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Abstract. The knowledge engineering effort associated with defining
grammar systems can become a barrier for the practical use of such
systems. Existing grammar and rule induction algorithms offer rather
limited support for discovering context-sensitive graph grammar rules as
required by some applications in the domain of engineering design. For
this task the present work proposes a rule induction method grounded
on Genetic Programming. Specializations regarding the representation
and evaluation of rule candidates are discussed. Results from preliminary
experiments with a prototype implementation demonstrate the feasibility
of the suggested approach.
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1 Introduction

There is a growing interest in using grammar-based systems in the field of
computer-aided design. Sridharan and Campbell [10], for instance, use a context-
sensitive graph grammar to explore functional descriptions of product designs.
Here, grammar rules capture common moves for generating such descriptions,
i.e. they represent knowledge on making design decisions. So far the process of
formalizing this knowledge into rules has been subject to manual knowledge elic-
itation. Our research is targeted towards answering the question: What are ade-
quate machine learning processes for reducing the knowledge engineering burden
of human experts in the context of automated engineering design and in which
settings do they apply?

In this paper focus is put on learning an additional grammar rule pi in pres-
ence of an existing but incomplete rule set [p]A (sets are depicted in square
brackets). The new rule set [p]B = [p]A ∪ pi will be used in a graph-rewriting

system that shall be capable of reproducing a set of desired design graphs [Ĝn]
by means of derivation from an initial graph G0. All rules are allowed to be
context-sensitive, i.e. left-hand side (LHS) and right-hand side (RHS) may con-
tain both terminal and non-terminal (NT) elements. Considering the practical
application for engineering two additional restrictions apply:
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Restriction 1: There is no explicit information available on how the rules of
[p]A are defined (LHS and RHS are hidden from the learner). This restriction
stems from an application scenario where different engineering organizations,
each working on different subsystems or disciplines, contribute to a commonly
used graph-rewriting system. It is likely that these organizations want to share
results with their partners, whilst being reluctant to reveal insight on how these
results were established, i.e. their design rationale should be kept secret.

Restriction 2: As training data we are only given the initial graph G0 (input)

and desired design graphs [Ĝn] (output). The data does not provide any negative
examples of undesired graph-rewriting behavior. This restriction suits common
engineering practice where positive milestones and final results are more likely
to be documented than unfinished states and failures.

In light of this, a machine learning process based on Genetic Programming
(GP) is proposed and studied using the following methodology: First, the feasibil-
ity of using GP for rule induction in the given context is validated by constructing
a prototype implementation. Then, its applicability is tested with respect to an
existing graph grammar from engineering design (pilot case) and a comparative
study with an existing rule induction algorithm is undertaken.

Accompanying materials, including an application example and a discussion
on extending the proposed method to iteratively learn multiple rules, are pro-
vided online at http://ouky.de/accompanying-materials/ruleml-2015.

2 Related Work

Besides various contributions addressing the induction of context-free string
grammars, there only has been relatively little research on learning context-
sensitive graph-grammars [1, 6, 4, 2, 5, 3]. None of these approaches is readily ap-
plicable under the mentioned restrictions as they are bound to several limita-
tions: First, LHSs were limited to rule templates (cf. [1, 4]) or LHSs and RHSs
were limited to single components. Hence, existing approaches are not capable
of accepting multiple isolated subgraphs in their LHS (e.g. to link these compo-
nents with new edges). Second, all grammars have been induced from scratch.
Completing a set of given (unknown) rules has not been considered. This com-
plicates the problem of rule induction as existing rules may produce or require
nodes, edges, or application conditions that cannot be inferred from the training
examples.

In order to address these limitations, machine learning can be conceptualized
as search over a space of possible hypotheses [9]. In this case, hypotheses are
candidates for rule pi and the search space is defined by the vocabulary and
syntax used for formulating rules. The goal of the learning algorithm is to search
for rule candidates that best describe the training data. GP [7] is a well known
evolutionary search heuristic. It has proven suitable for large search spaces and
is robust against local optima. Wyard [11] first used a genetic approach to the
induction of context-free string grammars. However, as shown herein, GP can
also be employed for inducing rules in context of an existing rule set.
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3 Proposed Solution

This section describes a GP-based rule induction algorithm for learning rules
that comply with an existing context-sensitive graph grammar. The learner’s
task is to determine definitions for rule pi in order to enable a graph-rewriting
system to produce the desired design graphs [Ĝn] from the initial black-box
design G0.

Consider a predefined rule sequence S = p1, p2, ..., pi−1, pi, pi+1, ..., pn−1, pn
of length n that can be used to derive [Ĝn] from G0. Subsequences S1 =
p1, ..., pi−1 and S2 = pi+1, ..., pn are known to the graph-rewriting system (rea-
soning process) but unknown to the learner, and pi is unknown to both. The
proposed learner is capable of learning definitions for the LHS and RHS of pi
given the following is provided: G0, [Ĝn], and access to the graph-rewriting sys-
tem in order to gather answer sets [Gi+1], [Gi+2], ..., [Gn] for possible candidate
definitions of pi.

The proposed learner’s main procedure (see algorithm 1) learns a rule can-
didate for one desired design graph at a time and tests if the found candidate is
applicable to more than one graph of the desired answer set. Its sub-procedure
evolve is a GP algorithm specially configured for the rule induction task.

Algorithm 1 Main procedure of proposed GP-based rule induction algorithm.

Load G0 and [Ĝn]
Initialize graph-rewriting system with rules p1, p2, ..., pi−1 and pi+1, ..., pn−1, pn
while [Ĝn] is not empty do

Get next Ĝn,j from [Ĝn]

Use evolve to learn a rule pi,j that enables derivations G0
S

=⇒ Ĝn,j

where S = p1, p2, ..., pi−1, pi,j , pi+1, ..., pn−1, pn
Remove Ĝn,j and all graphs of [Ĝn] that can be derived using pi,j
Add pi,j to the set of learned rules [pi]

end while
return [pi]

During GP, candidates for pi are sampled from the space of possible rule
definitions by means of evolutionary principles. Initially, the set of considered
candidates, called population, is chosen randomly. Then, with each GP iteration,
a new generation of this population is produced by applying mutation, crossover
and selection operators. The selection operator ranks every produced candidate
with respect to evaluation criteria and determines what candidates are consid-
ered for the next generation (survival of the fittest). Mutation and crossover are
used to produce new candidates from the members of the current population.
Crossover recombines parts of two candidates to form a new candidate, whereas
mutation randomly changes parts of an existing candidate.

As a preparatory step, all possible host graphs [Gi−1], on which pi may be

applied, are computed. Then, from this set a subset [Ĝi−1] is formed that only
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contains host graphs which are feasible for deriving the current desired design
graph Ĝn. This is realized by a filter that checks whether all monotonic elements
present in Gi−1 are also present in Ĝn. In this case only NTs are non-monotonic.
Once added, terminal nodes and edges are preserved throughout the remaining
direct derivations. Hence, there must be a subgraph isomorphism that maps all
terminal nodes and edges of Gi−1 to Gn. If this is given, then Gi−1 ∈ [Ĝi−1].

3.1 Representation

The representation of candidates is crucial for the rule induction task. In this
case a candidate denotes, which host graph Gi−1 is chosen from [Ĝi−1], and what
graph operations will be performed on Gi−1 to yield Gi:

Regarding the first point, all graphs in [Ĝi−1] are considered as possible

bases for deriving Ĝn. Since the learner is not allowed to inspect the LHS of
the following rules, different Gi−1 ∈ [Ĝi−1] need to be tested by executing the
graph-rewriting system in a manner of trial-and-error. Which Gi−1 is chosen is
reflected by an index parameter within the rule candidate representation that is
subject to the evolutionary optimization.

The second point addresses the RHS of the rule. Essentially each rule can-
didate is a tree structure (the standard representation for GP individuals) that
specifies how the chosen Gi−1 will be modified. The tree consists of operation
nodes and index nodes. Operation nodes represent the graph operations used for
modifying Gi−1. For the problem at hand the considered operations are add-node,
add-edge, add-non-terminal, and remove-non-terminal. Index nodes parametrize
these operations with respect to Gi−1 and Ĝn. Further, every operation has a
cost factor associated that is used for evaluation.

In order to evaluate a rule candidate, the set of considered host graphs [Ĝi−1]
is passed to the GP-tree’s root node. Using an index node attached to the root,
some Gi−1 ∈ [Ĝi−1] is chosen. Then, Gi is initialized as a copy of this graph
and passed to the root’s children in order to be propagated through the whole
tree. At each operation node the graph is modified with respect to the parameter
defined by its index node child (see list below). An operation is bypassed if it is
not applicable. Having passed this way through all nodes of the tree, the modified
graph Gi is considered to be the direct derivation result of rule candidate pi,
just as if it had been applied in the graph-rewriting system.

Add-node: For all terminal nodes in Ĝn that are not yet present in Gi, add
the one specified by the index node to Gi. The operation is not applicable if the
set of addable nodes is empty. The cost for this operation is 2.

Add-edge: For all edges in Ĝn that are not yet present in Gi, add the one
specified by the index node to Gi. Incident nodes that are not present in Gi

are added as well. The operation is not applicable if the set of addable edges is
empty. Adding an edge costs 2 and each added node adds up with an extra 2.

Add-non-terminal: For all edges in Ĝn that are not yet present in Gi, but
where exactly one incident terminal node already exists in Gi, select the edge
specified by the index node. Add a NT and the selected edge to Gi, where one
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end of the edge marks the existing terminal node, and the other is the newly
added NT. The operation is not applicable if the set of edges to be considered
is empty. The cost for this operation is 1.

Remove-non-terminal: For all NTs in Gi, remove the one specified by the
index node. The operation is not applicable if the set of NTs is empty. The cost
for this operation is 1.

3.2 Evaluation and Selection

Three criteria, termed match, brevity, and variety, are considered for determining
the fitness of a candidate. Match targets the main goal of finding an applicable
rule that enables the derivation of Ĝn under consideration of the remaining
rule sequence pi+1, ..., pn−1, pn. The other criteria have corrective purposes for
improving the quality of the produced rule candidates.

Match: After Gi has been prepared, the learner tries to apply the remaining
rule sequence S2 using the graph-rewriting system. The graphs produced during
derivation are compared with Gn in terms of similarity. Match is considered at
maximum (1) if one of the produced graphs is isomorphic to Ĝn, or if Ĝn is
completely “included” in one of the produced graphs (subgraph isomorphism).
Otherwise match is measured using a graph similarity algorithm which compares
the topology and labeling of both graphs and returns a value within [0, 1]. The
most similar graph is taken as reference for the rule candidate’s match. This has
been implemented using the Neighbor Matching algorithm proposed by [8].

During the GP’s evolutionary search the rule candidates are allowed to con-
tain operations that are not directly needed to achieve the goal of producing
the desired design graph: First, there may be operations that are not applicable.
These are simply ignored during the generation of Gi. Second, it is sufficient if
the desired graph could be matched in terms of a subgraph isomorphism, i.e.
superfluous operations do not prevent from reaching maximum match. Leaving
these elements in the rule candidates is a deliberate design choice, as it increases
the genetic variation in the population. Thereby, a once superfluous or inappli-
cable operation of one candidate actually can become useful when it is passed
to an individual of a later generation. In consequence of crossover and mutation
this operation (or gene) may be put into a different context where it is manda-
tory for derivation. Just at the very end of the GP search process all unnecessary
operations are removed from the best rule candidate.

Brevity: Taking only match into account could lead to the undesired behavior
of discovering a rule that replaces existing rules of the following rule sequence
instead of enabling their use. In order to penalize such rules brevity is defined
as the inverted sum of costs of all applicable operations. The associated costs
are also used to rank different strategies for graph manipulation. For instance,
consider a specific edge that can be added either directly by the candidate or
by advising a following rule to do so using a NT. Here, the second strategy is
preferable, since it does not compromise the concerns of that existing rule. This
is reflected by the lower score of add-non-terminal compared to add-edge.
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Fig. 1. Flow chart of procedure evolve. Invoked by procedure main (see above).

Variety: This score targets special semantic properties of our application
domain. Typically, a rule focuses on the conversion of some specific types of
flows (edges) through functions (nodes). It would be atypical if a wide variety
of flows were subject the modification by the rule candidate. Hence, variety is
defined as the inverse number of distinct flow labels used by the rule.

Match, brevity and variety are multiplied to gain an overall fitness score for
each rule candidate. These fitnesses are the basis for selecting individuals that
will be used for “breeding” the next generation. Separately from the GP selec-
tion process, for each generation, individuals achieving maximum match (1) are
ranked with respect to their fitnesses. If the fitness of the best candidate from
this set converges, the best candidate found so far is reduced to its necessary op-
erations and returned as result of the procedure evolve. The LHS and RHS of the
rule are deduced from the remaining operations. Fig. 1 provides a summarizing
flow chart for the evolve procedure.

4 Results

The hereinafter described preliminary experiments were conducted with a pro-
totype implementation. The system uses a rule set consisting of 11 rules. These
rules largely correspond to those of a graph grammar for functional engineering
design, which was hand-crafted by a group of experts [10]. [Ĝn] was generated
by means of derivation over the complete rule set. The derivation process largely
corresponds to the example described in [10].

In each experiment one rule was taken out of graph-rewriting system and
the learner was given the task to learn it. The learned rule was compared to
the original rule with respect to the nodes and edges each rule added to the
produced graphs. Every node or edge of a desired graph in [Ĝn] is classified as
follows. True positive: node/edge is both added by the learned and the original
rule. False positive: node/edge is only added by the learned rule. True negative:
Neither learned nor original rule add the node/edge. False negative: node/edge is
only added by the original rule. Accuracy (ACC) and the F1 score – two common
measures for classifier evaluation – have been employed to measure the similarity
of learned rules with original rules. Accuracy denotes the relative amount of
correctly assigned nodes/edges. F1 puts a stronger bias on the elements that
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Table 1. Comparison of Subdue with proposed GP-based approach. Rules are listed
in order of application. Non-zero standard deviations are shown in parentheses.

Subdue Proposed GP Approach
Rule ACC PRC RCL F1 ACC PRC RCL F1 GEN MIN
4 .62 .15 1 .27 1 1 1 1 5.36(1.63) 4.54(1.29)
29 .79 .25 1 .40 1 1 1 1 5.11(1.09) 19.67(3.40)
24 1 1 1 1 1 1 1 1 4.72(0.88) 20.38(3.83)
27 .79 .25 1 .40 1 1 1 1 4.60(0.91) 20.40(3.24)
5 .38 .31 1 .47 .97(.03) .92(.08) .92(.08) .92(.08) 6.15(3.11) 7.35(2.89)
25 .94(.03) .60(.22) 1 .73(.15) 1 1 1 1 4.46(0.81) 7.63(1.74)
20 .79 .25 1 .40 1 1 1 1 4.65(0.8) 5.74(1.36)
3 .76 .13 1 .22 .99(.02) .80(.25) 1 .87(.16) 6.02(4.57) 8.83(10.29)
6 .76 .13 1 .22 1 1 1 1 4.52(0.65) 7.02(1.56)
17 .79 .20 .33 .25 .89(.06) .84(.09) .84(.09) .84(.09) 5.04(1.53) 10.44(9.12)
33 .86 .20 1 .33 .90(.06) .42(.36) 1 .52(.30) 4.00 1.12(0.13)

should not have been part of the learned rule. It is the harmonic mean of precision
(PRC) and recall (RCL). PRC: How many added nodes/edges of the learned
rule are also part of the original rule? RCL: How many added nodes/edges of
the original rule are also added by the learned rule?

As a baseline, another rule induction algorithm based on the Subdue method
[2] was given the task to learn the complete rule set from scratch. Subdue itera-
tively adds one rule at a time. With each iteration, it searches for subgraphs that
frequently appear in the graphs of [Ĝn] and forms rules from those subgraphs.
Subdue generated a total of 16 rules, which were assigned to original rules with
respect to maximum ACC.

Table 1 shows the mean ACC, PRC, RCL, F1 score for the learned rules.
Since Subdue is a deterministic method, it is only executed once, and its mean
scores are computed over the graphs of [Ĝn]. The proposed GP method is non-
deterministic, thus every test run, i.e. the execution of the main procedure, has
been repeated 25 times. The mean has then been computed over every final rule
candidate of evolve. GEN and MIN denote the mean number of generations and
minutes needed by evolve to converge (tested on a PC with 2.5 GHz 4-core CPU
and 16 GB RAM).

The rules learned by the GP approach generally show a high similarity with
the original ones. As expected they most often outperform Subdue’s rules, as the
rules used in the preceding sequence S1 are kept and the learner tries to avoid
replacing rules of S2. Subdue’s strategy is to make the rules’ RHSs as large as
possible. Hence, parts of multiple original rules are covered by the induced rule
resulting in a PRC-drop.

A drawback of the GP method is that the trial-and-error evaluation affords
significantly more computational resources than the Subdue method. On the
test machine (see above), Subdue computes the new ruleset within seconds.
Depending on the complexity of the rule and its position in the rule sequence,
an execution of evolve takes several minutes. Further, in its current form the GP
method may learn rules that produce graphs which are only subgraph isomorphic
to the target graphs [Ĝn].
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5 Conclusion

The results show the principle feasibility of inducing rules by means of GP in
context of an existing rule set. Further, it has been shown that the proposed
method is applicable to a concrete example from the field of engineering design.
It is capable of learning rules that are considerably similar to those of an existing
graph grammar for functional decomposition. In comparison with a state-of-the-
art rule induction algorithm that learned the complete ruleset from scratch, the
proposed method achieves a higher similarity with the original rule definitions.
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