
BiYacc: Roll Your Parser and Reflective Printer into One

Zirun Zhu1, 2 Hsiang-Shang Ko2 Pedro Martins3 João Saraiva3 Zhenjiang Hu1, 2

1 SOKENDAI (The Graduate University for Advanced Studies), Japan
{zhu,hu}@nii.ac.jp

2 National Institute of Informatics, Japan
hsiang-shang@nii.ac.jp

3 HASLab/INESC TEC & University of Minho, Portugal
{prmartins,jas}@di.uminho.pt

Abstract

Language designers usually need to implement parsers and printers.
Despite being two related programs, in practice they are designed and
implemented separately. This approach has an obvious disadvantage:
as a language evolves, both its parser and printer need to be separately
revised and kept synchronised. Such tasks are routine but compli-
cated and error-prone. To facilitate these tasks, we propose a language
called BiYacc, whose programs denote both a parser and a printer. In
essence, BiYacc is a domain-specific language for writing putback-based
bidirectional transformations — the printer is a putback transforma-
tion, and the parser is the corresponding get transformation. The pairs
of parsers and printers generated by BiYacc are thus always guar-
anteed to satisfy the usual round-trip properties. The highlight that
distinguishes this reflective printer from others is that the printer —
being a putback transformation — accepts not only an abstract syntax
tree but also a string, and produces an updated string consistent with
the given abstract syntax tree. We can thus make use of the additional
input string, with mechanisms such as simultaneous pattern matching
on the view and the source, to provide users with full control over the
printing-strategies.

1 Introduction

Whenever we come up with a new programming language, as part of its compiler we need to design and implement
a parser and a printer to convert between program text and its internal representation. A piece of program text,
while conforming to a concrete syntax specification, is a flat string that can be easily edited by the programmer.
The parser recovers the tree structure of such a string and converts it to an abstract syntax tree, which is a
structured and simplified representation that is easier for the compiler backend to manipulate. On the other
hand, a printer flattens an abstract syntax tree to a string, which is typically in a human readable format. This
is useful for debugging the compiler or reporting internal information to the user, for example.

Parsers and printers do conversions in opposite directions, however, they are closely related — for example, we
normally expect that a string printed from an abstract syntax tree can be parsed to the same tree. This is also
clearly shown on language-based editors, as introduced by Reps [20, 21], where the user interacts with a pretty
printed representation of the underlying abstract syntax tree. Thus, each user text update is performed as an

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Cunha, E. Kindler (eds.): Proceedings of the Fourth International Workshop on Bidirectional Transformations (Bx 2015),
L’Aquila, Italy, July 24, 2015, published at http://ceur-ws.org

43



abstract syntax tree transformation that has to be automatically synchronised with its concrete representation.
Despite this relationship, current practice is to write parsers and printers separately. This approach has an
obvious disadvantage: the parser and the printer need to be revised from time to time as the language evolves.
Each time, we must revise the parser and the printer and also keep them consistent with each other, which is a
time-consuming and error-prone task. To address the problem, we propose a prototype domain-specific language
BiYacc, in which the user can describe both a parser and a printer in a single program, contrary to designing
and writing them separately as is traditional. By unifying these two pieces of software and deriving them from
single, unambiguous and centralised code, we are creating a unified environment, which is easier to maintain and
update, therefore respecting the “Don’t Repeat Yourself” principle of software development [11].

Distinct from traditional kinds of printers, the printer generated from a BiYacc program is reflective: it takes
not only an abstract syntax tree but also a piece of program text, and produces an updated piece of program text
into which information from the abstract syntax tree is properly embedded. We illustrate reflective printing with
the following small but non-trivial example (which is also used as the running example in subsequent sections)
about a simple language of arithmetic expressions. The concrete syntax has negation, parentheses, and the four
elementary arithmetic operations, while the abstract syntax has only the four elementary arithmetic operations
— negated expressions are represented in the abstract syntax as subtraction expressions whose left operand is
zero, and parenthesised expressions are translated into tree structures. Now suppose we write an arithmetic
expression as a plain string, and parse it to an abstract syntax tree. Later, the abstract syntax tree is somehow
modified (say, after some optimisation done by the compiler), and we want to print it back to a string for the
user to compare with what was written originally (say, to understand what the compiler’s optimisation does). To
make it easier for the user to compare these two strings, we should try to maintain the syntactic characteristics
of the original string when producing the updated string. Here we may choose to

• preserve all brackets — even redundant ones — in the original string, and

• preserve negation expressions in the original string instead of changing them to subtraction expressions.

For example, the string “((−1))” is parsed to an abstract syntax tree “SUB (NUM 0) (NUM 1)” (a subtraction node
whose left subtree is a numeral node 0 and right subtree is another numeral node 1); if we change the abstract
syntax tree to “SUB (NUM 0) (NUM 2)” and update the string with our reflective printer, we get “((−2))” instead
of “0 − 2”. (Section 2 will present a BiYacc program that describes exactly this printing strategy.) Reflective
printing is a generalisation of traditional printing because our reflective printer can accept an abstract syntax
tree and an empty string, in which case it will behave just like a traditional printer, producing a new string
depending on the abstract syntax tree only.

Under the bonnet, BiYacc is based on the theory of bidirectional transformations (BXs for short) [2, 7, 9].
BXs are used for synchronising two sets of data, one called the source and the other the view. Denoting the
source set by S and the view set by V , a (well-behaved) BX is a pair of functions called get and put :

• the function get : S → V extracts a part of a source of interest to the user as a view, while

• the function put : S × V → S takes a source and a view and produces an updated source incorporating
information from the view.

The pair of functions should satisfy the following laws:

get(put(s, v)) = v ∀s ∈ S, v ∈ V (PutGet)

put(s, get(s)) = s ∀s ∈ S (GetPut)

Informally, the PutGet law enforces that put must embed all information of the view into the updated source,
so the view can be recovered from the source by get , while the GetPut law prohibits put from performing
unnecessary updates by requiring that putting back a view directly extracted from a source by get must produce
the same, unmodified source. The parser and reflective printer generated from a BiYacc program are exactly
the functions get and put in a BX, and are thus guaranteed to satisfy the PutGet and GetPut laws. In the
context of parsing and printing, PutGet ensures that a string printed from an abstract syntax tree is parsed to
the same tree, and GetPut ensures that updating a string with an abstract syntax tree parsed from the string
leaves the string unmodified (including formatting details like parentheses). A BiYacc program thus not only
conveniently expresses a parser and a reflective printer simultaneously, but also ensures that the parser and the
reflective printer are consistent with each other in a precise sense.

44



1 Abstract

2

3 Arith = ADD Arith Arith

4 | SUB Arith Arith

5 | MUL Arith Arith

6 | DIV Arith Arith

7 | NUM String

8

9 Concrete

10

11 Expr -> Expr '+' Term

12 | Expr '-' Term

13 | Term

14

15 Term -> Term '*' Factor

16 | Term '/' Factor

17 | Factor

18

19 Factor -> '-' Factor

20 | String

21 | '(' Expr ')'
22

23 Actions

24

25 Arith +> Expr

26 ADD x y -> (x => Expr) '+' (y => Term)

27 SUB x y -> (x => Expr) '-' (y => Term)

28 arith -> (arith => Term)

29

30 Arith +> Term

31 MUL x y -> (x => Term) '*' (y => Factor)

32 DIV x y -> (x => Term) '/' (y => Factor)

33 arith -> (arith => Factor)

34

35 Arith +> Factor

36 SUB (NUM "0") y -> '-' (y => Factor)

37 NUM n -> (n => String)

38 arith -> '(' (arith => Expr) ')'

Figure 1: A BiYacc program for the expression example.

We have implemented BiYacc in Haskell and tested the example about arithmetic expressions mentioned
above, which we will go through in Section 2. There is an interactive demo website:

http://www.prg.nii.ac.jp/project/biyacc.html

from which the source code of BiYacc can also be downloaded. The reader is invited to vary the input source
string and abstract syntax tree, run the forward and backward transformations, and even modify the BiYacc
programs to see how the behaviour changes. A sketch of the implementation is presented in Section 3, and we
conclude the paper with some discussions of related work in Section 4.

2 An overview of BiYacc

This section gives an overview to the structure, syntax, and semantics of BiYacc by going through a program
dealing with the example about arithmetic expressions. The program, shown in Figure 1, consists of three parts:

• abstract syntax definition,

• concrete syntax definition, and

• actions describing how to update a concrete syntax tree with an abstract syntax tree.

45



2.1 Defining the abstract syntax

The abstract syntax part of a BiYacc program starts with the keyword Abstract, and can be seen as definitions
of algebraic datatypes commonly found in functional programming languages (see, e.g., [10, Section 5]). For the
expression example, we define a datatype Arith of arithmetic expressions, where an arithmetic expression can be
either an addition, a subtraction, a multiplication, a division, or a numeric literal. For simplicity, we represent
a literal as a string. Different constructors — namely ADD, SUB, MUL, DIV, and NUM — are used to construct
different kinds of expressions, and in the definition each constructor is followed by the types of arguments it
takes. Hence the constructors ADD, SUB, MUL, and DIV take two subexpressions (of type Arith) as arguments, while
the last constructor NUM takes a String as argument. (String is a built-in datatype of strings.) For instance, the
expression “1− 2× 3 + 4” can be represented as this abstract syntax tree of type Arith:

ADD (SUB (NUM "1")

(MUL (NUM "2")

(NUM "3")))

(NUM "4")

2.2 Defining the concrete syntax

Compared with an abstract syntax, the structure of a concrete syntax is more refined such that we can con-
veniently yet unambiguously represent a concrete syntax tree as a string. For instance, we should be able to
interpret the string “1 − 2 × 3 + 4” unambiguously as a tree of the same shape as the abstract syntax tree at
the end of the previous subsection. This means that the concrete syntax for expressions should, in particular,
somehow encode the conventions that multiplicative operators have higher precedence than additive operators
and that operators of the same precedence associate to the left.

In a BiYacc program, the concrete syntax is defined in the second part starting with the keyword Concrete.
The definition is in the form of a context-free grammar, which is a set of production rules specifying how
nonterminal symbols can be expanded to sequences of terminal or nonterminal symbols. For the expression
example, we use a standard syntactic structure to encode operator precedence and order of association, which
involves three nonterminal symbols Expr, Term, and Factor: an Expr can produce a left-leaning tree of Terms,
each of which can in turn produce a left-leaning tree of Factors. To produce right-leaning trees or operators
of lower precedence under those with higher precedence, the only way is to reach for the last production rule
Factor -> '(' Expr ')', resulting in parentheses in the produced string.

Note that there is one more difference between the concrete syntax and the abstract syntax in this example:
the concrete syntax has a production rule Factor -> '-' Factor for producing negated expressions, whereas in
the abstract syntax we can only write subtractions. This means that negative numbers will have to be converted
to subtractions and these subtractions will have to be converted back to negative numbers in the opposite
direction. As we will see, this mismatch can be easily handled in BiYacc.

2.3 Defining the actions

The last and main part of a BiYacc program starts with the keyword Actions, and describes how to update a
concrete syntax tree — i.e., a well-formed string — with an abstract syntax tree. Note that we are identifying
strings representing program text with concrete syntax trees: Conceptually, whenever we write an expression as
a string, we are actually describing a concrete syntax tree with the string (instead of just describing a sequence
of characters). Technically, it is almost effortless to convert a (well-formed) string to a concrete syntax tree with
existing parser technologies; the reverse direction is even easier, requiring only a traversal of the concrete syntax
tree. By integrating with existing parser technologies, BiYacc actions can focus on describing conversions
between concrete and abstract syntax trees — the more interesting part in the tasks of parsing and pretty-
printing.

2.3.1 Individual action groups

The Actions part consists of groups of actions, and each group of actions begins with a type declaration:

abstract syntax datatype +> concrete nonterminal symbol

46



The symbol ‘+>’ indicates that this group of actions describe how to put information from an abstract syntax
tree of the specified datatype into a concrete syntax tree produced from the specified nonterminal symbol. Each
action takes the form

abstract syntax pattern -> concrete syntax update pattern

The left-hand side pattern describes a particular shape for abstract syntax trees and the right-hand side one for
concrete syntax trees; also the right-hand side pattern is overlaid with updating instructions denoted by ‘=>’.
For brevity, we call the left-hand side patterns view patterns and the right-hand side ones source patterns (in
this case, representing an abstract and a concrete representation, respectively), hinting at their roles in terms
of the underlying theory of bidirectional transformations. Given an abstract syntax tree and a concrete syntax
tree, the semantics of an action is to simultaneously perform pattern matching on both trees (like in functional
programming languages), and then use components of the abstract syntax tree to update parts of the concrete
syntax tree, possibly recursively.

2.3.2 Individual actions

Let us look at a specific action — the first one for the expression example, at line 26 of Figure 1:

ADD x y -> (x => Expr) '+' (y => Term)

For the view pattern ADD x y, an abstract syntax tree (of type Arith) is said to match the pattern when it
starts with the constructor ADD; if the match succeeds, the two arguments of the constructor (i.e., the two
subexpressions of the addition expression) are then respectively bound to the variables x and y. (BiYacc
adopts the naming convention in which variable names start with a lowercase letter and names of datatypes and
nonterminal symbols start with an uppercase letter.) For the source pattern of the action, the main intention is
to refer to the production rule

Expr -> Expr '+' Term

and use this to match those concrete syntax trees produced by first using this rule. Since the action belongs to
the group Arith +> Expr, the part ‘Expr ->’ of the production rule can be inferred and hence is not included in
the source pattern. Finally we overlay ‘x =>’ and ‘y =>’ on the nonterminal symbols Expr and Term to indicate
that, after the simultaneous pattern matching succeeds, the subtrees x and y of the abstract syntax tree are
respectively used to update the left and right subtrees of the concrete syntax tree.

It is interesting to note that more complex view and source patterns are also supported, which can greatly
enhance the flexibility of actions. For example, the view pattern

SUB (NUM "0") y

of the action at line 36 of Figure 1 accepts those subtraction expressions whose left subexpression is zero. This
action is the key to preserving negation expressions in the concrete syntax tree. For an example of a more
complex source pattern: Suppose that in the Arith +> Factor group we want to write a pattern that matches
those concrete syntax trees produced by the rule Factor -> '-' Factor, where the inner nonterminal Factor

produces a further '-' Factor using the same rule. This pattern is written by overlaying the production rule on
the nonterminal Factor in the top-level appearance of the rule:

'-' (Factor -> '-' Factor)

2.3.3 Semantics of the entire program

Now we can explain the semantics of the entire program. Given an abstract syntax tree and a concrete syntax
tree as input, first a group of actions is chosen according to the types of the trees. Then the actions in the
group are tried in order, by performing simultaneous pattern matching on both trees. If pattern matching for
an action succeeds, the update specified by the action is executed (recursively); otherwise the next action is
tried. (Execution of the program stops when the matched action specifies either no updating operations or only
updates to String.) BiYacc’s most interesting behaviour shows up when pattern matching for all of the actions
in the chosen group fail: in this case a suitable source will be created. The specific approach here is to do pattern
matching just on the abstract syntax tree and choose the first matching action. A suitable concrete syntax tree
matching the source pattern is then created, whose subtrees are recursively created according to the abstract
syntax tree. We justify this approach as follows: if none of the source patterns match, it means that the input

47



concrete syntax tree differs too much from the abstract syntax tree, so we should throw the concrete syntax tree
away and print a new one according to the abstract syntax tree.

2.3.4 An example of program execution

To illustrate, let us go through the execution of the program in Figure 1 on the abstract syntax tree

ADD (SUB (NUM 0) (NUM 4)) (NUM 5)

and the concrete syntax tree denoted by the string

(−1 + 2 ∗ 3)

The abstract syntax tree is obtained from the concrete syntax tree by ignoring the pair of parentheses, desugaring
the negation to a subtraction, and replacing the number 1 with 4 and the multiplication subexpression with 5.
Executing the program will leave the pair of parentheses intact, update the number 1 in the concrete syntax tree
with 4, preserving the negation, and update the multiplication subexpression to 5. In detail:

1. Initially the types of the two trees are assumed to match those declared for the first group, and hence we try
the first action in the group, at line 26. The view-side pattern matching succeeds but the source-side one
fails, because the first production rule used for the source is not Expr -> Expr '+' Term but Expr -> Term

(followed by Term -> Factor and then Factor -> '(' Expr ')', in order to produce the pair of parentheses).

2. So, instead, the action at line 28 is matched. The update specified by this action is to proceed with updating
the subtree produced from Term, so we move on to the second group.

3. Similarly, the actions at lines 33 and 38 match, and we are now updating the subtree −1 + 2 ∗ 3 produced
from Expr inside the parentheses. Note that, at this point, the parentheses have been preserved.

4. For this subtree, we should again try the first group of actions, and this time the first action (at line 26)
matches, meaning that we should update the subtrees −1 and 2 ∗ 3 with SUB (NUM 0) (NUM 4) and NUM 5

respectively.

5. For the update of −1, we go through the actions at lines 28, 33, 36, and 37, eventually updating the number 1
with 4, preserving the negation.

6. As for the update of 2∗3, all the actions in the group Arith +> Term fail, so we create a new concrete syntax
tree from NUM 5 by going through the actions at lines 33 and 37.

2.3.5 Parsing

So far we have been describing the putback semantics of the BiYacc program, but we may also work out its get
semantics by intuitively reading the actions in Figure 1 from right to left (which might remind the reader of the
usual Yacc actions from this opposite angle): The production rules for addition, subtraction, multiplication,
and division expressions are converted to the corresponding constructors, and the production rule for negation
expressions is converted to a subtraction whose left operand is zero. The other production rules are ignored and
do not appear in the resulting abstract syntax tree.

3 Implementation

Although what a BiYacc program describes is an update, i.e., reflective printing, it can also be interpreted in
the opposite direction, generating an abstract syntax tree from a concrete syntax tree, which is the more inter-
esting part of the task of parsing. We realise the bidirectional interpretation by compiling BiYacc programs
to BiFluX [16], a putback-based bidirectional programming language for XML document synchronisation. The
actual semantics of parsing and reflective printing are not separately implemented, but derived from the under-
lying BiFluX program compiled from a BiYacc program. Although the actual semantics of parsing in terms
of BiFluX is more complicated compared with the intuitive reading given in Section 2.3.5, it is derived for free,
thanks to the fact that BiFluX is a bidirectional language. Inside the implementation, both well-formed strings
and abstract syntax trees must be in XML format before they can be synchronised by BiFluX, so BiYacc is
bundled with parsers and printers converting between well-formed strings/abstract syntax trees and XML, and
the user can use BiYacc without knowing that synchronisation is done on XML documents internally.

48



4 Related work

Many domain-specific languages have been proposed for describing both a parser and a printer as a single
program to remove redundancy and potential inconsistency between two separate descriptions of the parser and
the pretty-printer. There are basically three approaches:

• The first approach is to extend the grammar description for parsers with information for printers and
abstract syntax tree types [1, 5, 17, 18, 22]. For instance, Syn [1] is a language for writing extended BNF
grammars with explicit annotations of layout for printing and implicit precedence (binding strength) by
textual ordering; then, from a description in Syn, a parser and a printer can be automatically generated.

• The second approach is to extend the printer description with additional grammar information [12, 14].
For instance, FliPpr [14] is a program transformation system that uses program inversion to produce a
context-free grammar parser from an enriched printer.

• The third approach is to provide a framework for describing both a parser and a printer hand in hand
in a constructive way [19]; primitive parsers and their corresponding printers are first specified, and more
complex ones are built up from simpler ones using a set of predefined constructors.

Different from our system, these approaches cannot (do not intend to) deal with synchronisation between the
concrete and abstract syntax trees, in the sense that a printer will print the concrete syntax tree from scratch
without taking into account the original concrete syntax tree if it already exists. In contrast, our method can
not only do parsing and printing, but also enable flexible updates over the old concrete syntax tree when doing
printing (i.e., update-based pretty-printing).

Various attempts have been made to build up update-based pretty-printers from (extended) parsers that
can preserve comments, layouts, and structures in the original source text. One natural idea is to store all
information that does not take part in the abstract syntax tree, which includes whitespace, comments and
(redundant) parentheses, and the modified source code is reconstructed from the transformed abstract syntax
tree by layout-aware pretty-printing [3, 13]. It becomes more efficient to take origin tracking as a mechanism
to relate abstract terms with their corresponding concrete representation [4]. Origin tracking makes it possible
to locate moved subtrees in the original text. All these systems are hard-coded in the sense that the user can
neither control information to be preserved nor describe specific updating strategies to be used in printing.

Our work was greatly inspired by the recent progress on bidirectional transformations [2, 7, 9]. In particular, it
is a nontrivial application of the new putback-based framework [6, 8, 15, 16] for bidirectional programming, where
a single putback function has been proved to be powerful enough to fully control synchronisation behaviour.

Acknowledgements

This work was partially supported by the Project NORTE-07-0124-FEDER-000062, co-financed by the North
Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional Development Fund (ERDF). It was also partially supported
by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (A) No. 25240009,
and the MOU grant of the National Institute of Informatics (NII), Japan. The authors would like to thank Jeremy
Gibbons for discussions about the design of BiYacc, Tao Zan for helping with setting up the demo website, and
the anonymous reviewers for their valuable comments and suggestions.

References

[1] R. Boulton. Syn: A single language for specifying abstract syntax trees, lexical analysis, parsing and
pretty-printing. Technical Report Number 390, Computer Laboratory, University of Cambridge, 1966.

[2] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirectional transformations:
A cross-discipline perspective. In International Conference on Model Transformation, volume 5563 of Lecture
Notes in Computer Science, pages 260–283. Springer-Verlag, 2009.

[3] M. de Jonge. Pretty-printing for software reengineering. In International Conference on Software Mainte-
nance, pages 550–559. IEEE, 2002.

49



[4] M. de Jonge and E. Visser. An algorithm for layout preservation in refactoring transformations. In Interna-
tional Conference on Software Language Engineering, volume 6940 of Lecture Notes in Computer Science,
pages 40–59. Springer-Verlag, 2012.

[5] J. Dureg̊ard and P. Jansson. Embedded parser generators. In Haskell Symposium, pages 107–117. ACM,
2011.

[6] S. Fischer, Z. Hu, and H. Pacheco. The essence of bidirectional programming. SCIENCE CHINA Information
Sciences, 58(5):1–21, 2015.

[7] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem. ACM Transactions on Programming
Languages and Systems, 29(3):17, 2007.

[8] Z. Hu, H. Pacheco, and S. Fischer. Validity checking of putback transformations in bidirectional program-
ming. In International Symposium on Formal Methods, pages 1–15. Springer-Verlag, 2014.

[9] Z. Hu, A. Schürr, P. Stevens, and J. F. Terwilliger. Dagstuhl Seminar on Bidirectional Transformations
(BX). SIGMOD Record, 40(1):35–39, 2011.

[10] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of Haskell: Being lazy with class. In
History of Programming Languages, pages 1–55. ACM, 2007.

[11] A. Hunt and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley, 1999.

[12] P. Jansson and J. Jeuring. Polytypic compact printing and parsing. In European Symposium on Programming
Languages and Systems, pages 273–287. Springer-Verlag, 1999.

[13] J. Kort and R. Lammel. Parse-tree annotations meet re-engineering concerns. In International Workshop
on Source Code Analysis and Manipulation. IEEE, 2003.

[14] K. Matsuda and M. Wang. FliPpr: A prettier invertible printing system. In European Conference on
Programming Languages and Systems, volume 7792 of Lecture Notes in Computer Science, pages 101–120.
Springer-Verlag, 2013.

[15] H. Pacheco, Z. Hu, and S. Fischer. Monadic combinators for “putback” style bidirectional programming.
In Partial Evaluation and Program Manipulation, pages 39–50. ACM, 2014.

[16] H. Pacheco, T. Zan, and Z. Hu. BiFluX: A bidirectional functional update language for XML. In Principles
and Practice of Declarative Programming, pages 147–158. ACM, 2014.

[17] A. Ranta. Grammatical framework. Journal of Functional Programming, 14(2):145–189, 2004.

[18] A. Ranta. Grammatical Framework: Programming with Multilingual Grammars. Center for the Study of
Language and Information/SRI, 2011.

[19] T. Rendel and K. Ostermann. Invertible syntax descriptions: Unifying parsing and pretty printing. In
Haskell Symposium, pages 1–12. ACM, 2010.

[20] T. Reps and T. Teitelbaum. The Synthesizer Generator. Springer-Verlag, 1989.

[21] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis for language-based editors.
ACM Transactions on Programming Languages and Systems, 5(3):449–477, 1983.

[22] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam, 1997.

50


