perception	
  
Christoph	
       Trattner	
         KMI,	
  TU-­‐Graz	
  
Jian	
            Wang	
             LinkedIn	
  Corporation	
  
Stephan	
         Weibelzahl	
       Private	
  University	
  of	
  Applied	
  Sciences	
  Göttingen	
  
Markus	
          Zanker	
           Alpen-­‐Adria-­‐Universitaet	
  Klagenfurt	
  
Jie	
             Zhang	
            Nanyang	
  Technological	
  University	
  
Yong	
            Zheng	
            DePaul	
  University