
A Goal-Question-Metrics Model for
Configuration Knowledge Bases

Florian Reinfrank, Gerald Ninaus, Bernhard Peischl, Franz Wotawa
Institute for Software Technology

Graz University of Technology
Inffeldgasse 16b/II, 8010 Graz, Austria

{firstname.lastname}@ist.tugraz.at

Abstract. Configuration knowledge bases are a well-
established technology for describing configurable products
like cars, computers, and financial services. Such knowledge
bases are characterized by sets of constraints, variables, and
domains. Lot of research has been done for testing knowledge
bases, finding conflicts, and recommending repair actions.

In contrast, less work has been done in the area of measur-
ing the quality of configuration knowledge bases. Such qual-
ity measurements can help knowledge engineers to improve
the maintainability, understandability, and functionality of
knowledge bases. Based on a literature review we first give an
overview of the state-of-the-art in knowledge base metrics. We
will extend the current research by using the goal-question-
metrics (GQM) approach of the software engineering disci-
pline to find gaps for the characterization of knowledge bases.
We will also identify further metrics to complete the model.
The results of this paper help knowledge engineers to reduce
the effort to develop and maintain configuration knowledge
bases.

1 Introduction

Products like cars, computers, and software product lines
can be customized according to consumers’ preferences. For
supporting users to get valid configurations and to support the
manufacturing department in companies to get an overview
of their production lines, models of their products are neces-
sary [29]. Knowledge bases describe a part of the real world
(e.g., the set of valid product configurations for bikes). The
implementation of a knowledge base is typically done coop-
eratively between domain experts and knowledge engineers
[5, 42]. Configuration knowledge bases can be represented,
for example, as constraint satisfaction problems (CSP [39]).

Configuration knowledge bases (CKB) represent the com-
plete set of valid product configurations. Adding, changing,
and removing constraints of such knowledge bases is neces-
sary, because the set of valid product configurations changes
over time. Humans in general and knowledge engineers in par-
ticular tend to keep efforts related to knowledge acquisition
and maintenance as low as possible. Due to cognitive limita-
tions [11, 21, 37] anomalies such as inconsistencies, redundan-
cies, and well-formedness violations are in CKBs. The CKB
maintenance task gets even more complicated, if a couple of

knowledge engineers has to develop and maintain the knowl-
edge base.

In this paper we describe how to measure the quality of
configuration knowledge bases.1 Therefore, we use the goal
question metric approach (GQM). The first step in the GQM
approach is to define possible goals for the knowledge base,
like understandability, maintainability, and functionality. The
achievement of the goals will be measured by answers for a set
of questions. These answers will be aggregated and weighted.
After the aggregation and the weightings of answers, the qual-
ity of the current version of the configuration knowledge base
can be measured in terms of fulfilling the goals. Third, ques-
tions will be answered by sets of metrics. In this paper we
define goals, questions, and metrics and show, how we can
measure them. These results will help knowledge engineers in
focusing on relevant aspects of the configuration knowledge
base to improve the management of a configuration knowl-
edge base, e.g., the efforts for maintainability, understand-
ability, and functionality of a knowledge base.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces a working example for this work, anomalies
and their definitions. Section 3 gives an overview of the state
of the art for goals, questions, and metrics for configuration
knowledge bases and other research areas. In Section 4 we
discuss the GQM model and compare it with the results of
other research areas. Finally, Section 5 summarizes this paper
and gives an overview of further research in this area.

2 Configuration Knowledge Base

A configuration knowledge base can be defined as a
triple (V,D,C) with a set of variables V where each vari-
able v ∈ V has a domain dom(v) ∈ D. For example, a
bike configuration knowledge base could contain the variables
V = {Reflector, Pedal, Framecolor} where each variable has
a domain D = {dom(Reflector) = {yes, no}, dom(Pedal)
= {Standard, Clip}, dom(Framecolor) = {Green, Red}}.
The assignments to a variable (e.g., Pedal = Clip) are de-
fined as constraints c ∈ C [39]. While such assignments

1 Please consider, that the approach presented in this paper can
also be used in other models like knowledge-based recommenda-
tion [9] and feature models [4].

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

123

are defined by users, other constraints are defined by do-
main experts and are restricting the number of valid com-
binations of variable assignments. For example, a constraint
ci = ¬(Pedal = Standard ∧ Framecolor = Red) does not
allow a consistent configuration with Pedal = Standard and
Framecolor = Red. We call user assignments customer re-
quirements c ∈ CR and constraints which are describing the
relationship between customer requirements and product vari-
ables knowledge constraints c ∈ CKB . The sets CR and CKB

describe C, such that CR ∪ CKB = C [18]. Customers try
to find a valid configuration for the configuration knowledge
base which means, that they assign values to variables {CR}
and the set of assignments is not in conflict with CKB (see
Definitions 1 and 2).

Definition1: A consistent configuration is defined as a
set of customer constraints CR. This set of constraints is not
in conflict with CKB , such that, there exists one possibility to
assign a value to each variable, formally defined as CKB ∪CR

is consistent.
Definition2: A configuration is a consistent complete

configuration, iff the knowledge base is a consistent configu-
ration (see Definition 1) and each variable has an assignment,
such that @vi∈V vi = ∅.

Figure 1 gives an example about a configuration knowledge
base for a bike domain. The graphic is based on the notation
of feature models [6] where each variable is represented as a
feature and each feature has the same domain (dom(vi) =
{true, false}). The notation of constraints of feature models
is described in Figure 1.

The following configuration knowledge base (CKB) reflects
a constraint-based (CSP-based [39]) representation of the
configuration model depicted in Figure 1. Each of the
constraints in Figure 1 is part of the set CKB .

V = {
Bike,Reflector, Pedal, Framecolor,Green,Red
Standard, Clip

}
D = {

dom(Bike) = dom(Reflector) =
dom(Pedal) = dom(Framecolor) =
dom(Green) = dom(Red) = dom(Standard) =
dom(Clip) = {true, false}

}
CKB = {

c0 : Bike = true;
c1 : Bike = true↔ Reflector = true;
c2 : Bike = true↔ Pedal = true;
c3 : Bike = true↔ Framecolor = true;
c4 : Reflector = true→ Pedal = true;
c5 : ¬(Pedal = true ∧ Framecolor = true);
c6 : Framecolor = true↔ (Green = true∨

Red = true);
c7 : (Standard = true↔ (Clip = false∧

Pedal = true)) ∧ (Clip = true↔ (Standard
= false ∧ Pedal = true));

}

In this example there are different types of anomalies.
Anomalies are patterns in data that do not conform to a well
defined notion of normal behavior [10]. Anomalies can be con-

flicts, redundancies and forms of well-formedness violations.
For a detailed description of anomalies we refer the reader to
[14, 16, 20, 28].

In our example, we can see that the set of constraints
{c0, c2, c3, c5} is in conflict because there does not exist a valid
assignment for these constraints such that all constraints are
fulfilled. We call such scenarios conflicts [23] and they are
defined in the Definitions 3 and 4.

Definition 3: a conflict is given, iff there exists a set of
constraints CS which can not result in a valid configuration
(see Definitions 1 and 2), such that CS ⊆ C is inconsistent.

Definition 4: a minimal conflict is given, if the constraint
set CS leads to a conflict (see Definition 3), and there does
not exist a subset of CS with the same property of being a
conflict, such that, @CS′ ⊂ CS is inconsistent.

The example of this paper contains one minimal conflict:
CS1 = {c0, c2, c3, c5} because this constraint set leads to no
valid configuration of the configuration knowledge base and
it is not possible to remove a constraint from CS1 without
loosing the property of beeing a minimal conflict (see Defini-
tions 3 and 4). A minimal conflict can be calculated with the
QUICKXPLAIN algorithm [23]. If our model has more than
one conflict and we want to have all minimal conflicts we
need to calculate an acyclic graph (HSDAG) which is defined
in [35].

Solutions for such conflicts are called diagnoses [35, 17]. By
removing a set of constraints ∆ from the configuration knowl-
edge base, we receive at least one valid assignment for each
variable of a configuration knowledge base, formally described
in the Definitions 5 and 6.

Definition 5: A set of constraints ∆ is called diagnosis,
iff the removal of ∆ from the knowledge base C leads to a
valid configuration (see Definition 1 and 2), such that C \∆
is consistent.

Definition 6: A set of constraints ∆ is called minimal di-
agnosis, iff it is a diagnoses (see Definition 5) and it is not
possible to remove a constraint from ∆ without loosing the
property of being a diagnoses, such that C \∆′ ⊂ ∆ is con-
sistent.

In our example the constraint sets ∆1 = {c0}, ∆2 = {c2},
∆3 = {c3} and ∆4 = {c5} are minimal diagnosis because re-
moving one of these constraint sets would lead to a consistent
configuration knowledge base.

While conflicts and diagnosis are well discussed, little at-
tention has been done to redundancies in configuration knowl-
edge bases. Piette [28] and Felfernig et al. [20] focused on the
problem of redundant constraint sets in knowledge bases and
defined the term redundancy (see Definition 7).

Definition 7: A set of constraints R is redundant, if the
removal of R leads to the same semantics of C, such that,
C \R |= R.

In our example, we have two different sets of redundant
constraints: R1 = {c2} and R2 = {c4}. A redundancy does
not have an impact on the semantics of a knowledge base
but probably leads to a higher effort for maintenance tasks of
knowledge bases and decreases the performance of the config-
uration knowledge base. We can calculate such sets with the
SEQUENTIAL [28] or CoreDiag [20] algorithm. Both algo-
rithms use the negation of C (C = ¬c0 ∨ ¬c1 ∨ ... ∨ ¬cn}) for
calculating redundant constraints. For checking the semantics
of C \R the algorithms check, if C \R∪C is inconsistent. An

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

124

Figure 1. Feature Model of the bike configuration example.

inconsistency means, that the set R is redundant. For get-
ting all different sets of redundant constraints we can also use
HSDAG [35].

The third type of anomalies are well-formedness viola-
tions. Such violations do not have an impact on the consis-
tency of a knowledge base (see Definitions 1 and 2). While
well-formedness is well discussed in the research area of fea-
ture models (see e.g., [6]), less research has focused on well-
formedness violations in configuration knowledge bases. How
we use well-formedness violations for calculating metrics for
configuration knowledge bases will be described in the next
Section.

Anomalies and other aspects of a configuration knowledge
base have impacts on the maintainability, understandability,
and functionality of the knowledge base. In the following, we
give an overview of goals, questions, and metrics for config-
uration knowledge bases which helps knowledge engineers to
get an understanding of the quality of the knowledge base.

While conflicts, diagnoses, and redundancies focus on con-
straints, well-formedness violations identify anomalies based
on variables and domain elements. We now introduce well-
formedness violations in configuration knowledge bases.

The first well-formedness violation focuses on dead domain
elements. A dead domain element is an element which can
never be assigned to its variable in a consistent instance (see
Definition 1). Definition 8 introduces a formal description of
dead elements.

Definition 8:: A domain element val1 ∈ dom(vi) is dead iff
it is never part of a consistent instance, s.t. CKB∪{vi = val1; }
is inconsistent.

On the other hand, we can have domain elements which
have to be assigned to each consistent instance. We denote
such domain elements full mandatory (see Definition 9).

Definition 9:: A domain element val1 ∈ dom(vi) is full
mandatory, iff there is no consistent (complete or incom-
plete) instance where the variable vi does not have the as-
signment val1, s.t. CKB ∪ {vi 6= val1} is inconsistent.

The configuration knowledge base can never be consistent,
if Bike = false or Reflector = false or Pedal = false.
For that domain elements, we can say that these domain ele-
ments are full mandatory and the other domain element false
is a dead domain element. Note that all domain elements of a
domain are false optional if one domain element is full manda-
tory.

Another well-formedness violation is called unnecessary re-
finement. Such an unnecessary refinement consists of two vari-
ables. If the first variable has an assignment, it is possible to
predict the assignment of the other variable. A formal defini-
tion is given in Definition 10.

Definition 10 (Unnecessary refinement): A configura-
tion knowledge base contains a variable pair vi, vj . For each
domain element val1 of variable vi, we can say that vari-
able vj always has the same assignment vj = val2, s.t.
∀val1∈dom(vi)∃val2∈dom(vj)vi = val1 ∧ vj 6= val2 is inconsis-
tent.

In our example the variable pair Bike and Reflector
is unnecessary refined because whenever Bike = true
the Reflector = true, and Bike = false respectively
Reflector = false leads to an inconsistency. If such a vio-
lation occurs, we can recommend the knowledge engineer to
remove the variable Reflector and rename the variable Bike
with BikeWithReflectors.

3 A GQM model for Configuration
Knowledge Bases

For the overview of the metrics for configuration knowl-
edge bases we use the GQM method. For each goal we use a
set of questions to define the achievement of each goal. It is
also necessary that the goals, questions, and metrics can be
calculated automatically, and with explanations [2, 36].

In this section we first give an overview of the possible
goals for configuration knowledge bases. Thereafter we give an
overview of the questions in (configuration) knowledge bases.
Finally we operationalize the questions by listing metrics for
configuration knowledge bases.

3.1 Goals for Configuration Knowledge
Bases

Nabil et al. [27] define five basic goals for knowledge bases.
Reusability means, that the knowledge base can be reused in
another application area. The flexibility defines the possibility
to change the semantics of the configuration knowledge base.
Understandability defines the possibility that knowledge en-
gineers have correct assumptions. Functionality describes the
applicability of the knowledge base. For example, if the model
does not describe the real product assortment, the knowledge

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

125

base has no functionality. Extendability describes the possibil-
ity to extend the knowledge base. In our example (see Figure
1) we can extend the model by adding the bike type (V ′ = V ∪
{Type,MountainBike, CityBike};D′ = D ∪ {dom(Type) =
dom(MountainBike) = dom(CityBike) = {true, false}};).

Lethbridge [25] identifies three goals for knowledge bases.
First, it is necessary that knowledge engineers can monitor
their work. Therefore it is necessary to offer baselines for
its continous improvement. Another aspect is the support for
knowledge engineers when they maintain a knowledge base.
Finally, Lethbridge also focuses on the understandability of
knowledge bases.

From the perspective of software product lines there are
three goals: the analyzability focuses on the capability of a sys-
tem to be diagnosed for anomalies. Changeability is the pos-
sibility and ease of change in a model when modifications are
necessary. Understandability also means the likelihood that
knowledge engineers and designers understand the knowledge
base [2].

To sum up, we define the following goals for configuration
knowledge bases:

• A configuration knowledge base must be maintainable,
such that it is easy to change the semantics of the knowl-
edge base in a desired manner [2, 27].

• A configuration knowledge base must be understandable,
such that the effort for a maintainability task for a knowl-
edge engineer can be evaluated [2, 25, 27].

• A configuration knowledge base must be functional, such
that it represents a part of the real world (e.g. a bike con-
figuration knowledge base) [27].

3.2 Questions for Configuration Knowledge
Bases

After defining the goals for configuration knowledge bases
we describe the questions relating to one or more goals. The
concordance with the application will be defined by the com-
pleteness. It suggests the applicability of the current state of
the knowledge base for representing the application area. For
instance, in our example (see Figure 1) a Bike can have a
green and a red frame color. If it is possible to combine those
colors, the coverage is high. If a frame can only have either a
red or a green frame color, the model does not represent the
application area and the coverage will be low.

Q1: Is the configuration knowledge base complete?

Anomalies are a well researched area in the context of con-
figuration knowledge bases [30]. The term ’anomalies’ is used
synonymously for errors and subsumes the terms inconsis-
tencies, redundancies, and well-formedness violations. Errors
can have an impact on each of the goals, since it has negative
impacts on the reusability, maintainability, and understand-
ability. It can also have a negative impact on the functionality,
if there exists an inconsistency in the knowledge base.

Q2: Does the configuration knowledge base contain anoma-
lies?

The performance describes the time which is required to
calculate characteristics of a knowledge base. These charac-
teristics are e.g., error checking, calculating consistent con-

figurations, and generating user recommendations. This per-
formance mainly influences the functionality of a system (la-
tency) and the reusability.

Q3: Does the configuration knowledge base have an admis-
sible performance?

If it is necessary to develop and maintain the knowledge
base a high modifiability will help to reduce the effort for the
update operation. The modifiability has a positive impact on
the reusability and maintainability of a knowledge base. For
example, when updating redundant constraints in a knowl-
edge base (e.g. constraint c2 in the example in Section 2) it’s
probably necessary to update the redundant constraints (c4)
too. This may lead to a low functionality because the knowl-
edge base doesn’t have the correct behavior.

Q4: Is the configuration knowledge base modifiable?

The development effort describes the effort when updat-
ing a configuration knowledge base. This effort contains the
time for the update operation. This includes the update of
the semantics of the knowledge base and the time, which is
required to remove all new errors. This effort has an impact on
the maintainability and reusability of a knowledge base and is
mainly influenced by the understandability of a configuration
knowledge base.

Q5: Is the configuration knowledge base understandable?

Not each goal has a relationship with each question. In
Table 1 we give an overview of the relationship between goals
and questions:

Question / Goal MT US FT

Q1 (completeness) +
Q2 (anomalies) - - -
Q3 (performance) +
Q4 (modifiability) +
Q5 (understandability) +

Table 1. Relations between goals and metrics (MT = maintain-

ability, US = usability, FT = functionality)

3.3 Metrics for Configuration Knowledge
Bases

The metrics are based on a literature review focusing on
knowledge engineering [3, 5, 7, 16, 25, 26, 27, 30, 31, 32, 40]
as well as on software product line engineering [2, 6, 22, 24].
The assumptions in this section are based on the literature of
configuration knowledge bases and other research areas like
feature models and software product lines, software engineer-
ing, and rule-based knowledge bases.

After having defined the questions for configuration knowl-
edge bases, the next task is to quantify the metrics. There-
fore, we describe possible metrics for configuration knowledge
bases. Most of the metrics require a consistent CKB. The
metrics are based on literature study in configuration, feature
model and software engineering research areas.

The next list shows some metrics derived from MOOSE and
function point analysis [2, 12, 25, 36]:

• Number of variables |V |: In the example (see Figure 1)
|V | = 8.

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

126

• Average domain size: domsize =
∑

vi∈V |dom(vi)|
|V | = 2

• Number of constraints: |C| = 8

The number of minimal conflicts |CS| is the first
anomaly metric [23]. In our example (see Section 2), we have
1 minimal conflict, such that |CS| = 1. We can also evaluate
the smallest number of constraints in a conflict set. The low-
est number of constraints in a conflict set CS is the minimal
cardinality of conflict sets MCCS and can be defined as
@CSj : |CSj | < |CSi|. The example in Section 2 has a mini-
mal cardinality MCCS = 4.

We can also evaluate diagnoses for knowledge bases. For
example, with the FastDiag algorithm [17, 19] we can cal-
culate the number of diagnoses |∆| and the number of
constraints in a minimal cardinality diagnosis MC∆.
A minimal cardinality diagnosis ∆i is a minimal diagnosis
which has the property of having the smallest number of con-
straints in the diagnosis, such that, @∆j : |∆j | < |∆i|. The
example described in Section 2, contains 4 minimal diagnoses
(∆1 = {c0},∆2 = {c3},∆3 = {c5},∆4 = {c1, c2}, |∆| = 4)
and a minimal cardinality diagnosis of 1 (MC∆ = 1).

The number of redundant constraints can also be used as
a measure for knowledge bases [20, 28, 30, 31] if the config-
uration knowledge base is consistent.2 The number of sets of
redundant constraints is denoted as |R| and the maxi-
mum cardinality of a redundancy set Ri is 1. We cal-
culate the maximum cardinality for Ri by checking, if there
exists another set Rj which has a bigger cardinality, such
that Ri has the property of having the maximum cardinality,
iff @Rj |Rj | < |Ri|. The example in Section 2 contains one
set with redundant constraints (R1 = {c4}, |R| = 1) and the
maximum cardinality of these sets is 1 (MCR = |1|).

A domain element domi ∈ dom(vj) is a dead domain
element, iff there does not exist a valid configuration, such
that, C ∪ {vj = domi; } 6= ∅ [5, 6]. When assuming that
C′ = C ∪ {c8 : Standard = true; } it is not possible, that
Clip is also true, such that, C′ ∪ {c9 : Pedal = true} = ∅,
such that, DE = 1. We use the sum of all dead elements as a
metric 0 < DE < 1 by using Equation 1 where a value nearer
0 means that there are no or less dead elements and a value
nearer to 1 means that a high number of domain elements
in the knowledge base can not be selected in a consistent
configuration knowledge base.

DE =

∑
vi∈V

∑
dj∈dom(vi)

{
0 C ∪ {vi = dj} 6= ∅
1 else

|V | × domsize
(1)

A domain element domi ∈ dom(vj) becomes dead if another
domain element domk ∈ dom(vl), vj 6= vl is selected (Condi-
tionally dead domain elements CD [6]). In the example (see
Section 2) the constraint c7 does not allow the configuration
Standard = true ∧ Clip = true.

On the other hand, a domain element can be full manda-
tory (FM). Full mandatory means, that there does not exist
a consistent instance of the knowledge base where this domain
element isn’t selected, formaly described as:

2 To receive a consistent configuration knowledge base we remove
the constraint c5 from the set C.

FM =

∑
vi∈V

∑
dj∈dom(vi)

{
0 C ∪ {vi 6= dj} = ∅
1 else

|V | × domsize
(2)

Since each domain in our example knowledge base has two
values (true, false) we can say, that whenever a domain ele-
ment is dead, the other value becomes full mandatory auto-
matically. When domains have more than two values, it can
be the case, that a domain element is dead but there is no
other domain value with the property of being a full manda-
tory domain element.

The third well-formedness violation is called unnecessary
refinement (UR). Such a violation occurs when there are
two variables and the domain element of the first variable in
a valid configuration can be suggested by the assignment of a
second variable. An unnecessary refinement can be described
as dom(vi)→ dom(vj).

In the example in Section 2 we can say that the vari-
ables Standard and Clip are an unnecessary refinement,
because whenever Standard = true Clip = false and
Standard = false Clip = true. In that case, we can recom-
mend, that the domain of the variable Pedal can be replaced
by Standard, Clip and the variables Standard and Clip can
be removed from the knowledge base without changing the
semantics of the knowledge base.

The restriction rate RR compares the number of con-
straints with the number of variables. In the example de-
scribed in Section 2 the restriction rate RR = |C|

|V | = 8
8

= 1.
A value greater than 1 means that there is a high restriction
[2, 25].

The metric RR is influenced by the design of the knowledge
base. For example, while one knowledge engineer requires a
single constraint for subsuming the constraints c0∧c1∧c2∧c3
another knowledge engineer is using four single constraints. To
consider these different design approaches in the metric, the
restriction rate RR2 is considering the number of variables

in a constraint, such that, RR2 =

∑
ci∈C

#vars(ci)
#vars(C)

|C|
|V | where

#vars(ci) is the number of variables in ci.
Another metric from the domain of software engineering

is the variable inheritance factor V IF [1]. Adapted for
configuration knowledge bases, we define V IF as the num-
ber of constraints in which a variable vi appears related
to the number of constraints, e.g., V IF (Framecolor) =

∑
ci∈C

1 vframecolor ∈ ci

0 else
|C| = 0.375 because the variable

framecolor appears in three constraints and |C| = 8.
To receive a CKB metric we calculate the V IFall for all

variables. When calculating the arithmetic mean of the V IFall

of all variables, we can evaluate the importance distribution of
all variables. A value near to 0 means, that all variables have
the same importance and should be considered in the same
way. On the other hand, a high value means that there are
some important and less important variables in the knowledge
base. In such cases, it makes sense to focus on the important
variables when maintaining the knowledge base. V IFall =

∑
vi∈V

√
(V IF (vi)−

∑
vj∈V V IF (vj)

|V |)2

|V |
Finally, we evaluate the metric coverage. The coverage

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

127

measures the number of all consistent complete configura-
tions (see Section 2) compared to the maximum number of
complete configurations in a knowledge base. In our exam-
ple in Section 2 the maximum number of configurations is∏|V |

i=0 |dom(vi)| = 256 (8 variables and each variable has a
domain size 2). This will be compared with the number of
consistent configurations. In our example we have the follow-
ing consistent configurations:
{
Bike = true∧
Reflector = true∧
Pedal = true∧
Framecolor = true∧
(Standard = false ∧ Clip = true ∧Green = true∧
Red = false)∨

(Standard = false ∧ Clip = true ∧Green = false∧
Red = true)∨

(Standard = false ∧ Clip = true ∧Green = true∧
Red = true)∨

(Standard = true ∧ Clip = false ∧Green = true∧
Red = false)∨

(Standard = true ∧ Clip = false ∧Green = false∧
Red = true)∨

(Standard = true ∧ Clip = false ∧Green = true∧
Red = true)

}
Now we can compare the number of consistent configura-

tions (= 6) with the number of all configurations (= 256).
This leads to a coverage of 6/256 ∗ 100 = 2.34375% which is
very low and the example configuration knowledge base is very
restrictive. For the example knowledge base it is quite easy
to evaluate all possible combinations of variables and domain
elements. For knowledge bases with more variables, domain
elements, and constraints we have millions and more possi-
ble combinations of variable assignments. For such scenarios
we introduced the simulation technique in the context of
knowledge based systems to approximate the coverage. For a
detailed description to approximate this metric in large con-
figuration knowledge bases we refer the reader to [33].

Finally, we can refer the questions to the metrics. Table 2
gives an overview of the relationships between the questions
and the metrics.

Q1 Q2 Q3 Q4 Q5

|V | + -
domsize + -
|C| + -
|CS| - - -
|∆| - - -
MCCS +
MC∆ +
|R| - - -
MCR +
DE - - - -
FM - - - -
UR - - - -
RR - -
RR2 - -
V IFall - -
Coverage - -

Table 2. Relations between metrics (rows) and questions

(columns). A ’-’ means, that the metric has a negative impact on

the question, ’+’ represents a positive impact.

For a detailed description of the calculation of metrics
focusing on anomalies (conflicts, redundancies, and well-
formedness violations) and the coverage metric we refer the
reader to [33].

4 Discussion

In this Section we want to discuss relevant aspects of sev-
eral metrics and give an insight in the implementation of the
goal-question-metrics in the iCone interface.

Most of the research in the area of configuration knowl-
edge engineering focuses on the area of verifying configura-
tion knowledge bases (functionality goal, see Section 3) and
ignores the question how to validate the knowledge base [30]
(maintainabilty and understandabilty). Felfernig et al.
[15] present an empirical study about the understandability
of constraints in knowledge bases but there does not exist a
metric for the understandability of constraints and the knowl-
edge base.

Briand et al. [8] measured the effects of the structural com-
plexity of software and its relationship to the maintainabil-
ity of software. Bagheri and Gasevic [2] transferred this model
into the area of feature models and found out, that the num-
ber of leaf features, the cyclomatic complexity, the flexibility
of configuration, and the number of valid configurations in-
fluence the maintainability of feature models. While the sim-
ple metrics are easy to transfer into configuration knowledge
bases, the depth of a tree or the number of valid configurations
can not be calculated.

The number of redundant constraints is an important
metric since a low number of redundant constraints can im-
prove the maintenance task, simplify the understandability,
and reduce the time for calculating valid configurations. An
important issue in that case is, that redundant constraints can
also improve the understandability of a configuration knowl-
edge base. If a redundant constraint is declared as a desired
redundant constraint, the metric should not contain such con-
straints, but should list it as a desired redundancy.

In a simple configuration knowledge base like the example
in Section 2 it is easy to calculate the consistency of each
possible configuration for the coverage metric. For example,
in a configuration knowledge base with a medium number of
variables (e.g. 10) and average domain size (e.g. 5) we have
approximately 10M possible configurations. Since it is not
possible to calculate so many possible configurations in real-
time, we developed a simulation strategy to approximate the
number of consistent configurations. For a detailed description
of the simulation strategy, we refer the reader to [34].

While showing the GQM to knowledge engineers can help
understand and maintain the configuration knowledge base,
it is also important to interpret the results. Therefore we im-
plemented a history for each metric in our iCone-interface3.
When updates in a configuration knowledge base in the iCone-
system are saved, a new version of the knowledge base will be
created and metrics will be actualized. In Figure 2 we can see
the changes of the value of the DEAD elements metric.

3 iCone is an ’intelligent environment for the devel-
opment and maintenance of configuration knowledge
bases’ (http://ase-projects-studies.ist.tugraz.at:
8080/iCone/index.jsp).

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

128

http://ase-projects-studies.ist.tugraz.at:8080/iCone/index.jsp
http://ase-projects-studies.ist.tugraz.at:8080/iCone/index.jsp

Figure 2. Visualization of changes for the metric DEAD. The

y-axis shows the number of DEAD variables in each version of the

configuration knowledge base (x-axis).

Felfernig [13] gives an overview of the usage of function
point analysis for configuration knowledge bases. Therefore
he analyzed the input of a configuration knowledge base from
customers and the complexity of a configuration knowledge
base. They use the customer requirements as external input
(EI), the data, which are required by the user as external
query (EQ), the consistent domain elements of variables as
external output (EO), knowledge elements as internal logical
files (ILF), and external information like the product assort-
ment from an ERP-system as external interface file (EIF).
While this approach takes input and output into account, it
does not evaluate the quality (e.g., the number of dead domain
elements) of the input and output.

We have implemented the GQM and the FPA approach in
our iCone implementation [41]. Table 3 gives an overview of
the performance. Note, that the time contains the calcula-
tion / approximation of the metrics and the calculation of all
anomalies. The notebook domain is calculated six times and
the mobile phone domain is calculated seven times.

Notebooks Mobile phones

Product variants 115.00 13,999.00
Product variables 28.00 34.00
product variable domain sizes 1.00 - 45.00 2.00 - 47.00
Customer variables 4.00 5.00
avg. customer variable dom. size 3.75 4.00
constraints 12.00 8.00

min. calc. time 669 msec. 6,811 msec.
max. calc. time 1,715 msec. 18,643 msec.
median calc. time 1,213 msec. 10,842 msec.
mean calc. time 1,252 msec. 11,307 msec.

Table 3. Duration for the calculation of all anomalies (conflicts,

diagnoses, redundancies, well-formedness violations), metrics, goal-

question-metrics and function-point-analysis for two configuration

knowledge bases (notebooks and mobile phones)

In this paper we gave an overview of metrics in configu-
ration knowledge bases, focusing on knowledge base engi-
neering processes [38] is out of scope of this paper. We can

measure the metrics of an existing configuration knowledge
base, but we can not identify the causes of bad configuration
knowledge base engineering. To give recommendations for op-
timizing the knowledge base engineering process, we have to
observe the whole process.

5 Conclusion

This paper introduces a goal-question-metric approach to
evaluate configuration knowledge bases. We gave an overview
of configuration knowledge bases and introduced a running ex-
ample for this paper and defined goals, questions, and metrics
for configuration knowledge bases. Furthermore, we showed
how to calculate time-consuming metrics efficiently and pre-
sented the iCone-visualization of metrics. It also points out
some practical issues when dealing with metrics.

Future research should evaluate the relations between goals,
questions, and metrics. Our future work will contain empiri-
cal evaluations about the correlation between the goals, ques-
tions, and metrics and their weightings in the aggregation
process from metrics to questions and from questions to goals.

Future work should take a look at the knowledge engineer-
ing process. When calculating metrics for knowledge engi-
neers, we can list some possible improvements. Preece gives
an overview about verification and validation techniques for
knowledge bases [30]. He aligns different V&V techniques to
different models of a knowledge base, e.g., conceptual and de-
sign models and an implemented system. The metrics listed
in Section 3 only focus on the implemented system. A GQM
for the conceptual and design model does not exist.

Another relevant fact is the volatility of requirements [36].
If the requirements for the configuration knowledge base are
changing frequently, it is also hard to keep the CKB up to
date. For calculating metrics referring to the quality of a CKB
and its requirements, it is necessary to integrate a require-
ments management system in the CKB maintenance tool or
offer an interface for both tools.

Acknowledgements

The work presented in this paper has been conducted within
the scope of the research project ICONE (Intelligent Assis-
tance for Configuration Knowledge Base Development and
Maintenance) funded by the Austrian Research Promotion
Agency (827587).

REFERENCES

[1] F. B. Abreu and W. Melo. Evaluating the impact of object-
oriented design on software quality. Proceedings of the 3rd in-
ternational software metrics symposium, pages 90 – 99, 1996.

[2] Ebrahim Bagheri and Dragan Gasevic. Assessing the main-
tainability of software product line feature models using struc-
tural metrics. Software Quality Journal, 19(3):579–612, 2011.

[3] Valerie Barr. Applications of rule-base coverage measures to
expert system evaluation. AAAI, 1997.

[4] Don Batory, David Benavides, and Antonio Ruiz-Cortes. Au-
tomated analysis of feature models: challenges ahead. Com-
mun. ACM, 49:45–47, December 2006.

[5] Joachim Baumeister, Frank Puppe, and Dietmar Seipel.
Refactoring methods for knowledge bases. In Engineer-
ing Knowledge in the age of the Semantic Web: 14th in-
ternational conference, EKAW, LNAI 3257, pages 157–171.
Springer, 2004.

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

129

[6] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés.
Automated analysis of feature models 20 years later: A lit-
erature review. Information Systems, 35:615–636, September
2010.

[7] Jim Blythe, Jihie Kim, Surya Ramachandran, and Yolanda
Gil. An integrated environment for knowledge acquisition.
IUI, pages 14 – 17, 2001.

[8] L.C. Briand, J. Wust, S.V. Ikonomovski, and H. Lounis. In-
vestigating quality factors in object-oriented designs: an in-
dustrial case study. In Software Engineering, 1999. Proceed-
ings of the 1999 International Conference on, pages 345–354,
1999.

[9] Robin Burke. Knowledge-based recommender systems. In
Encyclopedia of library and information systems, page 2000.
Marcel Dekker, 2000.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM Comput. Surv., 41:15:1–
15:58, July 2009.

[11] Yu-Chen Chen, Rong-An Shang, and Chen-Yu Kao. The ef-
fects of information overload on consumers’ subjective state
towards buying decision in the internet shopping environ-
ment. Electronic Commerce Research and Applications, 8:48
– 58, 2009.

[12] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions on Software En-
gineering, 20(6):476 – 493, 1994.

[13] Alexander Felfernig. Effort estimation for knowledge-based
configuration systems. In Frank Maurer and Günther Ruhe,
editors, SEKE, pages 148–154, 2004.

[14] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha
Tiihonen, editors. Knowledge-based configuration. From re-
search to business cases, volume 1. Morgan Kaufmann, 2014.

[15] Alexander Felfernig, Monika Mandl, Anton Pum, and Monika
Schubert. Empirical knowledge engineering: Cognitive as-
pects in the development of constraint-based recommenders.
In Nicols Garca-Pedrajas, Francisco Herrera, Colin Fyfe, Jos
Bentez, and Moonis Ali, editors, Trends in Applied Intelligent
Systems, volume 6096 of Lecture Notes in Computer Science,
pages 631–640. Springer Berlin / Heidelberg, 2010.

[16] Alexander Felfernig, Florian Reinfrank, and Gerald Ninaus.
Resolving anomalies in configuration knowledge bases. IS-
MIS, 1(1):1 – 10, 2012.

[17] Alexander Felfernig and Monika Schubert. Personalized
diagnoses for inconsistent user requirements. AI EDAM,
25(2):175–183, 2011.

[18] Alexander Felfernig, Monika Schubert, and Stefan Reiterer.
Personalized diagnosis for over-constrained problems. IJCAI,
pages 1990 – 1996, 2013.

[19] Alexander Felfernig, Monika Schubert, and Christoph Zehent-
ner. An efficient diagnosis algorithm for inconsistent con-
straint sets. AI EDAM, 26(1):53–62, 2012.

[20] Alexander Felfernig, Christoph Zehentner, and Paul Blazek.
Corediag: Eliminating redundancy in constraint sets. In Mar-
tin Sachenbacher, Oskar Dressler, and Michael Hofbaur, ed-
itors, DX 2011. 22nd International Workshop on Principles
of Diagnosis, pages 219 – 224, Murnau, GER, 2010.

[21] Yoav Ganzach and Yaacov Schul. The influence of quantity of
information and goal framing on decision. Acta Psychologica,
89:23 – 36, 1995.

[22] Herman Hartmann and Tim Trew. Using feature diagrams
with context variability to model multiple product lines for
software supply chains. In Proceedings of the 2008 12th In-
ternational Software Product Line Conference, pages 12–21,
Washington, DC, USA, 2008. IEEE Computer Society.

[23] Ulrich Junker. Quickxplain: preferred explanations and relax-
ations for over-constrained problems. In Proceedings of the
19th national conference on Artifical intelligence, AAAI’04,
pages 167–172. AAAI Press, 2004.

[24] Kim Lauenroth and Klaus Pohl. Towards automated con-
sistency checks of product line requirements specifications.
In Proceedings of the twenty-second IEEE/ACM interna-
tional conference on Automated software engineering, ASE
’07, pages 373–376, New York, NY, USA, 2007. ACM.

[25] Timothy Lethbridge. Metrics for concept-oriented knowledge

bases. International Journal of Software Engineering and
Knowledge Engineering, 8:16–1, 1998.

[26] Mala Mehrotra, Dimitri Bobrovnikoff, Vinay Chaudhri, and
Patrick Hayes. A clustering approach for knowledge base anal-
ysis. American Association for Artificial Intelligence, 2002.

[27] Doaa Nabil, Abeer El-Korany, and A. Sharaf Eldin. Towards
a suite of quality metrics for kadss-domain knowledge. Expert
Systems with Applications, 35:654 – 660, 2008.

[28] Cédric Piette. Let the solver deal with redundancy. In Pro-
ceedings of the 2008 20th IEEE International Conference on
Tools with Artificial Intelligence - Volume 01, pages 67–73,
Washington, DC, USA, 2008. IEEE Computer Society.

[29] Joseph B. Pine, editor. Mass Customization. The new fron-
tier in business competition. Harvard Business School, 1992.

[30] Alun Preece. Building the right system right evaluating v&v
methods in knowledge engineering, 1998.

[31] Alun D. Preece and Rajjan Shinghal. Foundation and applica-
tion of knowledge base verification. International Journal of
Intelligent Systems 1994;9(8):683702. Duftschmid, S. Miksch
/, 22:23–41, 1994.

[32] ALUN D. Preece, STPHANE Talbot, and Laurence Vignol-
let. Evaluation of verification tools for knowledge-based sys-
tems. International Journal of Human-Computer Studies,
47(5):629 – 658, 1997.

[33] Florian Reinfrank, Gerald Ninaus, and Alexander Felfernig.
Intelligent techniques for the maintenance of constraint-based
systems. Configuration Workshop, 2015.

[34] Florian Reinfrank, Gerald Ninaus, Franz Wotawa, and
Alexander Felfernig. Maintaining constraint-based configu-
ration systems: Challenges ahead. Configuration Workshop,
2015.

[35] Raymond Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32(1):57–95, 1987.

[36] Pedro F. Salvetto, Milton F. Martinez, Carlos D. Luna, and
Javier Segovia. A very early estimation of software develop-
ment time and effort using neural networks. Workshop de
Ingeniera de Software y Base de Datos, 2004.

[37] Cheri Speier. The influence of information presentation for-
mats on complex task decision-making performance. Inter-
national Journal of Human-Computer Studies, 64(11):1115 –
1131, 2006.

[38] Rudi Studer, V. Richard Benjamins, and Dieter Fensel.
Knowledge engineering: Principles and methods. Data &
Knowlege Engineering, 25:161 – 197, 1998.

[39] Edward Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

[40] William van Melle, Edward H. Shortliffe, and Bruce G.
Buchanan. Emycin: A knowledge engineer’s tool for con-
structing rule-based expert systems. In Bruce G. Buchanan
and Edward H. Shortliffe, editors, Rule-Based Expert Sys-
tems. The Mycin Experiments of the Stanford Heuristic Pro-
gramming Project, pages 302–313. Addison-Wesley, 1984.

[41] Franz Wotawa, Florian Reinfrank, Gerald Ninaus, and
Alexander Felfernig. icone: intelligent environment for the de-
velopment and maintenance of configuration knowledge bases.
IJCAI 2015 Joint Workshop on Constraints and Preferences
for Configuration and Recommendation, 2015.

[42] Du Zhang and Doan Nguyen. Prepare: A tool for knowledge
base verification. IEEE Transactions on Knowledge and Data
Engineering, 6(6):983–989, 1994.

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

130

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

