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Abstract. When confronted to a clustering problem, one has to choose
which algorithm to run. Building a system that automatically chooses
an algorithm for a given task is the algorithm selection problem. Un-
like the well-studied task of classification, clustering algorithm selection
cannot rely on labels to choose which algorithm to use. However, in the
context of constraint-based clustering, we argue that using constraints
can help in the algorithm selection process. We introduce CBOvalue, a
measure based on must-link and cannot-link constraints that quantifies
the overlapping in a dataset. We demonstrate its usefulness by choosing
between two clustering algorithm, EM and spectral clustering. This sim-
ple method shows an average performance increase, demonstrating the
potential of using constraints in clustering algorithm selection.
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1 Introduction

Constraints have been used to improve clustering performance by incorporating
some background knowledge in a clustering problem. In a study on constraint-
based clustering, Davidson et al. [4] show that using constraints can sometimes
decrease this performance. They introduce the notion of coherence between con-
straints, and show that the more incoherent a constraint set is, the more chance
it has to decrease clustering performance. Two constraints are called incoherent
if they carry information that is a priori contradictory. For instance, in figure 1,
the must-link constraint (in blue) implies that the left area must be clustered
with the right area, while the cannot-link constraint (in red) says the opposite.

Fig. 1. Incoherent constraints



Fig. 2. Overlapping clusters can lead to incoherent constraints

Beyond the possible presence of noise in the data, a problem that we will
ignore in this paper, we identified other circumstances where such incoherent
constraints can appear: overlapping clusters, as shown in figure 2. Overlapping
clusters is an issue that is not often tackled by clustering algorithms. Some
state-of-the-art algorithms such as spectral clustering [18], which is very good
at discovering arbitrary shaped clusters, will fail in the presence of overlapping.
On the contrary, the EM [6] algorithm has a bias towards spherical clusters but
can handle overlapping quite well as we show in section 3. As an example, we
artificially created a cross dataset, see figure 3, where two clusters overlap in the
middle. With a few random initialisations, EM is always able to find the correct
clusters, while spectral clustering always fails. What is more, the model built by
the EM algorithm incorporates the uncertainty about the cluster assignments in
the overlapping area.

Fig. 3. Cross dataset. Colours are from left to right: the generated clusters, clusters
found by EM, clusters found by spectral clustering.

This toy example illustrates the variety of clustering algorithms: different
algorithms will produce different partitionings. Moreover, in a real clustering



problem, we cannot say one of these partitionings is better as we do not know
the true labels. Even on the same dataset, two users might be interested in a
different partitioning of the data. Only if some constraints are specified can we
build a system that selects the algorithm best fitting a user requirements.

In this paper, we present some preliminary results in this direction. We intro-
duce the CBOvalue to measure the overlapping from must-link and cannot-link
constraints. We use this measure as a meta-feature in a basic meta-learning sys-
tem that chooses between EM and spectral clustering. The goal of the paper is
not to present an advanced meta-learning system, but to show the potential of
using constraints in clustering algorithm selection.

The content of the paper is organised as follows. In section 2, we present some
related work. In section 3, we define more concretely what we call overlapping
and show through experiments that EM performs better than spectral clustering
when it occurs. In section 4, we introduce the CBOvalue, an overlapping measure
based on equivalence constraints. In section 5, we show that a simple algorithm
selection method based on this measure increases clustering performance. In
section 6, we draw some conclusions and leads for future work.

2 Related work

2.1 Constraint-based clustering

Clustering is the unsupervised learning task of identifying groups of similar in-
stances in a dataset. Although these groups are initially unknown, some informa-
tion can be available as to what the desired solution is. This information takes
the form of constraints on the resulting clusters. These constraints can be pro-
vided to the clustering algorithm to guide the search towards a more desirable
solution. We then talk about constraint-based, constrained, or semi-supervised
clustering.

Constraints can be defined on different levels. On a cluster level, one can
ask for clusters that are balanced in size, or that have a maximum diameter in
space. On an instance level, one might know some partial labelling of the data.
A well-used type of constraints are must-link and cannot-link constraints, also
called equivalence constraints. These are pair-wise constraints which state that
two instances must be or cannot be in the same cluster.

Multiple methods have been developed to use these constraints, some of which
are mentioned below. A metric can be learnt that complies with the constraints
[2]. The constraints can be used in the algorithm for the cluster assignment in
a hard [19] or soft way [13], [15], [20]. Some hybrid algorithms use constraints
for both metric learning and clustering [3], [9]. Other approaches include con-
straints in general solver methods like constraint programming [7] or integer
linear programming [1].

2.2 Algorithm selection for clustering

Not much research has been conducted on algorithm selection for clustering.
Existing methods usually predict the ranking of clustering algorithms [5], [16],



[14] [8]. The meta-features used are unsupervised and/or domain-specific. None
of these approaches use constraints.

3 Overlapping clustering

3.1 Overlapping

We talk about overlapping when two clusters are present in the same area of
the data space. It is a local property of a dataset as it happens in some parts
only. Several reasons can produce overlapping clusters: there might be noise in
the data, the features may not capture all the necessary information to clearly
separate clusters or the overlap may be inherent to the processes that produced
the data. It is a problem for algorithms that assume a clear separation of the
clusters, or at least a zone of lower density points. As already mentioned for the
cross dataset, spectral clustering cannot cluster it correctly. With a few random
initialisations, EM always finds the right partition and what is more, the model
includes that the cluster assignment is uncertain in the overlapping area.

3.2 Rvalue

Fig. 4. Rvalue, k = 6, θ = 1.

To numerically measure overlapping, we use the Rvalue introduced by [11].
The principle is illustrated in figure 4. For each object of a dataset, the labels of



its k neighbours are checked. If stricly more than θ are from another class, it is
counted as overlapped. The Rvalue of the dataset is the proportion of overlapped
objects. It is a local measure that requires two parameters, k and θ. In all our
experiments, we use k = 6 and θ = 1, i.e. we allow one neighbour to be of another
class. This limits the false overlapping measurement when two clusters are next
to each other but not overlapping. As an example, the cross dataset figure 3
has an Rvalue of 0.41 which means that 41% of the data points are overlapping.
Figure 5 shows the distribution of the Rvalue for 14 datasets from the UCI
repository, namely iris, glass, ionosphere, wine, vertebral, ecoli, seeds, students,
yeast, zoo, breast cancer wisconsin, mammographic, banknote, haberman. Each
feature of these datasets is normalised to an average of 0 and standard value of 1
and the metric used is the euclidean distance. This normalisation and metric are
kept throughout all experiments. We can see from this figure that overlapping
is not uncommon in real world datasets.

Fig. 5. Rvalue of UCI datasets, k = 6, θ = 1.

3.3 Clustering performance

We now compare two clustering algorithms, namely EM [6] and spectral clus-
tering [18] that we will call SC. EM is run 10 times with randomly initialised
gaussians while SC is run with various parameter settings. The right number
of clusters was given to both algorithms, whose performances were measured in
terms of ARI (Ajusted Rand Index, [10]) and AMI (Ajusted Mutual Informa-
tion, [17]). The best run was kept for comparison, as we want to compare the
potential of each algorithm. On figure 6, we show the ARI of EM (in red) and
SC(in blue) on the same datasets, as well as on 22 artificially made datasets.

As expected, both algorithms lose performance when overlapping increases.
However, EM decreases more slowly than SC, as it is presented in table 1. These
results show that EM can handle overlapping better than SC.

4 Detecting overlapping from constraints

In a clustering problem, the Rvalue cannot be directly computed as the labels are
unknown. However, a user might have some partial knowledge of the clustering



Fig. 6. Clustering performance vs Rvalue.

UCI EM SC

Rvalue < 0.11 0.509 0.65
Rvalue > 0.11 0.452 0.36

ALL EM SC

Rvalue < 0.11 0.511 0.728
Rvalue > 0.11 0.443 0.38

Table 1. Average clustering performance measured with ARI.

he is looking for. This is the setting of semi-supervised clustering, presented in
section 2. We now present our method to detect overlapping based on these
constraints. Like the Rvalue, it is based on the idea that overlapping is a local
property.

4.1 CBOvalue: Constraint-Based Overlapping value

Overlapping translates in two cases in terms of equivalence constraints: one short
cannot-link constraint or two close parallel must-link and cannot-link constraints.

CLOvalue: Cannot-Link Overlapping value. A short cannot-link means
that in a close neighbourhood, two points are in two distinct clusters. Figure 7
illustrates the principle. For a cannot-link constraint cl between points x1 and
x2, we define

CLOvalue(cl) = exp(−1

2
(
dist(x1, x2)

max(ε1, ε2)
)p)



where εi the distance between xi and it’s kth nearest neighbour.

Fig. 7. CLOvalue for k=6.

Unlike for the Rvalue, we take a soft approach with the exponential because
experience showed that for a limited number of constraints a hard approach was
too sensitive to noise. However, the usual p = 2 of a gaussian turned out to
be a bit too soft hence we also experiment with p = 4. This provides a soft
neighbourhood with still a major drop at the epsilon. Using k = 6 produced
relatively low values, so we also consider a broader neighbourhood by raising k
to 10.

With CL the set of cannot-link constraints, we define

CLOvalue =
1

|CL|
∑
cl∈CL

CLOvalue(cl)

MLCLOvalue: Must-Link and Cannot-link Overlapping value. The case
of two close must-link and cannot-link constraints was shown figure 2. Figure 8
illustrates the principle of the measure. It is defined for a cannot-link constraint
cl between points x1 and x2 and a must-link constraint ml between two other
points. We name these points x3 and x4 such that dist(x1, x3) + dist(x2, x4) ≤
dist(x1, x4) + dist(x2, x3). This ensures that we pair up neighbour points to-
gether. For instance in figure 8, we want to compare x3 with x1 and not x2. We
then define

MLCLOvalue(ml, cl) =
exp(− 1

2 ( d1+d2
max(ε1,ε3)+max(ε2,ε4)

)p)

2



where εi the distance between xi and its kth neighbour, d1 = dist(x1, x3) and
d2 = dist(x2, x4).

Fig. 8. MLCLOvalue.

If CL is the set of cannot-link constraints and ML the set of must-link
constraints, we define

MLCLOvalue =
1

|CL| × |ML|
∑

cl∈CL,ml∈ML

MLCLOvalue(ml, cl)

CBOvalue =
CLOvalue+MLCLOvalue

2

For each dataset, we randomly generated 100 equivalence constraints from
the real classes and we computed the CBO value for k ∈ {6, 10}. Figure 9 plots
the CBO-value versus the Rvalue. The correlation is not perfect, but is enough
for the algorithm selection as we will see in the next section.

5 Algorithm selection

Now that we have an overlapping measure from the constraints, we can build
a system that picks which algorithm to use based on this measure. For each
parameter setting, we put a threshold at the optimal position in terms of ARI.
For example on figure 10 where the CBOvalue is computed with k=6 and p=4, we
put a threshold at 0.011. If the CBOvalue is bigger, we use EM, otherwise we use
SC. We call this method AS for Algorithm Selection. To provide an upper bound,
we compute the performance of an oracle that would always pick the algorithm
with highest performance. Table 2 compares the average performance of EM,
SC, AS, and oracle. To visualise the improvement of the algorithm selection
method, we plot on figure 11 the loss of each method for the UCI datasets. The



Fig. 9. CBOvalue with k=6 and p=4 vs Rvalue with k=6 and th=1.

Fig. 10. Clustering performance vs CBOvalue for k=6 and p=4.



EM SC AS oracle
k=6 k=10

p=2 p=4 p=2 p=4

UCI
ARI 0.464 0.422 0.497 0.5 0.497 0.522 0.526
AMI 0.481 0.47 0.508 0.514 0.487 0.487 0.534

ALL
ARI 0.477 0.554 0.58 0.585 0.58 0.593 0.605
AMI 0.522 0.614 0.626 0.631 0.626 0.638 0.642

Table 2. Average clustering performance of EM, SC (Spectral Clustering), AS (a
selection between the two based on the CBOvalue for several parameters), and oracle(an
ideal system that would keep the best between the EM and SC).

Fig. 11. Performance loss to oracle.

loss is simply the difference between the average performance of a method and
the oracle average performance.

In all experiments, AS performs on average better than EM and SP, in terms
of ARI or AMI. The meta-learning system used here is very simplistic: we con-
sider only one meta-feature and two clustering algorithms. However, the goal
here is not so much to build a very elaborate system, but to show the potential
of using constraints in clustering algorithm selection. We see here that despite
the simplicity of the selection process, the Constraint-Based Overlapping value
increases the average clustering performance.



6 Conclusion

In this paper, we introduced the CBOvalue to measure the amount of overlapping
in a dataset based on must-link and cannot-link constraints. On the basis that
the EM algorithm handles overlapping better than spectral clustering, we select
which algorithm to run depending on the CBOvalue. This simple algorithm
selection system shows an increase in average performance compared to the two
algorithms. Through this promising result, we demonstrate the potential of using
constraints in clustering algorithm selection.

More in-depth research on the CBOvalue still has to be conducted to answer
remaining questions: How robust is this measure? How sensitive is it with respect
to the constraint set? How does high dimensionality affect it? We should also
integrate the CBOvalue in a more complex meta-learner that uses constrained
and unconstrained features.

The approach we used can be generalised as follows. A first step is to identify
the strong and weak point of different algorithms, in our case the fact that EM
can produce overlapping clusters. In a second step, a measure is engineered
based on constraints and/or data to discriminate situations where algorithms
perform differently. Finally, these measures can be used as meta-features in an
algorithm selection system which can then make use of the strong points of each
algorithm. Despite the remaining questions on the CBOvalue, we believe the
encouraging results promote the validity of this approach for the problem of
clustering algorithm selection.
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