
Towards a Framework for Feature Deduplication
during Software Product Lines Evolution

Amal Khtira
(Supervised by Prof. Bouchra El Asri)

IMS Team, SIME Laboratory, ENSIAS, Mohammed V University
Rabat, Morocco

amalkhtira@gmail.com

Abstract. Software product lines are long-living systems that evolve
continuously over time to satisfy the new requirements of customers. This
evolution consists of adding or modifying features in the core platform
of the product line or in derived products. As a result of this change,
many model defects can occur, such as inconsistency and duplication. In
this paper, we describe our work which proposes a framework to manage
the software product line evolutions. The aim of the framework is to
formalize the representation of the software product line models and
the specifications of the new evolutions. Then, a set of algorithms are
provided which enable the detection of feature duplication.

Keywords: Software Product Line; Evolution; Feature Duplication.

1 Introduction

The Software Product Line Engineering (SPLE) [1] is an approach that aims at
creating individual software applications based on a core platform, while reduc-
ing the time-to-market and the cost of development. Many SPLE-related issues
have been addressed both by researchers and practitioners, such as variability
management, product derivation, reusability, etc. The focus of our work will be
on SPL evolution.

The evolution of a SPL involves both changes in the domain model of the
product line and the application models of derived products. This evolution
consists of adding new features or modifying or deleting existing ones. As a result
of these changes, many model defects can arise. In the literature, many papers
have dealt with defects such as the incompleteness and inconsistency of features
[3], [4], [5] and the non-conformance of constraints [6]. Other papers have dealt
with duplication in the code level [7], but few have addressed the problem of
features duplication. Our study is different because it aims at finding a solution
to the problem of duplication in the feature level, which helps avoid wasting
time and effort in implementing duplicate functionalities. Thus, we propose a
framework that focuses especially on this specific issue.



Our approach allows, among others, to formalize the representation of the
feature models related to software product lines and of the specifications of the
new evolutions. Based on the unification of these inputs, a set of algorithms are
proposed to enable an efficient detection of features duplication. An automated
tool will be developed and its accuracy will be verified incrementally using a
case study until we achieve satisfying results.

The rest of the paper is organized as follows. Section 2 positions our approach
with related works. In Section 3, we define the research questions and the research
goal. In Section 4, we describe the methodology used to carry out our study,
namely the DSRM process model. Section 5 explains our approach aiming at
detecting duplication when evolving software product lines and presents the
progress of our work. Finally, Section 6 concludes the paper.

2 Related Work

A plethora of papers have dealt with evolution in software product lines. This
evolution concerns either the feature level, the architecture level or the code
level. In our approach, we focus especially on features evolution. When evolving
the product line or its derived products, some defects can be introduced to the
existing models. Several papers in the literature have addressed model defects.
For example, Guo and Wang [12] propose to limit the consistency maintenance
to the part of the feature model that is affected by the requested change in-
stead of the whole feature model. Romero et al. [5] introduced SPLEmma, a
generic evolution framework that enables the validation of controlled SPL evo-
lution by following a Model Driven Engineering approach. This study focused,
among others, on SPL consistency during evolution. Mazo [13] defines differ-
ent verification criteria of the product line model and classifies them into four
categories: expressiveness criteria, consistency criteria, error-prone criteria and
redundancy-free criteria.

Since the model defects are introduced most of the time from specifications,
many studies have dealt with the detection of defects in specifications. For in-
stance, Lami et al. [14] present a methodology and a tool called QuARS (Qual-
ity Analyzer for Requirement Specifications) which performs an initial parsing
of the specifications in order to detect automatically specific linguistic defects,
namely inconsistency, incompleteness and ambiguity. Kamalrudin et al. [15] use
the automated tracing tool Marama in order to give the possibility to users to
capture their requirements and automatically generate the Essential Use Cases
(EUC). This tool supports the inconsistency checking between the textual re-
quirements, the abstract interactions and the EUCs. Holtmann et al. [16] pro-
posed an approach that uses an extended CNL (controlled natural language)
from the automotive industry. The CNL requirements are first translated into
an ASG (Abstract Syntax Graph) typed by a requirements metamodel. Then,
structural patterns are used to allow an automated correction of some require-
ments errors and the validation of requirements due to new evolutions. A system
called CIRCE was introduced by Ambriola and Gervasi [17]. The system pro-



cesses natural language requirements to build semi-formal models in an almost
automatic fashion, then checks the consistency of these models and produces
functional metric reports. Zowghi [4] provides an evolutionary framework that
deals with inconsistency and incompleteness in a way that ensures the correct-
ness of specifications.

An analysis of the literature shows that the majority of studies deal with
inconsistency, while the problem of feature duplication has not been thoroughly
treated. In addition, these studies focus either on the detection of defects in
feature models or in specifications, but do not address the comparison between
the new features and the existing ones to avoid the introduction of defects into
the SPL.

3 Research Questions and Research Goal

Feature Duplication is among the defects that can be introduced into the model
during software product lines evolution. According to [18], this defect occurs
due to many reasons, such as mistakes in the design, the non-synchronization
between the different people working on the project, the rapid implementation
of requirements without referring to the existing models, etc. In the purpose of
solving this problem, we need to answer the following research questions:

– How can we define feature duplication?

– How to detect feature duplication when evolving software product lines?

– How can we avoid the introduction of duplication in the SPL?

When evolving a software product line, the duplication of features must be
verified in three levels: in the feature models (domain model and application
models), in the specification of the new evolution, and between the feature mod-
els and the specification. Thus, other specific research sub-questions have to be
answered:

– How can we formalize the representation of the feature models and the nat-
ural language specifications in order to facilitate the deduplication process?

– How can we detect feature duplication between the new specifications and
the existing feature models?

– How to avoid the introduction of duplicate features from specifications to
the existing models of software product lines?

Based on the research questions, the goal of our work is to construct:

”A framework that aims at formalizing and unifying the representation
of the SPL feature models and the specifications of new evolutions, de-
tecting duplicate features, and generating duplication-free specifications.
To enable an automatic deduplication, a tool will be developed based on
the proposed framework.”



4 Research Methodology

In our study, we adopt a design science approach in IS. The purpose of design
science as stated by Hevner et al. [19] is to build and evaluate IT artifacts de-
signed to solve identified business problems. In order to structure our work, we
use the Design Science Research Methodology (DSRM) process model proposed
by Peffers et al. [20]. It is a sequential process based on six main activities:
Problem identification and motivation, Definition of objectives for the solution,
Design and development, Demonstration, Evaluation and Communication. Fig-
ure 1 illustrates the customized steps of the adopted process.

Figure 1. The DSRM process model applied to our research (adapted from [20]).

In the rest of this section, we describe the details of each of the process steps.

4.1 Problem Identification and Motivation

The introduction of new features into the domain and application models of
a software product line can be the source of many model defects (e. g. incon-
sistency, incorrectness, incompleteness, redundancy). A review of the literature
has shown that these defects have been treated by several studies, while little
attention has been given to the problem of feature duplication.

The main objectives of a software product line are the reduction of time-
to-market, the reduction of cost, and the improvement of product quality. The
introduction of duplication in a SPL prevents from meeting these objectives,
because it causes a waste of time, money and effort by implementing the same
functionalities many times. In addition, duplicate features can change indepen-
dently from each other, which may cause inconsistencies in the model. For exam-
ple, a feature can be deleted or modified while its copy in another place remains
the same, which leads to a contradiction. Moreover, duplication in the feature
level impacts the quality of the product by causing the famous problem of code
cloning, resulting in the recurring-bug problem and the increase of the mainte-
nance effort [21]. A solution is thus necessary to detect duplicate features in the
first step of an evolution, which is requirements analysis, which helps avoid their
inclusion into the existing models from the very beginning.



4.2 Definition of Objectives for the Solution

The objective of our solution is to detect feature duplication between the existing
feature models and the new specifications related to a software product line
evolution. To achieve this, our artifact has two main concerns. First, the artifact
must allow the formalization of the feature models and the specifications in order
to facilitate the verification of defects. The second concern of the artifact is to
detect and remove duplicate features by providing a set of algorithms.

4.3 Design and Development

This step consists of designing and building the artifact. Hence, we define in
details the basic framework of our approach, which should meet the objectives
set during the previous stage. The first action is thus to identify a method and
select tools to formalize the representation of the framework inputs. The second
action consists of defining a set of algorithms to detect duplication in the level
of specifications, in the level of feature models, then between the specifications
and the SPL models. Since manual verification has proved to be time-consuming
and error prone, a tool is to be developed based on the framework in order to
automatize the two actions.

4.4 Demonstration

To demonstrate the efficacy of our solution, we will use a case study from the
CRM (Customer Relationship Management) field. Indeed, a CRM project has to
follow continuously the market change at the lowest possible cost and satisfy new
requirements of customers on tight deadlines. Consequently, an optimization of
the requirements implementation is necessary, which requires an efficient veri-
fication of the model defects, especially duplication. Thus, we take the feature
model of the CRM and the textual specifications of a new evolution as inputs of
the automated tool. In the first place, the two inputs have to be formalized and
unified. Then, the algorithms of deduplication are applied to detect and remove
the duplicate features.

4.5 Evaluation

After the development of the artifact, an iterative evaluation is necessary to
determine how effective it is. This evaluation is carried out using some metrics
such us the number of detected duplications in a specification, or the percentage of
duplicate features between a specification and a feature model. To decide whether
the results generated by the artifact are satisfying or not, we define the required
values of the proposed metrics in agreement with the customer.



4.6 Communication

The identified problem and the proposed artifact are communicated to researchers
through several publications in conferences and journals. Hitherto, we published
a first paper in the proceeding of the ICSEA 2014 Conference [8], in which we
defined duplication and proposed a first design of the framework and the formal-
ization of the basic concepts of our solution. An extended version of this paper
is under review [9]. Two other papers on the same subject are under publication
[10], [11]. In [10], we deal with the duplication detection in the specifications
of new evolutions, while in [11] we address the duplication between the specifi-
cations and the existing feature models. As this work progresses, we intend to
publish other papers to communicate the new results.

5 Proposed Approach and Work Progress

To deal with the problem of duplication in software product lines, we propose an
approach based on a two-process framework. The first process consists of formal-
izing and unifying the representation of the SPL models and the specifications
of an evolution. The second process involves the detection and removal of du-
plicated features caused by the new evolution. Figure 2 represents the proposed
framework.

Figure 2. The Overview of the Framework.

During the domain engineering of a software product line, the common and
variant features of all the specific applications are captured. To document and
model variability, many approaches have been proposed. For instance, [2] intro-
duced the orthogonal variability model which defines variability in a separate



way. Salinesi et al. [22] used a constraint-based product line language. Other
approaches proposed to model variability using UML models or feature models
(FODA [23]). In our study, we opt for the FODA method used by the Feature-
oriented software development (FOSD) paradigm [24] whose objective is to gen-
erate automatically software products based on the feature models. Hence, tools
such as FeatureIDE [25] have been proposed to formalize the representation of
feature models and enable the automatic selection of features of derived prod-
ucts. This tool will be used during the first process of our framework.

During the evolution of a derived product, the requirements are most of
the time expressed in the form of natural language specifications. This form
of presentation makes it difficult to detect the different defects that can occur
(Duplication in our case). To deal with this problem, the solution is to trans-
form natural language specifications into formal or semi-formal specifications.
For this, we adopt a Natural Language Processing (NLP) approach. NLP is a
technology of computer science whose objective is to process sentences in a nat-
ural language such as English and to build output based on the rules of a target
language understandable by the machine. In our study, the purpose is to trans-
form specifications into the same format of the SPL feature models by using
syntax and semantic parsers. The syntax parser analyzes the specifications and
generates the syntactic tree based on the English grammar, while the semantic
parser extracts the meaning of the sentences. The operation of parsing will be
performed using the OpenNLP library [26], which is a machine learning based
toolkit for the processing of natural language text.

The second process of the framework consists of applying a set of algorithms
of search and comparison to detect duplications in the processed specifications,
feature models and between these two inputs. To help define the algorithms, we
need to express mathematically the different concepts of the framework.

So far, we have identified the processes of the framework and its basic con-
cepts [8], [9]. We have started the definition of the algorithms of duplication de-
tection in the specifications [10], and between the specifications and the feature
models [11]. In future work, we intend to implement our approach by designing
an automated tool that takes as inputs the domain feature model of a SPL,
the application feature model of a derived product and the specification of an
evolution. The output generated by this tool is the list of duplicate features in
these inputs and those caused by the evolution. This output will be sent to the
customer to verify his initial needs and change them if necessary.

6 Conclusion

This paper contains an overview of our thesis dealing with software product line
evolution. After a review of the existing approaches concerning the detection
of model defects when evolving SPLs, we decided to focus on the resolution
of a specific problem, which is feature duplication. The objective of this study
is to construct a framework that helps detect and remove duplicate features
introduced by new evolutions. An automated tool is to be developed to avoid



the complexity of manual verification. The evaluation of the artifact will be
performed by applying it to a case study from the CRM field.

References

1. P. Clements and L. Northop, Software Product Lines - Practices and Patterns,
Boston: Addison-Wesley, 2002.

2. K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line Engineering
Foundations, Principles, and Techniques, Berlin, Germany: Springer-Verlag, 2005.

3. A. Reder and A. Egyed, ”Determining the cause of a design model inconsistency,”
IEEE Transactions on Software Engineering, vol. 39, no. 11, pp. 15311548, 2013.

4. D. Zowghi and V. Gervasi, ”On the interplay between consistency, completeness,
and correctness in requirements evolution,” Information and Software Technology,
vol. 46, no. 11, pp. 763-779, 2004.

5. D. Romero, S. Urli, C. Quinton, M. Blay-Fornarino, P. Collet, L. Duchien, and
S. Mosser, ”SPLEMMA: a generic framework for controlled-evolution of software
product lines,” in Proc. 17th International Software Product Line Conference co-
located workshops, ACM, 2013, pp. 59-66.

6. R. Mazo, R. E. Lopez-Herrejon, C. Salinesi, D. Diaz and A. Egyed, ”Conformance
checking with constraint logic programming: The case of feature models,” in Proc.
COMPSAC’11, IEEE, 2011, pp. 456-465.

7. S. Schulze, ”Analysis and removal of code clones in software product lines,” Doctoral
dissertation, Magdeburg, Universitt, Diss., 2013.

8. A. Khtira, A. Benlarabi, B. El Asri, ”Towards Duplication-Free Feature Models
when Evolving Software Product Lines,” in Proc. 9th International Conference on
Software Engineering Advances (ICSEA’14), Oct. 2014, pp. 107-113.

9. A. Khtira, A. Benlarabi, B. El Asri, ”A Framework for Ensuring Duplication-Free
Feature Models when Evolving Software Product Lines,” Submited for publication
to ”International Journal On Advances in Software”, under review.

10. A. Khtira, A. Benlarabi, B. El Asri, ”Detecting Feature Duplication in Natural
Language Specifications when Evolving Software Product Lines,” Accepted in the
10th International Conference on Evaluation of Novel Approaches to Software En-
gineering (ENASE’15), under publication.

11. A. Khtira, A. Benlarabi, B. El Asri, ”An Approach to Detect Duplication in
Software Product Lines Using Natural Language Processing,” Accepted in the
Mediterranean Conference on Information and Communication Technologies (ME-
DICT’15), under publication.

12. J. Guo and Y.Wang, ”Towards consistent evolution of feature models,” In. Software
Product Lines: Going Beyond, Springer Berlin Heidelberg, 2010, pp. 451-455.

13. R. Mazo, ”A generic approach for automated verification of product line models,”
Ph.D. thesis, Pantheon-Sorbonne University, 2011.

14. G. Lami, S. Gnesi, F. Fabbrini, M. Fusani, and G. Trentanni, ”An automatic tool
for the analysis of natural language requirements,” Informe tcnico, CNR Information
Science and Technology Institute, Pisa, Italia, Sept. 2004.

15. M. Kamalrudin, J. Grundy, and J. Hosking, ”Managing consistency between tex-
tual requirements, abstract interactions and Essential Use Cases,” in Proc. COMP-
SAC’10, IEEE, July 2010, pp. 327-336.

16. J. Holtmann, J. Meyer, and M. von Detten, ”Automatic validation and correction of
formalized, textual requirements,” in Proc. 4th International Conference on Software



Testing, Verification and Validation Workshops (ICSTW), IEEE, Mar. 2011, pp.
486-495.

17. V. Ambriola and V. Gervasi, ”Processing Natural Language Requirements,” in
Proc. 12th IEEE Conference on Automated Software Engineering (ASE’97), IEEE
Computer Society Press, Nov. 1997, pp. 36-45.

18. A. Hunt and D. Thomas, The pragmatic programmer: from journeyman to master,
Addison-Wesley Professional, 2000.

19. A. R. Hevner, S. T. March, J. Park, and R. Sudha, ”Design science in information
systems research,” MIS quarterly, vol. 28, no. 1, pp. 75-105, 2004.

20. K. Peffers, T. Tuunanen, A. M. Rothenberger, and S. Chatterjee, ”A design science
research methodology for information systems research,” Journal of management
information systems, vol. 24, no. 3, pp. 45-77, 2007.

21. L. Aversano, L. Cerulo, and M. Di Penta, ”How clones are maintained: An empiri-
cal study,” 11th European Conference on Software Maintenance and Reengineering
(CSMR’07), IEEE, 2007.

22. C. Salinesi, R. Mazo, O. Djebbi, D. Diaz, and A. Lora-Michiels, ”Constraints: the
Core of Product Line Engineering,” In. RCIS11, IEEE, Guadeloupe- French West
Indies, France, May 19-21, 2011, pp. 1-10.

23. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ”Feature-Oriented Do-
main Analysis (FODA) Feasibility Study,” Technical Report CMU/SEI-90-TR-21,
Carnegie Mellon University, Software Engineering Institute, Nov. 1990.

24. S. Apel and C. Kästner, ”An Overview of Feature-Oriented Software Develop-
ment,” Journal of Object Technology (JOT), vol. 8, pp. 49-84, 2009.

25. C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel,
”FeatureIDE: A Tool Framework for Feature-Oriented Software Development,” in
Proc. The 31st International Conference on Software Engineering, 2009, pp. 611-614.

26. The Apache Software Foundation, ”OpenNLP,” opennlp.apache.org.


