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Abstract. Semi-supervised clustering algorithms allow the user to in-
corporate background knowledge into the clustering process. Often, this
background knowledge is specified in the form of must-link (ML) and
cannot-link (CL) constraints, indicating whether certain pairs of ele-
ments should be in the same cluster or not. Several traditional clustering
algorithms have been adapted to operate in this setting. We compare
some of these algorithms experimentally, and observe that their perfor-
mances vary significantly, depending on the data set and constraints.
We use two previously introduced constraint set utility measures, con-
sistency and coherence, to help explain these differences. Motivated by
the correlation between consistency and clustering performance, we also
examine its use in algorithm selection. We find this consistency-based
approach to be unsuccessful, and explain this result by observing that
the previously found correlation between utility measures and clustering
performance is only present when we look at results of different data
sets jointly. This limits the use of these constraint set utility measures,
as often we are interested in using them in the context of a particular
data set.
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1 Introduction

Clustering is the task of grouping data into clusters, or groups of similar ob-
jects. Traditional unsupervised clustering algorithms only rely on information
intrinsic to the data. In contrast, in semi-supervised clustering [2, 19, 20] the
user can provide background knowledge to guide the algorithm towards better
clusterings. Often, such background knowledge is given in the form of pairwise
constraints, stating whether elements should be in the same cluster (must-link)
or not (cannot-link). Semi-supervised extensions have been developed for most
of the traditional clustering algorithms, such as K-means [19], DBSCAN [10,14]
and spectral clustering [12]. A user who wants to cluster a data set, and influence
this clustering with pairwise constraints, has to select one of these algorithms.
In addition, appropriate values have to be chosen for the algorithm hyperparam-
eters. While these problems have received significant attention in the context of



supervised learning [3,16], little work has been done for clustering, both unsuper-
vised and semi-supervised. In this paper we focus on semi-supervised clustering,
which is closer to the well-studied supervised setting. The contributions of this
paper are (a) a comparison of a diverse set of semi-supervised clustering algo-
rithms on several UCI data sets and (b) the exploration of the semi-supervised
clustering algorithm selection strategy based on constraint-set utility measures
suggested in [18].

2 Semi-supervised clustering algorithms

Semi-supervised clustering algorithms can be broadly divided into three cat-
egories: methods that use the constraints to adapt their similarity measure,
methods that adapt the actual clustering procedure to satisfy the constraints,
and hybrid algorithms that combine these two approaches. In the remainder of
this section, we briefly discuss these three approaches and the algorithms that
we use in our experiments. We consider these algorithms in combination with
hyperparameter selection methods, as ultimately we are interested in mappings
of the following form:

Γ (X ,M, C) = y (1)

with X = {xi}ni=1 the data set, M = {(xi, xj)} a set of must-link constraints,
C = {(xi, xj)} a set of cannot-link constraints and y = {c1, c2, . . . , cK} s.t.
∪ici = X (we only consider partitional clusterings). Γ encapsulates the clustering
method as well as the hyperparameter selection procedure.

2.1 Methods that adapt the clustering algorithm directly

The first category consists of methods that alter the clustering procedure to
satisfy constraints. One such algorithm is COP-KMeans [19], an adaptation of
the traditional K-Means algorithm in which points are only assigned to clusters
if the assignment does not result in a constraint violation. Since the introduc-
tion of COP-K-Means, several other variants of the original K-means algorithm
have been developed. Semi-supervised extensions have also been developed for
other types of clustering algorithms, including density-based methods [10, 14]
and spectral clustering algorithms [9, 12]. In the remainder of this section we
discuss two such methods that are used in the experiments.

FOSC-OpticsDend
In [5] Campello et al. introduce FOSC, a “Framework for Optimal Selection
of Clusters” from clustering hierarchies. Given a local unsupervised clustering
quality measure (one that can be computed for each cluster individually) and
a set of constraints, FOSC determines a local cut of a given hierarchy that is
optimal with respect to the quality measure and the constraint set. The clus-
tering hierarchy on which FOSC operates can be provided by any hierachical



clustering algorithm. In our experiments, these hierarchies will be provided by
OPTICS, a density-based clustering algorithm (we use the implementation pro-
vided in the ELKI environment [1]). It produces a reachability plot, from which
a dendrogram is constructed using the algorithm by Sander et al. [15]. Campello
et al. also experiment with this combination and find that this approach, which
they call FOSC-OpticsDend, outperforms SSDBSCAN [10], a semi-supervised
extension of DBSCAN. OPTICS requires setting minPts, but as this parameter
is non-critical it is common to fix its value for all runs [5, 10]. As in [5], we set
it to minPts = 4. Often several cuts of the dendrogram yield a partitional clus-
tering that respects all constraints. In this case it is the unsupervised quality
measure that will determine the chosen cut. As in [5], we use cluster lifetime for
this purpose, which can be seen as the length along the dendrogram for which a
cluster exists.

Constrainted 1-Spectral Clustering
Constrained 1-Spectral Clustering (COSC) [12] is an extension of spectral clus-
tering to the semi-supervised setting.1 Spectral clustering methods aim to par-
tition a similarity graph such that edges within clusters have high weights and
edges between clusters have low weights [17]. Several types of similarity graphs
can be constructed from a set of data points. In our experiments we use a sym-
metric K-NN graph with local scaling as in [4], which avoids the need to select a
scaling parameter [21]. Parameter K, indicating the number of neighbors, is not
critical for the clustering result, and we set it to K = 10, as in [4]. The resulting
graph can be represented by an affinity matrix consisting of pairwise similari-
ties. Some semi-supervised spectral clustering algorithms incorporate must-link
and cannot-link constraints by modifiying this matrix directly. Others, such as
COSC, adapt the optimization objective of spectral clustering to incorporate
constraints and propose alternative optimization procedures. COSC requires set-
ting the number of clusters, k. In our experiments we run COSC for k ∈ [2, 10],
and select the clustering that violates the lowest number of constraints. If mul-
tiple solutions score equally on this measure, the clustering with the smallest
number of clusters is chosen.

2.2 Methods based on metric-learning

The second type of methods does not alter the clustering algorithm directly, but
modifies the underlying similarity measure. One of the first such methods was
proposed by Xing et al. [20], who introduce an algorithm to learn a Mahalanobis
distance measure that minimizes the distance between pairs involved in must-
link constraints, while keeping pairs involved in cannot-link constraints far apart.
Since the work of Xing et al., many others have focused on learning Mahalanobis
metrics, which can be defined as

dA(x, y) =
√

(x− y)TA(x− y) (2)

1 Code is available at http://www.ml.uni-saarland.de/code/cosc/cosc.htm



The formula simplifies to the Euclidean distance if A is the identity matrix. If a
diagonal matrix A is learned, this corresponds to feature weighting. Using a full
matrix corresponds to feature generation, with the newly generated features be-
ing linear combinations of existing ones [2]. Using a Mahalanobis metric defined
by A is equivalent to using the Euclidean distance in the transformed space ob-
tained by muliplying by A1/2, i.e. Xtransformed = A1/2X. Note that adapting an
algorithm’s similarity metric can only modify the bias of a clustering algorithm
to some extent. For example, with a Mahalanobis distance K-means can find par-
allel ellipsoidal clusters instead of only spherical ones, but still no non-parallel
ellipsoidal or non-convex clusters.

Information-Theoretic Metric Learning
In our experiments, we use the Information-Theoretic Metric Learning (ITML)
algorithm [7]2, which has been shown to outperform the earlier algorithm by
Xing et al. [7,8]. ITML requires setting one hyperparameter, γ, which determines
the importance of satisfying the constraints. For each data set and constraint
collection, we learn Mahalanobis matrices for γ ∈ {.01, .1, 1, 10} (the values
suggested in [7]), and select the best one as the one that results in the clustering
that violates the lowest number of constraints. If multiple solutions score equally,
we select the one that corresponds to the lowest value of γ. We learn a full metric
matrix A, transform the data using this matrix, and construct clusterings using
one of the following unsupervised algorithms:

– K-Means: We run the traditional K-Means algorithm for k ∈ [2, 10], and
experiment with two ways of selecting the “best” solution from the generated
candidates: (a) the one violating the lowest number of constraints, as before,
or (b) the one with the highest silhouette index, an unsupervised measure
[13]. In the latter case the silhouette index is calculated in the transformed
space.

– Self-Tuning Spectral Clustering: We also apply Self-Tuning Spectral
Clustering [21]3 to the transformed data, which does not require any pa-
rameters to be set. The affinity matrix is constructed using local scaling (as
with the COSC experiments), and the number of clusters is determined by
examining the structure of the eigenvectors of the Laplacian.

2.3 Hybrid methods

The last group consists of hybrid methods, which combine metric learning with
adapting the clustering procedure. A common representative of this type of al-
gorithms is MPCK-Means (Metric Pairwise Constrained K-Means, [2]4). Briefly,
MPCK-Means iterates between 1) assigning elements to clusters, in this step
the within-cluster sum of squares is minimized but also constraint satisfaction

2 Code is available at http://www.cs.utexas.edu/˜pjain/itml/
3 Code is available at http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
4 Code is available at http://www.cs.utexas.edu/users/ml/risc/code/



is incorporated 2) updating the means, just like in the traditional K-Means al-
gorithm and 3) re-estimating the metric, as to minimize the objective function.
Bilenko et al. [2] define several variants of this scheme. For example, one can
learn a separate metric for each cluster, or a global one. These metrics can ei-
ther be defined by full matrices, which corresponds to doing feature generation,
or diagonal ones, which corresponds to feature weighting. In our experiments
we use MPCK-Means with a single diagonal metric matrix. As before, we vary
the number of clusters k ∈ [2, 10] for each problem instance, and select the best
solution as either the one that violates the lowest number of constraints, or the
one that has the highest silhouette score.

3 Experiments

In this section we compare the performance of the previously discussed algo-
rithms on several UCI data sets.

3.1 Overview of algorithms and experimental methodology

In total, we compare 7 clusterers:

– FOSC-OpticsDend
– COSC: Constrained 1-Spectral Clustering, selecting k based on the con-

straints
– K-Means-ITML-NumSat: K-Means on ITML transformed data, selecting
k and γ based on the constraints

– K-Means-ITML-Silhouette: K-Means on ITML transformed data, select-
ing k and γ based on the silhouette index

– Self-Tuning-Spectral-ITML-NumSat: Spectral clustering, selecting γ
based on the constraints

– MPCK-Means-NumSat: MPCK-Means, selecting k based on the con-
straints

– MPCK-Means-Silhouette: MPCK-Means, selecting k based on the sil-
houette index

For each data set, we also show the results of four unsupervised variants of the
algorithms:

– K-Means-Unsup: the traditional K-Means algorithm, selecting k based on
the silhouette index

– Self-Tuning-Spectral-Unsup: Self-Tuning-Spectral clustering on the orig-
inal data

– FOSC-OpticsDend-Unsup: extraction of a partitional clustering from the
OPTICS dendrogram based on the unsupervised cluster lifetime measure

– MPCK-Means-Unsup: running MPCK-Means without constraints, which
is different from the traditional K-Means algorithm, as MPCK-Means also
performs unsupervised metric learning



For each constraint set size in {25, 100, 400, 1600}, we generate 10 constraint
sets in the following way:

1. We select 70% of the data set randomly
2. From this subset, pairs of elements are randomly selected and a must-link or

cannot-link constraint is added depending on whether the selected elements
belong to the same class or not.

Clusterings are evaluated using the adjusted Rand Index (ARI) [11], which is
calculated using only the elements of the 30% of the data that were not selected
in step one. The first step ensures that there will be enough elements (i.e. at least
30% of the data) to evaluate the clusterings on. For larger numbers of constraints
and relatively small data sets, it might otherwise occur that all elements are
involved in constraints, leaving none for evaluation.

3.2 Results and discussion

Figures 1 and 2 show the results of our experiments for the iris and wine data
sets. Similar figures for the dermatology, column, glass and ecoli data sets are
added in the appendix. For the iris data set, three algorithms show consistent
average improvement when constraints are added: FOSC-OpticsDend, K-Means-
ITML-NumSat and MPCK-Means-NumSat. In general, for iris the performance
seems to improve with constraints, or does at least not decline drastically (e.g.
for K-Means-ITML-Silhouette the performance remains largely constant).
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Fig. 1. Scores for the iris data set (150 instances, 4 features, 3 classes). All unsupervised
algorithms produced the same clustering for this data set (only the MPCK-Means line
is visible in the plot, as they all overlap).



Figure 2 shows that the results are quite different for the wine data set. Most
clustering algorithms already attain a high ARI score without any constraints,
and in many cases adding constraints leads to an average decrease in perfor-
mance. For this data set, MCPK-Means-Silhouette and Self-Tuning-Spectral-
ITML seem to be the most robust in this aspect.
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Fig. 2. Scores for the wine data set (178 instances, 13 features, 3 classes)

In general, from the results on these two data sets and the four others that
are added in the appendix, it is clear that no single semi-supervised clustering
algorithm outperforms all others in all scenarios. The preferable option for a
certain task depends on the data set, the size of the constraint set, and even the
specific constraint set under consideration. Often, the preferrable option even
seems to be to not make use of the constraints at all. This is quite counter-
intuitive, as one would expect constraints to “point the algorithm in the right
direction”. Davidson et al. [6, 18] also observe this potentially negative effect
of adding constraints. They point out that, while performance improves on av-
erage when more constraints are provided, individual constraint sets can have
a detrimental effect. In our experiments this happened frequently: clustering
performance decreased when constraints were added for 45% of the considered
runs (with a run we indicate a data set, particular constraint set and clusterer
combination).



Constraint set consistency and coherence
The observation that adding constraints can result in decreased performance is
of course crucial, as we are mostly interested in the performance gain that we can
obtain with one particular constraint set. To provide insight into this behaviour,
Davidson et al. propose two measures that characterize the utility of constraint
sets [6]:

– Consistency is defined by the number of constraints that are satisfied by
the clustering produced without any constraints. It is a property of both the
constraint set and the algorithm producing the clustering.

– Coherence measures the amount of agreement between constraints. In [18],
Wagstaff et al. define two variants of this measure: distance coherence and
direction coherence. We use the former one in our experiments, which is
defined as the fraction of constraint pairs (one ML and one CL constraint)
for which the distance between the points in the ML constraint is greater
than the distance between the points in the CL constraint [18]. This property
only depends on the data set and the constraints.

Wagstaff et al. show that consistency and coherence are strongly correlated
with clustering performance: if a consistent and coherent constraint set is pro-
vided, performance is likely to increase, whereas inconsistent and incoherent con-
straint sets have an adverse effect. They study these properties in the context
of MPCK-Means and variants thereof. Here, we verify whether this correlation
also holds for the diverse set of clustering algorithms used in our experiments.
We perform an analysis similar to the one in [18]. If the property holds, it may
provide insight into whether a particular constraint set should be used or not in
combination with a clustering algorithm.

Figure 3 shows the relation between the constraint utility measures and ARI,
illustrating that also in our experiments these are strongly correlated (Pearson
coefficient of 0.66 for consistency, Pearson coefficient of 0.75 for coherence). Ta-
ble 1 shows the correlation coefficients for the separate algorithms, providing
insight into the sensitivities of the different algorithms to constraint set incon-
sistency and incoherence. For example, the correlation between consistency and
performance is larger for the K-Means-ITML algorithms than for the MPCK-
Means algorithms, meaning that consistency might be a better predictor for
performance for the former ones. The correlation between consistency and per-
formance is lowest for COSC, but this can be explained by the fact that we used
the outcome of the Self-Tuning spectral clustering algorithm as an unsupervised
baseline for COSC, as otherwise we would not be able to select the number of
clusters k, which COSC requires.

Consistency-based algorithm selection
Given the correlation between consistency and clustering performance, Wagstaff
et al. [18] suggest the simple algorithm selection strategy of choosing the one
with the highest consistency, given a data set and constraints. We explore the
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Fig. 3. (left) Consistency vs. ARI, Pearson correlation coefficient = 0.66 , (right) Co-
herence vs. ARI, Pearson correlation coefficient = 0.75

Algorithm
Consistency

vs.
ARI

Coherence
vs.
ARI

FOSC-OpticsDend 0.81 0.88
COSC-NumSat 0.45 0.62

K-Means-ITML-NumSat 0.83 0.82
K-Means-ITML-Silhouette 0.82 0.76

Self-Tuning Spectral-ITML-NumSat 0.56 0.69
MPCK-Means-NumSat 0.63 0.72

MPCK-Means-Silhouette 0.67 0.80
Table 1. Pearson correlation coefficients of consistency and coherence vs. ARI for each
algorithm

effectiveness of this strategy by applying it to our clustering experiments. For
each problem instance, which consists of a data set and constraints, we compute
the relative score for each algorithm as its ARI for this instance divided by the
largest ARI obtained for that problem instance by all algorithms. We compute
the average relative score for each algorithm over all 1680 problem instances
(6 data sets, 7 algorithms, 4 constraint set sizes and 10 constraint sets per
size). These averages are shown in Table 2. The table also shows the average
relative score that is obtained by using the consistency-based algorithm selection
strategy. It is clear that, despite the observed correlation between consistency
and clustering performance, the algorithm selection strategy does not perform
well, as we would be better of by simply picking the (on average) best algorithm
for each problem instance, which is MPCK-Means-Silhouette.



Algorithm
Avg. rel.
score

MPCK-Means-Sil 0.814
COSC-NumSat 0.798

K-Means-ITML-NumSat 0.770
ST-Spectral-ITML-NumSat 0.725
Consistency-based AS 0.713
MPCK-Means-NumSat 0.712

K-Means-ITML-Sil 0.695
FOSC-OpticsDend 0.638

Table 2. Average relative scores for each
algorithm, and also for the consistency-
based algorithm selection strategy (AS)

Data set

Consistency
vs.
ARI

Coherence
vs.
ARI

iris 0.20 -0.14
ecoli -0.06 0.04

column 2C -0.17 -0.19
glass -0.12 -0.10

dermatology 0.16 -0.07
wine 0.04 -0.07

Table 3. Pearson correlation coefficients of
consistency and coherence vs. ARI for each
data set

Why consistency-based algorithm selection does not work
In this section we explain the unsatisfactory results of the consistency-based al-
gorithm selection strategy, and in doing so identify an important property of the
consistency and coherence measures. We observe that, while these measures cor-
relate strongly with performance if we look at all problem instances combined,
this correlation disappears when we consider the data sets separately. This can
be seen in Figure 4, which is similar to Figure 3 but colored by data set instead
of algorithm. This visual observation is confirmed by looking at the correlation
coefficients for each data set separately, shown in Table 3. These results indicate
that, while consistency and coherence can be indicative of the difficulty of clus-
tering a particular data set given constraints, these measures cannot be used to
decide between clustering algorithms for a given data set.
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Fig. 4. (left) Consistency vs. ARI (right) Coherence vs. ARI (same as Figure 3, but
colored by data set)



Furthermore, for a consistency-based algorithm selection strategy to be suc-
cesful, the different clusterers should produce significantly different clusterings
when no constraints are given. We verify whether this is actually the case for the
algorithms and data sets that are considered in the experiments, by comparing
the unsupervised clusterings using the adjusted Rand index (ARI). While ARI
is mostly used to compare a produced clustering to a ground truth one, it can
more generally be used to measure the similarity between any two clusterings.
When no constraints are given, all algorithms produce the same solution for
the iris data set (pairwise ARI scores of 1.0). Also for the wine and ecoli data
sets all clusterings are quite similar (ARIs > 0.9), except for the ones generated
by FOSC-OpticsDend (ARIs < 0.5). The clusterings generated for the derma-
tology, glass and column data sets are more diverse (with an average pairwise
ARI of 0.49, not taking into account the similarities between the K-Means and
MPCK-Means solutions, which are more similar with an average pairwise ARI
of 0.95). These observations complement the lack of correlation between con-
sistency and ARI in explaining the failure of the consistency-based algorithm
selection strategy for the iris, ecoli and wine data sets.

4 Conclusions

Semi-supervised clustering is a popular research topic, and its usefulness has
been demonstrated in several practical applications. Most major clustering algo-
rithms have been extended to incorporate domain knowledge, often in the form
of must-link and cannot-link constraints. It has been frequently demonstrated
that, on average, performance increases when constraints are added. However,
it is known that individual constraint sets can harm perfomance. We have ex-
perimented with a diverse set of semi-supervised clustering algorithms, and have
observed that this is indeed often the case. Given data to cluster and a set of
constraints, a user then has to determine which semi-supervised clustering algo-
rithm to use, if any. Previous work proposed to use constraint set consistency
and coherence for this purpose, two constraint set utility measures that were
shown to correlate strongly with clustering performance. We have experimented
with such consistency-based algorithm selection, but found it to be unsuccessful.
For some data sets, these results can be explained by the similarities between the
clusterings that are produced when no constraints are given. If these similarities
are high, comparing the corresponding consistency values is not informative.
More importantly, we also explain the unsatisfactory results of the selection
strategy for data sets for which the clusterings produced without constraints are
more diverse. We do this by showing that the utility measures only correlate
strongly with clustering performance if we look at problem instances from sev-
eral data sets combined, and that this correlation disappears when we consider
individual data sets. These results severely restrict the use of these measures
in semi-supervised clustering, as practitioners are mainly interested in applying
them in the context of a particular data set.
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A Performance comparison for UCI data sets
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Fig. 5. Scores for the ecoli data set (336 instances, 7 features, 8 classes)
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Fig. 6. Scores for the dermatology data set (366 instances, 34 attributes, 6 classes)
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Fig. 7. Scores for the column data set (310 instances, 6 attributes, 2 classes)
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Fig. 8. Scores for the glass data set (214 instances, 9 attributes, 6 classes)


