
Interactive Theorem Proving – Modelling the

User in the Proof Process

?

Bernhard Beckert and Sarah Grebing
{beckert, sarah.grebing}@kit.edu

Karlsruhe Institute of Technology (KIT)

Abstract. Proving complex problems requires user interaction during
proof construction. A major prerequisite for user interaction is that the
user is able to understand the proof state in order to guide the prover in
finding a proof.
Previous evaluations using focus groups for two interactive theorem provers
have shown that there exists a gap between the user’s model of the proof
and the actual proof performed by the provers’ strategies.
In this paper, we sketch a process model of the interactive proof process
that helps to analyze this gap. Additionally, we give insight into the
results of a usability test of the interactive verification System KeY,
which provides evidence that this model is consistent with the actual
proof process.

1 Introduction

Motivation. The degree of automation of interactive theorem provers (ITPs)
has increased to a point where complex theorems over large formalisations for
real-world problems can be proven e↵ectively. But even with a high degree of
automation, user interaction is still required on di↵erent levels. On a global level,
users have to find the right formalisation and have to decompose the proof task
by finding useful lemmas. On a local level, when automatic proof search for a
lemma fails, they have to either direct proof search or understand why no proof
can be constructed and fix the lemma or the underlying formalisation. As the
degree of automation increases, the number of interactions decreases. But the
remaining interactions get more and more complex as ITPs are applied to more
and more complex problems.

We report on work in progress using the method of usability testing for
several goals: (a) to gain insight into the interactive proof process using an
ITP, (b) insight into problems in the interactive proof process and (c) insights
for possible improvements. We carried out an experiment performing usability
testing of the interactive verification system KeY [7]. In this paper we will briefly
introduce a model of the interactive proof process, introduce our experiment and
briefly give insights into the first results of the experiment, which relate to the

? The work presented here is part of the project Usability of Software Verification
Systems within the BMBF-funded programme Software Campus.



proof process. In earlier work [6] we identified a gap between the user’s model of
the proof process and the actual proof process in the system. For illustrating the
gap we developed a first informal model of the interactive proof process which
we will extend in this paper.

In Section 2 we present related work of usability evaluations of interactive
theorem provers and attempts to find a suitable model of the proof process. A
first abstract model of the proof process follows in Section 3 and the gap between
the user’s and the prover’s state is described in Section 4. The experiment and
insights into the results are given in Section 5; and Section 6 concludes our work
and shows future work.

2 Related Work

The usability of interactive theorem provers has been evaluated using various
evaluation methods. Related work is concerned with usability evaluations of
interactive theorem provers based on models defined prior to the evaluations.
In addition, related work is also concerned with the derivation of models of the
interactive proof process from evaluation results.

Merriam and Harrison [13] have evaluated interfaces of three theorem provers:
CADiZ, IMPS and PVS. In this work they have identified four key activities in
the interactive proof process where the user needs support from the proof system:
planning, reuse, reflection and articulation. The three theorem provers have been
examined with respect to these activities. Based on these results, gaps in user
support of the theorem provers have been identified as well as points in the
systems’ interfaces where the user can make errors that cost him or her a lot of
time to recover from.

Merriam [14] developed two approaches for the description of user activities
in the proof process. He formalized a generic formal model of the proof using Z
as formal language. This model is used to enable to gain insight into which kind
of information is necessary for the user to conduct a proof e↵ectively. Merriam
assumes in this model that the user forms an opinion during the proof process
about the provability of a proof goal using heuristics. He remarks that to model
this assumption, a suitable cognitive model of the user is necessary. Interactions
the user performs in the system are outside this model and are modelled in a
second model of Merriam on the basis of Newman’s Action cycle. Both models
together were used to evaluate the PVS proof system.

Norbert Voelker [15] published a discussion paper on requirements and design
issues of user interfaces for provers. He presented di�culties in the design of user
interfaces of theorem provers developed in academia. In addition, a requirement
analysis based on the scenarios using the scenario method has been carried out
and resulted in a high-level description of the interaction with the proof system.

Aitken and Melham evaluated the interactive proof systems Isabelle and HOL
using recordings of user interactions with the systems in collaboration with HCI
experts. During the proof process the users were asked to think aloud and after-
wards the users were interviewed. The authors goal was to study the activities

2



performed by users of interactive provers during the proof process to obtain an
interaction model of the users. They propose to use typical user errors as usabil-
ity metric and they compared provers w.r.t. these errors [3,4,2]. Also, suggestions
for improvements of the systems have been made by the authors based on the
evaluation results, including improved search mechanisms and improved access
to certain proof relevant components.

The systems Isabelle and HOL have been evaluated by Aitken [1] using
records of interactions. A semi-formal interaction model was extracted from the
results, by identifying the actions that were performed during proof construc-
tion. Of the fifteen actions that have been identified, some relate to mental work
of the users and some were direct actions in the system. All actions were mod-
elled as activity diagram and it was distinguished between actions on the logical
level and actions on the interaction level. In this work the relation between the
problem class, the proof plan and the implementation is depicted.

In the work of Goguen [9] three user roles that can be represented by one
single user have been identified: the prover, the reader and the specifier. Each
of these roles has di↵erent requirements for the interactive proof system and
some of the requirements can be conflicting. The authors claim that users of
theorem provers need precise feedback on the failure of a proof attempt at the
(sub)goal level. Further they argue that an unstructured proof tree is not easy
to use as the users need to orient themselves in the proof tree. They present a
proof approach where users should form the high-level proof plan and leave the
“low-level computations” to the automatic prover. They implement their user
interface for the proof assistance tool Kumo.

Similar to our findings in previous work, Archer and Heitmeyer [5] also re-
alized the gap between the prover’s and the user’s model of the proof and have
developed the TAME interface on top of the prover PVS to reduce the distance
between manual proofs and proofs by automation. TAME is able to prove prop-
erties of timed automata using so called human-style reasoning. Proof steps in
TAME are intended to be close to the large proof steps performed in manual
proofs. The authors have developed strategies on top of the PVS strategies that
correspond more to proof steps performed by humans. The goal is to provide
evidence and comprehension of proofs for domain but not proof experts.

3 A Model of the System Consisting of User and Prover

In order to be able to describe the interactive proof process and to describe what
influences the gap between the user and the prover states, a precise model of
the proof process has to be developed. Our idea is to have an interactive proof
system that consists of two main components that exchange information during
the proof process: the user U and the prover P . We model both components
as simple transition systems with three di↵erent transition functions: one that
decides the next action for the user (f

UDec

) resp. the next proof step for the
prover (f

PDec

), one that computes the next state of the user (f
UCh

) resp. prover
(f

PCh

) according to the action/proof step and one function that computes the

3



next state of the user according to the prover’s current state (f
insp

) resp. the
next state of the prover according to the action of the user (f

trigger

).

Definition 1 (The Prover). We model the prover as a transition system

Prover = (P,PS , f
trigger

, f

PDec

, f

PCh

, p0, PT

) ,

where

– P is a set of prover states
– PS is a set of actions which we call proof steps
– f

trigger

: P ⇥A ! P is a transition function
– f

PCh

: P ⇥ PS ! P is a transition function
– f

PDec

: P ! PS is a choice function
– p0 2 P is the initial state
– P

T

✓ P is the set of terminating states
– P

Proof

✓ P

T

is the set of terminating states in which a proof has been found

Definition 2 (The User). We model the user as a transition system

User = (U,A, f

insp

, f

UDec

, f

UCh

, u0, UT

) ,

where

– U is a set of user states
– A = (A

proc

[A

man

) is a set of actions, being the union of the proof manip-
ulating and the process-oriented actions

– stopProcess 2 A

proc

is the action to stop the proof process
– f

insp

: U ⇥ P ! U is a transition function
– f

UCh

: U ⇥A ! U is a transition function
– f

UDec

: U ! A is a choice function
– u0 2 U is the initial state
– U

T

✓ U is the set of terminating states

Definitions 1 and 2 depend on each other, as Definition 2 uses a component
of Definition 1 (namely P ) and vice versa (namely A). Both definitions could be
combined to one system definition, but for simplicity we have two definitions,
one for each component.

A prover’s state P includes a partial proof (tree). We assume that the user
states U at least consist of a mental model of the provers’ state. We do not
characterize this model in full detail, as we believe it is di↵erent for every user
and depends on the experience with the system and mathematical background
knowledge. Determining this model in full detail goes beyond the scope of our
work.

In our model we focus on the interaction between the user and the prover. We
further assume that the user’s model of the prover’s state is more abstract than
the actual prover’s state. We believe the user has a proof plan, that is formed

4



when developing the proof obligation. We consider that plan to be encoded in
the user’s state. Furthermore, we assume that the user has an idea about the
e↵ect of performing actions on the prover’s state. This knowledge is included in
the function f

UCh

, as the user calculates a successor state from the current state
and the action that the user performs in the system. As the successor state of
the user also includes an abstraction of the prover’s state, the user updates this
model according to the expectations of the e↵ect of performing the action.

Actions of the user can be of two kinds: proof manipulating (A
man

) (e.g.,
applying a single proof rule or invoking a specific automatic strategy in the
prover) and process-oriented actions (A

proc

) (e.g., inspecting the prover’s state
further or stop the proof process (stopProcess)).

A proof step in the prover is an application of a calculus rule onto the current
proof state.

Terminating states in the prover’s model can be of two kinds: either a state
in which a proof is found, i.e., t

Proof

2 P

T

or states in which the automatic
strategies stops, i.e., p

t

2 P

T

. These terminating states mark the beginning of
the user interacting with the prover.

Interaction between both, the user and the prover, involves an information
exchange. This exchange happens through the functions f

trigger

(user to prover)
and f

insp

(prover to user). The function f

insp

involves the user inspecting the
proof state of the prover (which can be either p

t

2 P

T

in case the automatic
strategies stop or the initial state p0 in case the proof process is at the beginning)
and updating the user’s model by changing the state. This update may involve
changing the proof plan by concretizing proof states in the plan or changing the
mental model of the proof state by refining states.

The function f

trigger

represents the state change in the prover when a user
action involves input to the prover and corresponds to the user invoking an
action. This action is then accepted by the prover and translated by the prover
into the strategy that should be used. The strategy of the prover is responsible
for choosing the next proof step that should be applied to the prover’s state.
We model this by a state change performed using the prover’s decision function
(f

PDec

).
The user also has such a decision function, which we call f

UDec

. This function
decides which action the user will perform next, depending on the user’s state.

In our model of the user the functions f
insp

and f

UDec

follow each other. After
the user has made his or her decision, the corresponding action is performed and
function f

trigger

is applied in case the user decides to invoke the prover’s strate-
gies. Function f

PDec

follows f
trigger

and then a sequence of function applications
of f

PCh

apply until a terminating state is reached.
In the following, we will define the interaction between the user and the

prover in the interactive proof system.

Definition 3 (The Interactive Proof Process in an Interactive Proof

System).

We model the interactive proof system consisting of a user U and prover P

as a transition system. The state space S of the interactive proof system is the

5



set of triples

S = U ⇥ P ⇥ {automode, interactive, inspected, decided, fail , success} .

The initial state is s0 = (u0, p0, interactive), where p0 and u0 are the initial
states of the user U resp. the prover P .

For all states s 2 S, the successor state s

0 of s is defined as follows, where
a = f

UDec

(u):

(a) if s = (u, p, interactive) then s

0 = (f
insp

(u, p), p, inspected)

(b) if s = (u, p, inspected) then s

0 = (u, p, decided)

(c) if s = (u, p, decided) and
a = stopProcess then s

0 = (f
UCh

(u, a), p, userStop)

(d) if s = (u, p, decided) and
a 2 A

man

then s

0 = (f
UCh

(u, a), f
trigger

(p, a), auto)

(e) if s = (u, p, decided) and
a 2 A

proc

\ {stopProcess} then s

0 = (f
insp

(u, p), p, inspected)

(f) if s = (u, p, auto) and
p /2 P

T

then s

0 = (u, f
PCh

(p, f
PDec

(p)), auto)

(g) if s = (u, p, auto) and
p 2 P

T

then s

0 = (u, p, interactive)

(h) if s = (u, p, userStop) and
p /2 P

Proof

then s

0 = (u, p, fail)

(i) if s = (u, p, userStop) and
p 2 P

Proof

then s

0 = (u, p, success)

For states of the form s = (u, p, success) and s = (u, p, fail), the successor
state s

0 is undefined. They do not have a successor state.

In the following, we will give a brief description of the Definition 3. In addition
we have depicted the interactive proof process in Figure 1.

(a) If the system is in the state interactive, the user inspects the proof state
and updates the own state using the information gained from the inspec-
tion f

insp

(u, p) (e.g., at the beginning of the proof process after the user has
formulated the proof obligation and the system has translated it into the
prover’s representation, i.e., s = (u0, p0, interactive) or after the prover has
reached a terminating state, i.e., s = (u0, p0, interactive))

(b) If the system is in the state inspected, the user makes a decision about the
next action in the process according to the updated own model of the proof
state. The action is decided by the internal choice function f

UDec

(u), (e.g.,
when the user has inspected the formula in the proof obligation and now
determines what to do next in the proof process)

6



(c) If the system is in the state decided and the user has chosen the process-
oriented action stopProcess, the user has decided to stop the proof process
(e.g., when the user discovers a mistake in the specification or the program)

(d) If the system is in the state decided, and the user has chosen a proof manip-
ulating action the user interacts with the prover (e.g., the user has inspected
the formula in the proof obligation and encounters that a quantifier instan-
tiation has to be performed or the induction rule has to be applied). The
function f

trigger

translates the user’s actions into the prover’s strategies.

(e) If the system is in the state decided, and the user has chosen a process-
oriented action (except stopProcess) the user inspects the proof state further
(e.g., the user wants to inspect the proof tree in more detail).

(f) If the system is in the state auto, the prover applies a proof step according
to the provers internal choice function resp. strategies until the automatic
strategies can not apply more rules and therefore a terminating state is
reached (e.g., the user has invoked the automatic strategies of the prover
and the prover applies consecutive proof rules. Each rule application corre-
sponds to one state transition.)

(g) If the system is in the state auto and the prover has reached a terminating
state after proof step application, the user now can interact with the prover
(e.g., the prover’s strategies cannot apply proof rules anymore and presents
the remaining proof obligation to the user)

(h) + (i) If the system is in the state userStop, the user decides whether the
proof process was successful respec. failed (e.g., the user has either found a
proof or discovered a mistake in the formalization and decides to terminate
the proof process)

We model that while the prover’s strategies apply proof steps (so state tran-
sitions in the prover’s model according to f

PCh

are made), the user can not
interact with the prover until it reaches a terminating state p

t

.
In our model the user’s state also consists of a proof plan that the user formed

when formulating the proof obligation. The (partial) proof plan of the user is a
sequence of abstract proof states, denoted by abs(P ), related to each other by
actions. These actions can be identical to the actions defined in the user’s model
and abstractions of the proof steps of the prover. We assume that this proof
plan of the user consists of abstract proof states – they may either be identical
to some prover states, possibly with intermediate prover states in between the
abstract states of the user’s proof plan. Some abstract states in the plan may
also correspond to a sequence of prover states and, which are summarized as one
abstract state.

The user might not always have a clear proof plan, e.g., at the beginning of
the proof process. In this case, the user may consider several actions that he or

7



interactive

start inspected

auto

u

0 :=
finsp(u, p)

(a)

pi /2 PT !
p

0 :=
f

PCh

(p, f
PDec

(p))

(f)
decided

a 2 A

man

!
u

0 := f

UCh

(u, a)^
p

0 := f

trigger

(p, a)

(d)

userStop

fail

success

a := f

UDec

(u)(b)

a := stopProcess !
u

0 = f

UCh

(u, a)

(c)

a 2 (A
proc

\
{stopProcess}) !

u

0 :=
f

insp

(u, p)

(e)pi 2 PT (i)

pi /2 P

Proof

(h)pi 2 P

Proof

(g)

Fig. 1. Model of the interactive proof process ((a)-(i) are references to Definition 3)

she deems worthwhile to pursue, and for each of these actions he or she likely
only has a rough idea of the resulting proof state. Of course, in certain situations,
this set of possible actions to continue a proof is empty, as the user is unable to
come up with a proof plan.

4 The Gap in the Proof Process

In former evaluations we have already identified a gap between the user’s abstract
states of the proof process and the concrete state of the prover. Based on this
gap we have identified three major challenges an interactive theorem prover has

8



to meet in order to be more usable: (a) keeping the gap small, (b) bridging the
gap and (c) allowing for e↵ective interactions [6].

Here, we will now give a more precise description of the gap between the users
abstract states and the provers states using a proof system with an explicit proof
object, a proof tree as proof state and a sequent calculus as underlying proof
calculus as an example. The following two problems can occur in such a system:

Provers Strategies applied too many Proof Rules To determine which next action
to apply (modelled by the function f

UDec

) the user has to inspect the proof state
and update the own state according to the information gained by inspecting the
prover’s state (f

insp

).
In this situation a gap between the users model of the proof state and the

prover’s state can occur when the automatic strategies applied too many proof
steps or the proof steps were too “complicated”. The user has to inspect the
provers state and update the own model according to the information gained in
the inspection. However, for this update the user has to find a correspondence
for the current prover’s state p

t

in the own model too. As described above, p
t

is a terminating state after the application of several proof steps decided by the
strategy. If the user often iterates between the states decided and inspected, this
may be a sign of a gap caused by the prover’s strategies. Here the user needs a
lot of time to find a correspondence between the own model of the prover’s state
and the current prover’s state.

User Expectations Not Met. Another possibility for a gap is that the user per-
formed the proof according to the proof plan he or she has made before the
proof process and at a terminating prover’s state p

t

the prover’s state does not
correspond to the expectations of the user (it does not correspond to the state
in the user’s plan). The user has to inspect the prover’s state further in order to
determine whether he or she has made a mistake in the proof plan or the proof
steps in the proof plan have been to abstract and have to be concretized by the
inspection process.

If the user only has a partial proof plan, a gap can occur during the proof
process when the di↵erence between the prover’s current state and the last state
in the user’s proof plan is large and the user is not able to relate the states to
each other anymore. In this case the user has to inspect the proof state in order
to retrace the proof steps the prover’s strategies have applied and update the
own state according to the gathered information.

The user has expectations about the e↵ect of his or her actions on the proof
state. If such an expectation is not met by the prover’s strategies, a gap may
occur as well. The user now has to try to understand what the e↵ect of the
performed action was by closely inspecting the proof state.

To summarize, we assume that the gap occurs at the point in the proof
process where the prover reaches a terminating state p

t

and the user applies
function f

insp

in order to apply function f

UDec

. A hint that a gap has occurred
can be, when the user needs a lot of time for the inspection process. In this case
the loop between the states inspected and decided is traversed several times.

9



5 Insights into the Usability Test of the KeY system

To gain insights into the interactive proof process and to find evidence that
our model is consistent with the proof process we conducted a usability test.
Based on earlier results of two focus group discussions we conducted a formative,
explorative usability test for the KeY system as the target of evaluation. Usability
tests are structured interviews guided by a moderator following a script, which
consists of all tasks and questions in the order they should be posed. While the
participants perform the tasks, they should use the “thinking-aloud” technique.
In addition their actions on the screen are recorded. The recorded data is then
transcribed and anonymized. Later on, a qualitative content analysis [12,11,10]
is performed to evaluate the test results.

In the following, we will first briefly describe the target of evaluation, give
details about the usability test sessions and give insights into first observations
and first analysis results.

The Target of Evaluation: KeY. The KeY system is an interactive verification
system for programs written in Java and specified using the Java Modeling Lan-
guage (JML). As such it is mostly used for the verification of Java programs
w.r.t. a formal specification (usually a functional specification but also, e.g.,
information-flow properties). KeY has an explicit proof object, i.e., all interme-
diate proof states can be inspected by the user. The underlying calculus is a
sequent calculus for Java Dynamic Logic [8]. Its user interface represents proofs
as a tree. The nodes of the tree are intermediate proof goals (i.e., sequents).
Each node is annotated with the rule that was applied to some formula in its
direct parent node that lead to the current node.

The Participants. Nine KeY users took part in our usability tests, either inter-
mediate or expert users. We excluded novice users, as our hypothesis was that
advanced users perform more complex or larger proofs than novice users and
therefore su↵er more from e�ciency problems in the proof process.

The Usability Test. Our goal of performing the usability test was (a) to gain
insight into the proof process using the KeY system and (b) to determine whether
a new mechanism, prototypically introduced into KeY, helps the user in bridging
the gap between the concrete proof state and the model of the proof. We also
wanted to gain information about further room for improvement of the target
of evaluation. We planned a session time of approximately 70 minutes.

We structured the usability test into di↵erent phases1: introduction, warm-
up, task and cool-down phase. In the introduction-phase the users were inter-
viewed by the moderator about their experiences using the KeY system. The
warm-up phase started with an interview about the proof process of the partic-
ipants using the KeY system. Then the participants were asked to specify and

1 The testing script can be found at http://formal.iti.kit.edu/
~

grebing/SWC/ in
German.

10



verify a Java method within the time frame of 10-15 minutes. We did not restrict
the usage of system features in the warm-up phase. Our intention for this phase
was to get insight into how the user uses the system to find a proof.

Based on earlier focus group discussions we prototypically implemented a
mechanism to support the display of the history of a formula in the KeY system:
It allowed the user to select a formula in the open goal and retrieve the path
from the open goal to the original proof obligation in which the formula was
a↵ected by rule applications, in the following also called history of a formula.
This mechanism should help to bridge the gap between the user’s model of the
proof and the current proof, as the user is able to trace back the history of a
selected formula and see the changes during the proof process.

For the task phase we developed tasks that should help to evaluate the mech-
anism. We divided this phase into two parts with two di↵erent tasks each, one
with and one without the new mechanism. One of the two di↵erent task types
involved showing the user a partial proof for a proof obligation in first-order
logic, obfuscating the predicate and function symbol names. The second task
type involved a partial proof for the correctness of a method contract of a Java
method.

For both types of tasks and both parts of the task phase the questions were
identical: the user should describe the proof situation, they should name the
history of two formulas of the open goal and name the next step to continue
the proof process. At the end of the task phase the users were asked about their
expectations about parent formulas of a given formula and proof.

In the cool-down phase participants were interviewed again about the new
mechanism and generally about room for improvement in the system.

Insights into the results of the Usability Test. As the analysis is still work in
progress we only give insights into the results of the warm-up phase and not a
full analysis2.

Almost all testing sessions have taken longer than we planned beforehand.
Solving a task or answering the interview questions took longer than anticipated,
as we didn’t want to interrupt the participants.

In the warm-up phase we wanted to see how the participants use the KeY
system to solve the task in order to gain insights into the proof process. Before
the task, we wanted to know detailed information about the expectations of the
users in a certain proof situation and about the proof process in general.

The interview questions have been:

1. Please imagine you are sitting in front of the KeY system and the
automatic strategies stop with a lot of open goals/proof branches and
quite a large sequent formula. What could have happened? What
could have been reasons that KeY opened a lot of proof branches
and was not able to close them? (In addition a screenshot of a proof
with open goals in the KeY system has been used as stimulus)

2 The sessions have been conducted in German, as it was the native language of the
users. We translate the tasks and answers to the best of our knowledge.

11



2. How do you solve the problem of determining what has happened
and what the next steps are?

3. Which possibilities do you have for that? Please arrange them in the
order relatively to each other how often you use the possibilities.

4. Are there other alternatives in this situation, or are you missing a
mechanism which is better suitable than the ones implemented in
the system?

5. If you could wish for a functionality that could support you in proving
using the KeY system, which one would it be?

The practical task for the users in the warm-up consisted of proving a method
that removes the k-th element of a given array and returns the rest of the array,
given the following task description:

Please verify that the method fulfills its contract. Please conduct the
proof like you are used to do it. Please complete or add something to the
specification or the program if necessary. Please think-aloud what you
are searching for and please explain before you click why you would like
to click on that element on the screen.

The first specification of the method which we provided did not formalize the
requirements we described to the user but was already a partial contract.

Our Intentions for the Tasks and Questions. Our intention behind these ques-
tions and tasks in the warm-up phase was to gain insight into how users use the
KeY system to conduct a proof. In the practical task we intentionally did not
show the method and its specification from the beginning on. We wanted to see
which user directly proceeds to use the system to find out whether the method
meets its specification and which user requests for the specification from the
beginning on. In the first case, if the user found a proof, and if task time was
not too far advanced, we asked the user whether the specification is an adequate
rendition of the requirements.

First Results of the Usability Test. In the following, we will briefly mention
those observations from the warm-up phase that contribute to our model. Our
observation was that the users try to abstract from the concrete proof tree to
gain an overview over the proof by using a feature of the KeY system that
hides all intermediate proof states after using the automatic strategy. Almost
all participants either used this feature in the practical tasks or mentioned the
usage of this feature for proof inspection in the answer to the second question.
This relates to the user’s having or trying to build an abstract model of the
prover’s state.

When determining whether a proof is closeable, some users first tried the
provers strategies again, as they assume the amount of user defined proof steps
is not su�ciently high, before inspecting the proof tree in detail. In this case,
we assume the users to have an expectation about the prover’s strategies.

12



There were also users who noted that they would prune the proof tree when
the strategies “went too far”. They would prune the tree at a proof node from
which they know its meaning, e.g., after finishing the symbolic execution and
would then “apply rules in a controlled way.” Here we have a hint for the gap,
when the strategies of the prover apply too many rules and open too many goals
without closing them again, the user goes back to a state from which he has a
model.

At least one participant noted that he or she always switches from local to
global proving, i.e. the participant first has an idea on the global, more abstract
level how a proof should be performed, and during the proof process, when the
automatic strategies are not able to close all goals he or she switches to inspecting
the proof in detail on the local level and therefore inspecting the sequent in the
proof node more closely. When a proof branch is closed, the user switches back
to the global level and tries to close the next open goals. This indicates that the
user has di↵erent abstraction layers of the proof.

6 Discussion and Future Work

We have presented a model of the components involved in an interactive proof
process and briefly described a usability test of the KeY system to gain insights
into the interactive proof process and to find evidence that the proposed model
is consistent with the actual proof process. We described the point in the proof
process where a gap between the user’s model and the prover’s actual proof
state can occur using our model. We are aware that it is not possible to find
evidence for all parts of the model, as some parts, such as how the precise user
state can be characterized cannot be assessed by the “thinking-aloud” technique.
Participants do not always verbalize everything they are thinking.

Our model does not yet include how users form a proof plan. This is a research
field of its own and it remains for future work to include results of this research
field into our model. We did not consider di↵erent user types and their special
requirements on the prover yet, but we are confident that it is possible to include
this in our model as well. The model of the proof process has to be enhanced, as
it does not capture yet that the user and the prover are parallelized. It is not yet
captured that the user can make decisions while the prover searches for a proof,
as well as the user is able to interrupt the proof process. The role of the user
interface is not yet captured by the model. We assume it can be modelled as a
filter function for the prover’s state p, which only shows parts of the prover’s
state to the user and the user only inspects this filtered state in the function
f

insp

.
As the evaluation of the usability tests is work in progress a full analysis and

evaluation of the results is ongoing work.

Acknowledgements. We thank the participants in our focus group discussions
on the usability of KeY and of Isabelle and our participants of the usability tests
of the KeY system. In particular, we also thank the three moderators for their

13



great work. In addition, we thank our project partners from DATEV eG for
sharing their expertise in how to prepare and analyse focus group discussions.

References

1. J. S. Aitken. Problem solving in interactive proof: A knowledge-modelling ap-
proach. In Proceedings of the European Conference on Artificial Intelligence 1996
(ECAI96): 335-339, Edited by W. Wahlster, pages 335–339, 1996.

2. J. S. Aitken, P. Gray, T. Melham, and M. Thomas. Interactive theorem proving:
An empirical study of user activity. J. of Symbolic Comp., 25(2):263–284, 1998.

3. J. S. Aitken and T. F. Melham. An analysis of errors in interactive proof attempts.
Interacting with Computers, 12(6):565–586, 2000.

4. S. Aitken, P. Gray, T. Melham, and M. Thomas. A study of user activity in
interactive theorem proving. In Task Centred Approaches To Interface Design,
pages 195–218. Dept. of Computing Science, 1995. GIST Technical Report G95.2.

5. M. Archer and C. Heitmeyer. Human-style theorem proving using PVS. In Theorem
Proving in Higher Order Logics, LNCS 1275. Springer, 1997.

6. B. Beckert, S. Grebing, and F. Böhl. A usability evaluation of interactive theorem
provers using focus groups. In Software Engineering and Formal Methods – SEFM
2014 Collocated Workshops, Lecture Notes in Computer Science. Springer, 2014.

7. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

8. B. Beckert, V. Klebanov, and S. Schlager. Dynamic logic. In Beckert et al. [7],
chapter 3, pages 69–175.

9. J. Goguen. Social and semiotic analyses for theorem prover user interface design.
Formal Aspects of Computing, 11:11–272, 1999.

10. U. Kuckartz. Qualitative Inhaltsanalyse. Methoden, Praxis, Computerun-
terstützung. Weinheim und Basel: Beltz Juventa, 2014.

11. P. Mayring. Einführung in die qualitative Sozialforschung – Eine Anleitung zu
qualitativem Denken (Introduction to qualitative social research). Weinheim: Psy-
chologie Verlags Union, 1996.

12. P. Mayring. Qualitative content analysis. Forum : Qualitative Social Research, 1(2),
June 2000. Online Journal, 1(2). Available at: http://qualitative-research.
net/fqs/fqs-e/2-00inhalt-e.htm [Date of access: 04, 2014].

13. N. Merriam and M. Harrison. Evaluating the interfaces of three theorem prov-
ing assistants. In F. Bodart and J. Vanderdonckt, editors, Design, Specification
and Verification of Interactive Systems ’96, Eurographics, pages 330–346. Springer
Vienna, 1996.

14. N. A. Merriam. Two modelling approaches applied to user interfaces to theo-
rem proving assistants. In Proceedings of the 2nd International Workshop on User
Interface Design for Theorem Proving Systems., pages 75–82. Department of Com-
puter Science, University of York, 1996.

15. N. Völker. Thoughts on requirements and design issues of user interfaces for proof
assistants. Electron. Notes Theor. Comput. Sci., 103:139–159, Nov. 2004.

14


