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Abstract 

Theories of category-based human inductive reasoning 
typically rely on either associative or structured knowledge 
about relationships between categories. Here, we test a 
prediction, derived from a hybrid theory that utilizes both 
kinds of knowledge representation, that participants will 
experience conflict on a reasoning task in which associative 
and structured knowledge support different responses. 
Participants completed a triad task that tested their ability to 
generalize a genetic property from a target species to a 
taxonomically related response. The strength of association 
between the target and an alternative non-taxonomic (i.e., 
foil) response was manipulated across trials. Analysis of 
participants’ mouse cursor trajectories revealed that they were 
initially drawn toward strongly associated foil responses, even 
when they ultimately chose the correct (taxonomic) option. 

Keywords: Category-based induction; Knowledge; Response 
dynamics; Cognitive conflict; 

Introduction 

Inductive reasoning is among people’s most important 

cognitive skills, allowing them to draw on prior knowledge 

to make predictions under uncertainty. Induction is both 

simple and complex. Induction is simple in the sense that 

we can easily and automatically associate causes with their 

effects, generalize properties to a category from a single 

instance, or from one instance to another, and select actions 

in complex situations by recognizing commonalities with 

past experiences. Conversely, inductive reasoning can be 

complex: how we generalize a property from a given 

exemplar depends on the nature of the property in question, 

the circumstances under which the property is observed, and 

the nature of the relationships between categories.  

Theories of category-based induction may be 

distinguished in a similar manner. Simple, or associative, 

models (Kruschke, 1992; Rescorla & Wagner, 1972; Rogers 

& McClelland, 2004; Sloman, 1993; Sloutsky & Fisher, 

2008) rely on similarity, contiguity, or co-occurrence 

between instances, and are often modelled using 

connectionist neural networks. Conversely, structured 

relational models take advantage of more sophisticated 

knowledge about the world, including directional causal 

relationships, and domain specific rules (Griffiths & 

Tenenbaum, 2009; Heit, 1998; Kemp & Tenenbaum, 2009; 

Murphy & Medin, 1985; Osherson, Smith, Wilkie, Lopez, 

& Shafir, 1990). 

Evaluating the strengths and weaknesses of structured and 

relational models, Bright and Feeney (2015) proposed that 

induction relies on two forms of knowledge: simple, 

associative representations that are retrieved easily and 

automatically, and more complex, structured relational 

knowledge, including causal relationships, and domain 

specific intuitive theories, that require cognitive effort. A 

prediction of this hybrid model, investigated in the present 

article, is that when associative and structured knowledge 

come into conflict it often becomes necessary for the 

reasoner to inhibit an incorrect inference, generated 

automatically from associative knowledge, in order to 

reason on the basis of more complicated relational 

information. To test this prediction, we employed a well-

established mouse-tracking paradigm (Freeman, Dale & 

Farmer, 2011), allowing us to monitor participants' moment-

by-moment movements toward responses that are cued by 

associative and structured knowledge in a forced-choice 

inductive reasoning task. 

Knowledge types in category-based induction 

Associative knowledge features most prominently in 

connectionist, or neural network-based, models of category-

based induction (Rogers & McClelland, 2004; Sloman, 

1993; Sloutsky & Fisher, 2008). In Sloman's (1993) 

influential feature-based model, the known features of a 

category can be represented as an activation vector applied 

to the input nodes of a feed-forward neural network. Each 

node is activated when its corresponding feature is 

possessed by the target category. The network can be 

presented with the premises of an inductive argument by 

training it to activate its output node when presented with 

the features of categories which do have a novel property. 
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The outcomes of the trained network (i.e., its inferences) 

can be elicited by probing the input nodes with the features 

of a novel category. The activation of the output node 

corresponds to the degree to which the network believes the 

novel category will have the property in question.  

Simple associative architectures are capable of capturing 

many aspects of human performance (Rolison, Evans, 

Dennis, & Walsh, 2012). For instance, like human subjects, 

an associative network can be trained to rate similar 

categories (which share many features) as more likely to 

share a novel property, and properties that are present in a 

diverse range of categories as more likely to be found in a 

novel category. Adding additional layers to the neural 

networks allows them to account for further characteristics 

of human inference, such as sensitivity to different property 

types, such as “is a” and “has a” properties (Rogers & 

McClelland, 2004), as well as basic context-dependent 

inferences (Sloutsky & Fisher, 2008). 

Murphy and Medin (1985) argue, however, that 

similarity-based approaches fail to capture the full flexibility 

of people's intuitive theories about the relationships between 

categories in specific domains. In particular, participants 

have been shown to be sensitive to property effects when 

reasoning inductively, such that the strength of an argument 

is dependent on the kind of property projected. (Heit & 

Rubinstein, 1994; Shafto, Coley, & Baldwin, 2007; Shafto, 

Kemp, Baraff, Coley, & Tenenbaum, 2005). For instance, 

transmittable properties such as infectious diseases are 

thought to be shared by animals that are related 

ecologically, such as predators and prey in a food chain, 

whereas biological properties such as genes are shared only 

by animals that are close together in their evolutionary 

taxonomic tree. Such intuitions, in one domain, are captured 

by the similarity-coverage model (Osherson et al., 1990), 

which uses a taxonomic tree to capture intuitions about how 

properties are shared by related species in the natural world. 

More recently, structured Bayesian models have been 

introduced (Griffiths & Tenenbaum, 2009; Kemp & 

Tenenbaum, 2009; Shafto, Kemp, Bonawitz, Coley, & 

Tenenbaum, 2008; Tenenbaum, Griffiths, & Kemp, 2006), 

which are capable of describing flexible human performance 

in a range of domains. These models require that, for each 

domain, a specific structure is generated to capture 

relationships between categories, such as food chains or 

taxonomic trees, along with a generic probabilistic process 

by which properties can be transmitted. In the biological 

domain, such structures include unidirectional causal links 

connecting prey to predators, or distance from a common 

ancestor in a biological taxonomy. 

Bright and Feeney (2015) argue that neither associative 

nor structured models are sufficient to account for all of the 

phenomena observed in category-based induction. They 

propose a hybrid theory in which both associative and 

structured knowledge can be used in reasoning. They 

provide evidence that the two kinds of knowledge can be 

dissociated. Namely, measures of the strength of the 

association between two categories predicts participant 

ratings of the strength of inductive arguments made under 

cognitive load, and under time pressure. Conversely, a 

measure of structured knowledge predicts ratings of 

argument strength otherwise 

Conflict in category-based induction 

If both associative and structured knowledge play a role in 

induction, a natural question is how associative and 

structured knowledge interact when they support conflicting 

beliefs. For instance, upon learning that a biological 

property is true of salmon, does one decide that this is also 

true of grizzly bears (strongly associated, but no structured 

means of transmission for biological properties) or of 

goldfish (weakly associated, but related taxonomically)? 

Clearly, the decision depends on what kind of knowledge is 

recruited, with purely associative knowledge in this case 

leading to a non-normative inference. One possibility is that 

one or other representation is activated, depending on 

available time and cognitive capacity, in what Evans (2007) 

labels a “preemptive conflict resolution” model. 

Alternatively, both representations may compete, either with 

associative knowledge being recruited by default, which 

must be inhibited in order for structured representations to 

come online (“default interventionist models”), or with both 

representations activated in parallel (“parallel-competitive 

models”), leading to a conflict. Bright and Feeney (in prep.) 

offer evidence that associative and structured knowledge do 

conflict during category-based induction. In a triad task 

(Gelman & Markman, 1986), in which participants were 

asked which of two target species was most likely to share a 

biological property given that it was found in a third base 

species, participants were more likely to fail to select a 

structurally (i.e. taxonomically) related target when the 

alternative response was strongly associated to the base. 

Crucially, participants were less able to inhibit the 

association-driven response under cognitive load, or when 

lacking in semantic inhibitory control or working memory 

capacity. 

Although the above results provide some support for a 

proposal that associative and structured knowledge can 

compete during inductive reasoning, these conclusions are 

drawn from analysis of participants' responses – the end 

product of the reasoning process – and thus constitute only 

an indirect measure of the underlying processes. The mouse-

tracking paradigm (Spivey, Grosjean, and Knoblich, 2005; 

Freeman et al., 2011), on the other hand, provides a 

powerful tool for measuring these processes as they unfold 

during cognition. Monitoring the location of the mouse 

cursor whilst participants are choosing between choice 

options located on opposite sides of the computer monitor, 

this method allows us to track the time-course of reasoning 

that leads to an inference. Mouse-tracking has been used to 

reveal parallel competition effects on a range of simple 

cognitive and perceptual tasks (i.e. Freeman, Ambady, Rule, 

& Johnson, 2008; O’Hora, Dale, Piiroinen, & Connolly, 

2013; Spivey et al., 2005), in which participants are shown 

to be attracted simultaneously to competing response 
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options. In more complicated tasks, participants also have 

been found to exhibit more discrete “changes of mind” 

tendencies by switching between choice options mid-trial 

(Dale & Duran, 2011; Freeman, 2013). In the present study, 

we use this technique to test for conflict between associative 

and structured knowledge in the triad task. Participants were 

asked to choose between projecting a biological property 

from a base species to a correct target species belonging to 

the same taxonomic group, or to an unrelated foil species. 

Critically, the strength of the association between the base 

and the foil species is varied within subjects. If, as 

suggested by Bright and Feeney (2015), responses cued by 

associative knowledge must be inhibited in order to reason 

on the basis of structured relations, we should expect to 

observe an initial attraction toward the foil that is 

proportional to the strength of the associative connection 

between the foil and the target. On the other hand, if 

participants recruit one or other form of knowledge, we 

should not expect to find an initial attraction to the foil, 

regardless of the strength of association between the target 

and foil.  

Method 

Stimuli 

Participants were presented with a version of the inductive 

triad task (Gelman & Markman, 1986). On each trial, 

participants were informed that a particular gene is 

possessed by a given base species and were asked to decide 

which of two candidate target species was most likely to 

possess the same gene (see Figure 1). The correct response 

was the species belonging to the same taxonomic group as 

the base (mammals, birds, insects, reptiles, or plants). The 

foil response belonged to a different taxonomic group than 

the base and was weakly, moderately, or strongly associated 

with the base. The strength of association was determined 

by prior testing. Across 27 experimental trials, nine base 

species were each presented three times, paired with the 

same correct response species but a different foil species on 

each occasion. An additional 27 filler trials were included, 

in which the property to be generalized was susceptibility to 

a given disease. 

Design and Procedure 

Forty four undergraduate students at Queen's University 

Belfast participated for course credit. Stimuli were custom 

programmed using the OpenSesame software package 

(Mathôt, Schreij, & Theeuwes, 2011) and were presented on 

a computer monitor. The 27 experimental trials were 

presented in three blocks of nine trials each, interspersed 

with nine filler trials. Trials were randomly assigned to each 

block with the constraints that each base species appeared 

once in each block and each block contained three weakly, 

three moderately, and three strongly associated foil trials. 

Trial order within blocks was randomized with the 

constraint that the same base could not appear twice within 

three trials.  

On each trial, participants were first primed with the kind 

of property they were to reason about: “gene” for 

experimental trials or “disease” for fillers. This prime 

appeared in the center of the monitor for one second. For 

each experimental trial, participants were then informed that 

the given gene (i.e. “Gene r3P”) is found in the bodies of 

one of the two target species, which appeared as labeled 

images in the top left and right corners of the screen (Figure 

1). The two species were randomly assigned to the left and 

right positions on each trial and appeared for 1.6 seconds 

each. The targets then remained visible and participants 

were asked which species they believed was most likely to 

possess the gene, given that it was possessed by another 

species. Participants were then instructed to click a 

“START” button located in the bottom center of the 

monitor, after which a fixation cross appeared for 1.5 

seconds, which was then replaced by a labeled image of the 

base species (Figure 1). At this point, the mouse cursor was 

reset to the center of the start button and participants were 

given five seconds to respond by selecting one of the two 

target species labels with their mouse cursor. Participants 

were given five seconds to respond following presentation 

of the base category. Additionally, in line with previous 

mouse-tracking research, on trials in which participants did 

not move the cursor away from the start button within 1.5 

seconds of the onset of the base, they were shown a message 

reminding them that they were under time pressure. This 

was done to encourage participants to make their decision 

while the mouse cursor was in motion. 

 

 
Figure 1: Screenshot of the experiment screen following 

onset of the base species (“Killer Whales”). 

Analysis 

Mouse trajectories were normalized to a standard co-

ordinate system, with all trials beginning at point [0, 0], and 

ending at point [1, 1.5] in the top right corner. Trajectories 

in which the chosen response was on the left were reflected 

through the y-axis. For each trial, we calculated the time 

from target onset to a response (response time), the time 

from target onset to the beginning of the mouse movement 
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(initiation time), the deviation of mouse trajectory away 

from a straight line to the response, measured in the 

standard co-ordinate system (maximum deviation), and the 

frequency of changes of mouse trajectory direction on the x-

axis (x-flips). 

Our analysis was restricted to trials on which the 

taxonomically-related species was chosen. Thus, our data 

set was unbalanced. Therefore, we conducted random 

effects linear regression modeling on our data. This analysis 

accounted for the clustering in our data by allowing for 

random intercepts at the subject and base species level 

(Baayen, Davidson & Bates, 2008). Main effects were 

assessed on the basis of the -2 log-likelihood model fit 

improvement, tested using the chi-square statistic. Main 

effects were followed-up with Tukey pairwise comparisons 

between each group, with p values calculated using the 

normal approximation. 

Log transformations were used for analyses of response 

time, initiation time, and maximum deviation due to 

violations of normality. A Poisson regression model was 

used for the count of x-flips. A logistic random effects 

model was used for the analysis of choices in each 

condition. 

Results 

Results did not differ appreciably between the stimuli 

blocks, and so data were collapsed across blocks for 

analysis. Participants selected the correct taxonomically-

related response on 81% of trials when the foil was weakly 

associated with the base, 61% of trials when moderately 

associated, and 57% when strongly associated. This 

suggests that participants were influenced by the associative 

strength of the foil option, such that stronger associations 

competed with structural knowledge. A logistic mixed 

effects model indicated a main effect of foil strength (ΔAIC 

= -86.4, -2LL χ
2
(2) = 90.4, p < .001). Pairwise comparisons 

revealed significant differences between the weak and 

moderate (t = 7.310, p < .001), and weak and strong foils (t 

= 8.489, p < .001), but not between moderate and strong 

foils (t = 1.428, p > .3). 

 

Table 1: Descriptive statistics by condition and statistical 

tests assessing the main effects of condition.  

 

Foil 

association RT IT MD X-flips CoM 

Weak 1517 572 0.37 0.34 21.4% 

Moderate 1493 583 0.35 0.32 19.3% 

Strong 1513 567 0.45 0.41 27.8% 

p .883 .558 .042 .065 .011 

Note: RT = Response Time (msec); IT = Initiation Time 

(msec); MD = Maximum Deviation; CoM = Percentage of 

trials classed as changes of mind. 

 

Inspection of the mouse cursor data revealed two kinds of 

mouse trajectory: movements directly toward the taxonomic 

option, and initial movements toward the foil option that 

changed direction toward the taxonomic option mid-trial. 

Analysis of the distribution of the maximum deviation 

statistic (Figure 2) revealed two normally-distributed 

subpopulations of responses, one centered on a deviation 

close to 0 (measured in the standard co-ordinate system) that 

corresponded to movements directly toward the taxonomic 

option, and a second centered around 1.4. The bimodality of 

this distribution was confirmed by calculating its bimodality 

coefficient (Freeman & Dale, 2012), yielding a value of 

.636, well above the threshold of .555 usually interpreted as 

indicating bimodality. We therefore fitted a two-sample 

finite mixture model to these maximum deviation values, in 

order to classify trajectories as either “changes of mind” 

(maximum deviation > .827), or “direct to taxonomic 

option”. The two kinds of mouse trajectories are shown in 

Figure 3. 

Condition means and statistical tests for the measures 

described above are shown in table 1.  

 

 

 
Figure 2: Distribution of the maximum deviation from a 

straight line for all correct responses. 

 

Significant main effects were observed for maximum 

deviation (ΔAIC = -2.33, χ
2
(2) = 6.33, p = .042) and for 

changes of mind (ΔAIC = -5.0, χ
2
(2) = 9.012, p = .011), 

with a marginally significant main effect for x-flips (ΔAIC 

= -1.471, χ
2
(2) = 5.471, p = .065). Pairwise comparisons 

showed significant differences between weakly and strongly 

associated foils, with greater signs of conflict when strongly 

associated, for maximum deviation (t = 2.44, p = .038), and 

for changes of mind (t = 2.69, p = .023), and a marginal 

difference for x-flips (t = 2.23, p = .067). There was an 

additional significant difference between moderately and 

strongly associated foils for changes of mind only (t = 

2.673, p = .020), with more changes of mind for strongly 

associated foils. 

 

Discussion 

Bright and Feeney (2015) showed that both associative and 

structured knowledge can serve as the basis for inductive 

reasoning. Bright and Feeney (in prep.) provide evidence 
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that both kinds of knowledge can conflict during reasoning. 

Here, we found that participants generalized biological 

properties from a base species to a target species from the 

same taxonomic group, rather than to a foil species, on the 

majority of trials when the target was weakly associated 

with the foil. The stronger the association between the base 

and foil species, however, the more likely participants were 

to generalize the property to the foil instead. This was 

despite the base and foil species belonging to different 

taxonomic groups. Analysis of the mouse cursor trajectories 

revealed that many participants were initially drawn to 

strongly-associated foil responses, even when they 

ultimately selected the option that corresponded to 

structured knowledge. 

 
Figure 3: Direct and “change of mind” mouse trajectories. 

Averaged trajectories are shown in bold. 

 

Our findings provide evidence against theories of 

inductive reasoning that describe either an associative or 

structured knowledge account. Rather, our present findings 

suggest that both forms of knowledge are engaged during 

reasoning, and that both can influence a single decision. At 

the outset, we raised the question of how precisely the two 

forms of knowledge interact. Although our data do not 

provide a definitive answer, the patterns in the mouse 

trajectory data shown in Figure 3 suggest that the majority 

of trajectories went directly to the taxonomically related 

target without any evidence of conflict. To the extent that 

participants detect conflict between the choice options, such 

trajectories are consistent with pre-emptive conflict 

resolution (Evans, 2007). “Change of mind” responses, on 

the other hand, indicate online resolution of conflict. Further 

research will be required to determine (a) why conflict is 

sometimes resolved pre-emptively and sometimes online, 

and (b) whether, when conflict is resolved online, both types 

of knowledge are activated in parallel or in sequence. 

Bayesian models of inductive reasoning claim that people 

represent structured relations between categories when 

reasoning, appropriate to the domain in question. By placing 

these structured representations in conflict with associative 

knowledge, we have shown that in order to reason in a way 

consistent with a Bayesian account, it is sometimes 

necessary for people to inhibit the associative 

representations which come to mind more easily. This is 

consistent with Bright and Feeney's (2015) demonstration 

that reasoning is consistent with the structured Bayesian 

model when people have adequate time and mental 

resources, but is driven by simpler associative knowledge 

otherwise.  

Our results may be challenged by theorists who favor 

purely associative models of induction (Rogers & 

McClelland, 2004; Sloman, 1993; Sloutsky & Fisher, 2008). 

Neural network models have been shown to capture some 

context sensitivity effects by means of input nodes encoding 

contextual features (Sloutsky & Fisher, 2008). However, the 

“change of mind” movements which characterized our 

mouse trajectory data are difficult to explain within this 

framework. Simple feedforward neural networks of the type 

used in models of induction are static, in that they are 

probed once, and produce a single output pattern, providing 

no mechanism for reversals during a trial. More complex 

recurrent networks, on the other hand, with input and output 

changing over time, can capture the evolution of choices. 

However, extensive mouse-tracking research has 

demonstrated that conflict in such networks is continuous, 

with participants partially drawn toward two competing 

responses, selecting one response but curving toward the 

alternative (i.e. Freeman & Ambady, 2011; Freeman et al., 

2008; Spivey et al., 2005). Discrete reversals have been 

demonstrated on tasks thought to involve the sequential 

operation of two processes (Barca & Pezzulo, 2015; Dale & 

Duran, 2011; Freeman, 2013; Freeman & Dale, 2012; Hindy 

& Spivey, 2008; Tomlinson, Bailey, & Bott, 2013), 

suggesting that our results reflect the initial activation of 

associative knowledge and the subsequent retrieval of 

structured knowledge. 

To conclude, we believe that neither associative nor 

structured models alone are capable of describing the 

processes underlying human inductive reasoning. Instead, 

people draw upon two forms of knowledge representation, 

one associative, and easily accessed, and one structured, and 

requiring mental effort to utilize. Making use of structured 

knowledge appears to require the inhibition of associative 

information, and as a result, participants were more likely to 

select a foil response if it was strongly associated with the 

base. Uniquely, our mouse trajectory results reflect the 

online inhibition of association-driven responses, necessary 

to reason according to structured knowledge. 
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