Meta-learning Recommendation of
Default Hyper-parameter Values for
SVMs in Classifications Tasks

Rafael G. Mantovani®, André L. D. RossiZ, Joaquin Vanschoren®, and André
C. P. L. F. Carvalho!

! Universidade de Sao Paulo (USP), So Carlos - Brazil,
{rgmantov,andre}@icmc.usp.br
2 Universidade Estadual Paulista (UNESP), Ttapeva - SP, Brazil
alrossi@itapeva.unesp.br
3 Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
j.vanschoren@tue.nl

Abstract. Machine learning algorithms have been investigated in sev-
eral scenarios, one of them is the data classification. The predictive per-
formance of the models induced by these algorithms is usually strongly
affected by the values used for their hyper-parameters. Different ap-
proaches to define these values have been proposed, like the use of de-
fault values and optimization techniques. Although default values can
result in models with good predictive performance, different implemen-
tations of the same machine learning algorithms use different default
values, leading to models with clearly different predictive performance
for the same dataset. Optimization techniques have been used to search
for hyper-parameter values able to maximize the predictive performance
of induced models for a given dataset, but with the drawback of a high
computational cost. A compromise is to use an optimization technique to
search for values that are suitable for a wide spectrum of datasets. This
paper investigates the use of meta-learning to recommend default values
for the induction of Support Vector Machine models for a new classifi-
cation dataset. We compare the default values suggested by the Weka
and LibSVM tools with default values optimized by meta-heuristics on a
large range of datasets. This study covers only classification task, but we
believe that similar ideas could be used in other related tasks. According
to the experimental results, meta-models can accurately predict whether
tool suggested or optimized default values should be used.

Keywords: Meta-learning. Hyper-parameter tuning. Default Values. Sup-
port Vector Machines.

1 Introduction

Support Vector Machine (SVMs) have been successfully used for classification
tasks [21]. However, their predictive performance for a given dataset is affected by

2 Mantovani, R.G. et al.

their hyper-parameter values. Several approaches have been proposed to choose
these values. Some machine learning tools suggest hyper-parameter values for
SVMs regardless of the dataset analyzed, or employ simple heuristics [8]. Al-
though these values can induce models with good predictive performance [6]
this does not occur in many situations, requiring a fine tuning process [4,13,25].

However, the optimization of these hyper-parameters usually has a high com-
putational cost, since a large number of candidate solutions needs to be evalu-
ated. An alternative is to generate a new set of default values by optimizing these
hyper-parameter values over several datasets rather than for each one. The op-
timized common values may improve the model accuracy, when compared with
the use of the default values, and reduce the computation cost to induce models,
when compared with a optimization for each dataset.

This study proposes a recommendation system able to indicate which default
hyper-parameters values should be used in SVMs when applied to new datasets.
This recommendation is based on Meta-learning (MTL) [7] ideas to induce a
classification model that, based on some features of a dataset, indicates which
hyper-parameters default values should be used: those proposed by ML tools or
those achieved by an optimization technique considering a set of prior datasets.

The proposed recommendation system is evaluated experimentally using a
large number of classification datasets and considering three sets of hyper-
parameters values for SVMs: default values from LibSVM [9], default values
from Weka [16], and those obtained from an pre-optimization process with prior
datasets, from here on referred to as ”Optimized”. We employed a Particle
Swarm Optimization (PSO) [20] algorithm to perform the optimization. This
study covers only classification task, but we believe that similar ideas could be
used in other related tasks.

This paper is structured as follows: section 2 contextualizes the hyper-parameter
tuning problem and cites some techniques explored by related work. Section 3
presents our experimental methodology and steps covered to evaluate the ap-
proaches. The results are discussed in section 4. The last section presents our
conclusions and future work.

2 Hyper-parameter tuning

Hyperparameter optimization is a crucial step in the process of applying ML
in practice [12]. Setting a suitable configuration for the hyperparameters of a
ML algorithm requires specific knowledge, intuition and, often, trial and error.
Depending on the training time of the algorithm at hand, finding good hyper-
parameters values manually is time-consuming and tedious. As a result, much
recent work in ML has focused on the study of methods able to find the best
hyper-parameter values [19].

The tuning of these hyperparameters is usually treated as an optimization
problem, whose objective function captures the predictive performance of the
model induced by the algorithm. As related in [24], this tuning task may present
many aspects that can make it difficult: i) some hyperparameter values that lead

Meta-learning for Default Recommendation 3

to a model with high predictive performance for a given dataset may not lead
to good results for other datasets; ii) the hyperparameter values often depend
on each other, and this must be considered in the optimization; and iii) the
evaluation of a specific hyperparameter configuration, let alone many, can be
very time consuming.

Many approaches have been proposed for the optimization of hyperparam-
eters of classification algorithms. Some studies used Grid Search (GS), a sim-
ple deterministic approach that provides good results in low dimensional prob-
lems [6]. For optimization of many hyperparameters on large datasets, how-
ever, GS becomes computationally infeasible due to the combinatorial explo-
sion. In these scenarios, probabilistic approaches, such as Genetic Algorithms
(GA), are generally recommended [13]. Other authors explored the use of Pat-
tern Search (PS) [11] or techniques based on gradient descent [10]. Many auto-
mated tools are also available in the literature, such as methods based on local
search (ParamILS [18]), estimation of distributions (REVAC [23]) and Bayesian
optimization (Auto-Weka [28]).

Recent studies have shown the effectiveness of Random Sampling (RS) meth-
ods [1] for hyper-parameter fine tuning. In [5], the authors use RS to tune
Deep Belief Networks (DBNs), comparing its performance with grid methods
and showed empirically and theoretically that RS are more efficient for hyperpa-
rameter optimization than trials on a grid. Other recent works use a collaborative
filtering solution [3], or combine optimization techniques for tuning algorithms
in computer vision problems [4].

3 Materials and methods

In addition to the default values suggested by LibSVM and Weka, an optimiza-
tion technique was used to search for a new set of values suitable for a group of
datasets. For such, the predictive performance of models induced by SVMs for
public data sets using a PSO algorithm to tune SVM’s hyper-parameters was
evaluated.

In the PSO optimization, each particle encodes one hyper-parameter setting
composed of a pair of real values representing the SVM hyper-parameter C' (cost)
and the width of the Gaussian kernel . The former is a SVM parameter and the
latter is the Gaussian kernel parameter [17]. Table 1 shows the range of values
for C' and v [26] used in the optimization. The default values provided by the
Weka [16] and LibSVM tools [9], and the obtained optimized values are listed in
Table 2.

Table 1. SVM hyper-parameters range values investigated during optimization [26].

Hyper-parameter | Minimum | Maximum
cost (C) 2772 215
gamma () 2715 28

4 Mantovani, R.G. et al.

Table 2. Default values tested in the datasets and used to generate meta-labels.

Approach Cost (C) | Gamma (v)
DF-Weka 1 0.1
DF-LibSVM* 1 1/attrs
DF—Optimized5 25.6376 2—8.2269

3.1 Datasets

For the experiments, 145 classification datasets with different characteristics
were collected from the UCT repository [2] and OpenML [29]. These datasets
were split into two groups:

— One group contains 21 datasets that were used in the optimization process to
find common values of the hyper-parameters. These datasets were randomly
selected from the total amount of 145;

— The second group, containing the 124 remaining datasets, were used to test
the models induced with the hyper-parameters values found by the opti-
mization process. These 124 datasets and models results were used in the
meta-learning system.

Only few datasets were selected to the optimization to not spend too much
time, and because we need the other for the meta-learning. All datasets were
standardized with ¢ = 0 e 0 = 1 internally by package ’e1071’ (R interface for
'LibSVM’ library), employed here to train SVMs.

3.2 Optimization process

Figure 1 illustrates the optimization process. The PSO algorithm is run with the
21 training datasets. The evaluation of the hyper-parameters uses 10-fold cross-
validation (CV). Whenever a pair of SVM hyper-parameter values is generated
by the tuning technique, one model is induced for each dataset using 8 partitions
(training folds). One of the remaining partitions is used to validate the induced
models, and will guide the search for the best hyper-parameter values (validation
fold). The final one is used to asses the predictive performance of the induced
models (test fold) only, not for hyper-parameter selection. This way, each dataset
has validation and testing accuracies averaged over the 10-fold CV. The fitness
criteria was defined as the median validation accuracy.

The PSO algorithm was implemented in R using the ”pso” package, available
on CRANS. Since PSO is a stochastic method, the technique was run 30 times

4 attrs: the number of attributes in the dataset (except the target attribute)

® Those are the values that presented the median accuracy over 30 solutions found in
the optimization process. See Section3.2

5 http://cran.r-project.org/

Meta-learning for Default Recommendation 5

Tuning process

best individual datasets
(hyper-parameter values)

validation testmg!

. training folds folds folds |
,,,,,,, ds _ _folds |
I [| \‘\ i
! \ o
Dn N | accuracies selects an individual repeat
for each individual § i J —— -,

,,,,,, i (valid, test) according to a criteria K times
(best, median, etc)

— >

accs d1

fitness
criteria

accs dn

est
accuracy i..57 accuracy
(fitness) (stored)

Individual
(hyper-parameters
values)

validation accuracy
guides the search

Fig. 1. SVM hyper-parameter tuning process with multiple datasets.

for each training dataset, so we obtain 30 solutions. The hyper-parameters val-
ues that resulted in the best median testing accuracy, considering the training
datasets and executions, are defined as the ”Optimized Default” values found by
the optimization technique. Those values will be compared to the default ones
provided by ML tools in Section 4.

3.3 Meta-learning system

The problem of choosing one of the default values shown in Table 2 can be
viewed as a classification task, and solved using a meta-learning approach. A
meta-dataset is created by extracting characteristics from the datasets and used
to induce a meta-model that predicts the best set of hyper-parameters based
on these data characteristics. Then, this meta-model can be applied to predict
which default values are more likely to lead to good predictive SVM models for
a new dataset.

3.4 Meta-data set

Each meta-example of the meta-data set is composed of meta-features and a
target feature. The meta-features are extracted from the 124 datasets from
the total amount of 145 (Sec. 3.1). The other 21 datasets were used to find
the DF-Optimized parameter settings, and are therefore excluded in the meta-
learning system. Since each dataset results in one meta-example, the meta-data
set contains 124 meta-examples, each one composed of 81 meta-features. Table
3 shows an overview of the meta-features obtained from these datasets, sub-
divided into 7 subsets. These meta-features were used before in many similar
studies [14,15, 25, 27].

For each subset of these meta-features, a different meta-data set was cre-
ated to explore their utility for this task. Furthermore, we built a meta-data
set merging all meta-features, referred to as ALL, and another one, referred as
FEAT.SELEC., obtained using a meta-feature selection method on the subset

6 Mantovani, R.G. et al.

Table 3. Classes and number of meta-features used in experiments.

Meta-features | Num. | Description

Statlog 17 Simple measures, such as number of attributes classes and attributes.

Statistical 7 Statistics measures, such as the skewness and kurtosis.

Information 7 Information theory measures, such as the attributes’ entropy, and so on.
Landmarking 10 | The performance of some ML algorithms on the datasets

Model 18 |Features extracted from DTs models, such as the number of leaves, nodes, rules.
Time 9 The execution time of some ML algorithms on these dataset.

Complexity 13 |measures that analyze the complexity of a classification problem.

Total 81 All meta-features

ALL. Specifically, we employed the correlation rank method from R package
"FSelector’, selecting the 25% most correlated meta-features.

Besides the meta-features, each meta-example has a target, whose label indi-
cates which default hyper-parameter values should be used on the corresponding
dataset. In order to define the label of the meta-examples, we run the three sets
of default values (DF-LibSVM, DF-Weka, and DF-Optimized) on the 124 test
datasets. The hyper-parameters values that yielded the median accuracy value
over 30 executions are selected.

All of the default approaches were evaluated performing 10-CV strategy on
testing datasets. This procedure was repeated 30 times and the predictive per-
formance of models assessed by the mean balanced accuracy. The Wilcoxon
sign-test was applied for each pair of alternatives for the default values to as-
sess the significance of the differences of accuracy measures per dataset. Table
4 shows the win-tie-loss results based on this significance test with a confidence
level of 95%.

Table 4. Win-tie-loss of the approaches for 124 datasets.

Technique | Win | Tie | Loss
DF-Weka 13 21 90
DF-LibSVM 6 20 98
DF-Optimized 84 6 34

In these initial experiments, we considered the problem as binary, specially
due to a small number of DF-Weka and DF-LibSVM wins and eventual ties.
Thus, if the best mean accuracy for the dataset was obtained by the DF-
Optimized with statistical significance (Wilcoxon test) compared to the other
both approaches, a meta-example receives the label 7OPTM”. Otherwise, it is
labeled as "DF”.

According to this criteria, 84 of the 124 datasets were labeled with the OPTM
class: the induced models presented the best predictive performance when it
used the parameter values obtained by the optimization process. The other 40
meta-examples were labeled with DF class: default values provided by tools
were enough. Due to the small number of meta-examples, the Leave-One-Out

Meta-learning for Default Recommendation 7

Cross-Validation (LOO-CV) methodology was adopted to evaluate the predictive
performance of the meta-learners.

3.5 Meta-learner

Six ML classification algorithms were used as meta-learners: J48 Decision Tree
(J48), Naive Bayes (NB), k-Nearest Neighbors (k-NN) with & = 3, Multilayer
Perceptron (MLP), Random Forest (RF) and Support Vector Machines (SVM).
These algorithms follow different learning paradigms, each one with a distinct
bias, and may result in different predictions. An ensemble (ENS) of these clas-
sifiers was also used, with prediction defined by majority voting.

The predictive performance of each meta-learner, including the ensemble, was
averaged over all LOO-CV iterations/executions for four performance measures.
Each meta-learner was evaluated with meta-data sets composed by meta-features
extracted by different approaches, described in Table 3, and the meta-feature
sets ALL, which combines all meta-features, and FEAT.SELEC., which applies
feature selection to ALL.

4 Experimental results

The predictive performance of models induced using the optimized default values
for SVMs were compared with hyper-parameter values provided by SVMs tools.
This comparison was performed by applying the Friedman statistical test and
the Nemenyi post-hoc test with a confidence level of 95%. According to the
test, the hyper-parameter values optimized by the PSO technique for several
datasets (DF-Optimized) led to SVMs models with significantly better predictive
performance than the default values provided by both SVMs tools (DF-Weka
and DF-LibSVM) (see Table 4). Moreover, the test showed that there is no
significance difference between the performance of DF-Weka and DF-LibSVM
values.

4.1 MTL predictive performance

Table 5 summarizes the predictive performance of the meta-learners for different
sets of meta-features. The first column identifies the meta-learning algorithm.
The second column shows the meta-feature set used. The other columns present
the predictive performance of the meta-learner according to different predic-
tive performance measures: balanced accuracy, precision, recall, and F-Score.
A trivial classifier would have a mean balanced accuracy equal to 0.500. The
performance measures of this baseline method (MAJ.CLASS) and of a RAN-
DOM method are included at the bottom of the Table 5. The random method
selects labels randomly. The best results for each meta-feature set according to
the F-score measure are highlighted.

A general picture of the predictive performance of the meta-learners is pro-
vided by the F-Score measure, which is a balance between precision and recall

8 Mantovani, R.G. et al.

measures, and mean balanced classification accuracy. According to these values,
the J48 algorithm using all the meta-features was the best meta-learner overall,
with an F-Score of 0.821 and balanced accuracy of 0.847. The same combination
of meta-learner and meta-features also achieved the best results according to the
precision measure. For the recall measure, the best result was also obtained by
J48 algorithm, but using the Statlog meta-features subset.

4.2 Hits and Misses

Figure 2 depicts the hits and misses of the top-10 meta-models analyzing the
F-score measure. The y-axis represents the meta-models: the algorithm and the
set of meta-features used in the experiments. The x-axis represents all the 124
meta-examples of the meta-data set. In the figure, a hit is represented by a light
gray square, and a miss by a black one.

JABALL -
J48.FSELEC - I I
J48.STLG -
RFSTLG - | |
RFFSELEC -
ENS.COMP - I
RF.COMP - I
ENS.LANDM - | |
J48.COMP - | | |
40 80

Dataset

Algorithm

Fig. 2. Hits and misses of the top 10 meta-models regarding the F-score.

The J48 algorithm appears four times in the list, while RF and ENS appear
three times each one. These results indicate the superiority of J48 for this task,
differently from other similar meta-learning studies, such as [22]. The intrin-
sic feature selection mechanism of J48 performed slightly better than the rank
correlation based method (FEAT.SELEC.), since the meta-model J48-ALL is
the first in the ranking followed by ”J48.FSELEC”. Another feature selection
method may further improve the meta-learners predictive performance. Figure
2 illustrates that few meta-examples were misclassified by all meta-models. In
these cases, all meta-examples are labeled as DF.

4.3 Tree Analysis

The decision tree in Figure 3 was the most frequently induced model during the
meta-level learning using the J48 algorithm with all meta-features and perform-
ing LOO-CV. This pruned tree was obtained in most of the experiments and
kept basically the same structure with 19 nodes, of which 10 are leaf nodes, and
10 rules. The meta-features selected by J48 as the most relevant ones were:

Meta-learning for Default Recommendation 9

dim: the problem dimensionality (Statlog);

ktsP: kurtosis pre-processed (Statistical);

13: maximum individual feature efficiency (Complexity);
stSd: standard deviation of stump time (Landmarking);
bMin: minimum level of branches (tree) (Model-based);
1Sd: standard deviation of leaves (Model-based);

eAttr: attribute entropy (Information);

staTime: the execution time of a statistical model (Time);
attr: number of attributes (Statlog).

© NSO N

dim <= 0.002585: DF (22.0/1.8)

dim > 0.002585

| ktsP <= 2.2B2569

| f3 <= 0.083

| | stSd <= 0.813569: NEW (4.8)

| | stSd > 0.013569: DF (3.0/1.0)

| f3 > 0.883: DF (8.0)

ktsP > 2.282569

| bMin <= 3

15d <= 1.0832796

| eAttr <= 42,346401

| | staTime <= 68.529899: DF (2.0)
| | staTime > 68.529899: NEW (26.0)
| eAttr > 42.346401: DF (3.0)

1Sd > 1.832796: NEW (48.0)

atr <= 12: DF (3.0)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| atr > 12: NEW (4.0)

Number of Leaves : 10

Size of the tree : 19

Fig. 3. Most common J48 DT with all meta-features.

It is interesting to observe that about one meta-feature from each subset was
used to generate the tree. The predictive meta-feature most frequently selected
as the root node was dim: the problem dimensionality, i.e., dim = %ﬁ;é'j. The
LibSVM library considers the dimensionality of the dataset (Table 2) to assign
the « hyper-parameter value. However, the meta-feature dim is a ratio between
the number of attributes and examples.

According to the tree, this ratio is close to zero, DF hyper-parameter val-
ues are already good solutions, and the pre-optimized values do not improve
the model’s accuracy. However, if the execution time of a statistical model
(staTime) is superior to 68.25, it indicates that the optimized hyper-parameter
values should be used. The pre-optimized values are also recommended if a stan-
dard deviation of the number of leaves generated by model-based DTs is higher
than 1.

5 Conclusion

Many experiments with SVMs use default values for the hyper-parameters.Thus,
a good set default values allow non-expert users to have good models with

10 Mantovani, R.G. et al.

low computational costs. This study investigated the development of a meta-
learning system to recommend hyper-parameter values for Support Vector Ma-
chines (SVMs) from a set of predefined default values. The meta-learning system
was experimentally evaluated using 124 datasets from UCI and OpenML.

Besides the default values proposed by ML tools, we used an optimization
technique to define new default hyper-parameter values based on a group of
datasets. The use of this new set of hyper-parameter values, referred to as op-
timized default values, produced significantly better models than the default
values suggested by ML tools.

According to the experiments to assess the performance of the meta-learning
system, it is possible to create a recommendation system able to select which de-
fault values must be used for SVM hyper-parameters for classification tasks. Ob-
serving the most frequent decision tree, a small number of simple meta-features
was sufficient to characterize the datasets. According to this decision tree, de-
fault values proposed by ML tools are suitable for problems with a dimensionality
ratio close to zero.

As future work, we intend to expand the experiments by increasing the num-
ber of datasets and meta-features and exploring other ML algorithms. We also
plan to cluster datasets according to their similarities to generate better op-
timized hyper-parameter values. The fitness value used in experiments is an
aggregate measure of performance across different datasets. It would be inter-
esting to explore other measures such as average ranks. We pretend to build on,
and make all our experiments available in OpenML [29].

Acknowledgments. The authors would like to thank CAPES, CNPq (Brazilian
Agencies) for the financial support. This project is supported by Sao Paulo
Research Foundation (FAPESP) under the grant#2012/23114-9.

References

1. Andradottir, S.: A review of random search methods. In: Fu, M.C. (ed.) Hand-
book of Simulation Optimization, International Series in Operations Research &
Management Science, vol. 216, pp. 277 — 292. Springer New York (2015)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013), http://
archive.ics.uci.edu/ml

3. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter
tuning. In: Dasgupta, S., Mcallester, D. (eds.) Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-13). vol. 28, pp. 199-207. JMLR
Workshop and Conference Proceedings (2013)

4. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Proc.
30th Intern. Conf. on Machine Learning. pp. 1-9 (2013)

5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281-305 (Mar 2012)

6. Braga, 1., do Carmo, L.P., Benatti, C.C., Monard, M.C.: A note on parameter
selection for support vector machines. In: Castro, F., Gelbukh, A., Gonzélez, M.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Meta-learning for Default Recommendation 11

(eds.) Advances in Soft Computing and Its Applications, LNCC, vol. 8266, pp.
233-244. Springer Berlin Heidelberg (2013)

Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining. Springer Verlag, 2 edn. (2009)

Chang, C.C., Lin, C.J.: LIBSVM: a Library for Support Vector Machines (2001),
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1-27:27 (2011), software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-
eters for support vector machines. Machine Learning 46(1-3), 131-159 (Mar 2002)
Eitrich, T., Lang, B.: Efficient optimization of support vector machine learning
parameters for unbalanced datasets. Journal of Comp. and Applied Mathematics
196(2), 425-436 (2006)

Feurer, M., Springenberg, T., Hutter, F.: Initializing bayesian hyperparameter opti-
mization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (Jan 2015)

Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. Neuro-
comput. 64, 107-117 (2005)

Garcia, L.P.F., de Carvalho, A.C., Lorena, A.C.: Noisy data set identification. In:
Pan, J.S., Polycarpou, M.M., Wo7niak, M., de Carvalho, A.C., Quintin, H., Cor-
chado, E. (eds.) Hybrid Artificial Intelligent Systems, Lecture Notes in Computer
Science, vol. 8073, pp. 629-638. Springer Berlin Heidelberg (2013)

Gomes, T.A.F., Prudéncio, R.B.C., Soares, C., Rossi, A.L.D., nd André C. P. L.
F. De Carvalho: Combining meta-learning and search techniques to select param-
eters for support vector machines. Neurocomput. 75(1), 3-13 (Jan 2012)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, [.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10-18 (Nov
2009)

Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classi-
fication. Department of Computer Science - National Taiwan University, Taipei,
Taiwan (2007)

Hutter, F., Hoos, H., Leyton-Brown, K., Stiitzle, T.: Paramils: an automatic al-
gorithm con- figuration framewor. Journal of Artificial Intelligence Research (36),
267-306 (2009)

Hutter, F., Hoos, H.H., Stiitzle, T.: Automatic algorithm configuration based on lo-
cal search. In: Proceedings of the 22nd national conference on Artificial intelligence
- Volume 2. pp. 1152-1157. AAAT07, AAAT Press (2007)

Kennedy, J.: Particle swarms: optimization based on sociocognition. In: Castro, L.,
Zuben, F.V. (eds.) Recent Development in Biologically Inspired Computing, pp.
235-269. Idea Group (2005)

Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen, W.: Tuning
and evolution of support vector kernels. Evolutionary Intelligence 5(3), 153-170
2012

1(\/Iant())vani, R.G., Rossi, A.LL.D., Bischl, B., Vanschoren, J., Carvalho, A.C.P.L.F.:
To tune or not to tune: recommending when to adjust svm hyper-parameters via
meta-learning. In: Proceedings of 2015 International Joint Conference on Neural
Network (Jul 2015)

Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolu-
tionary algorithm parameters. In: Proc. of the 20th Intern. Joint Conf. on Art.
Intelligence. pp. 975-980. IJCATI’'07 (2007)

12

24.

25.

26.

27.

28.

29.

Mantovani, R.G. et al.

Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter opti-
mization of classifiers. Machine Learning 87, 357-380 (2012)

Reif, M., Shafait, F., Goldstein, M., Breuel, T., Dengel, A.: Automatic classifier
selection for non-experts. Pattern Analysis and Applications 17(1), 83-96 (2014)
Rossi, A.L.D., Carvalho, A.C.P.L.F.: Bio-inspired optimization techniques for svm
parameter tuning. In: Proceed. of 10th Brazilian Symp. on Neural Net. pp. 435—
440. IEEE Computer Society (2008)

Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel
width in support vector regression. Machine Learning 54(3), 195-209 (2004)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms. In: Proc. of
KDD-2013. pp. 847-855 (2013)

Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: Networked science
in machine learning. SIGKDD Explorations 15(2), 49-60 (2013)

Meta-learning for Default Recommendation

Table 5. Meta-learning results using LOO-CV.

Classifier | Meta-features | Bal. Acc. | Precision | Recall | F-Score
J48 STATLOG 0.839 0.757 0.884 0.785
MLP STATLOG 0.766 0.703 0.737 0.714
NB STATLOG 0.427 0.518 0.522 0.424
3-NN STATLOG 0.734 0.679 0.693 0.685
RF STATLOG 0.823 0.764 0.815 0.781
SVM STATLOG 0.758 0.645 0.781 0.654
ENS STATLOG 0.798 0.733 0.785 0.749
J48 STATISTICAL 0.734 0.660 0.695 0.669
MLP STATISTICAL 0.677 0.572 0.608 0.570
NB STATISTICAL 0.492 0.592 0.608 0.489
3-NN STATISTICAL 0.750 0.717 0.715 0.716
RF STATISTICAL 0.742 0.672 0.705 0.682
SVM STATISTICAL 0.702 0.616 0.649 0.622
ENS STATISTICAL 0.718 0.667 0.675 0.670
J48 INFORMATION 0.806 0.726 0.817 0.747
MLP INFORMATION 0.782 0.708 0.767 0.724
NB INFORMATION 0.637 0.601 0.596 0.597
3-NN INFORMATION 0.677 0.638 0.634 0.636
RF INFORMATION 0.782 0.695 0.782 0.713
SVM INFORMATION 0.758 0.645 0.781 0.654
ENS INFORMATION 0.774 0.689 0.765 0.705
J48 LANDMARKING 0.766 0.710 0.734 0.719
MLP LANDMARKING 0.758 0.717 0.723 0.719
NB LANDMARKING 0.702 0.649 0.655 0.652
3-NN LANDMARKING 0.750 0.724 0.716 0.719
RF LANDMARKING 0.782 0.721 0.758 0.734
SVM LANDMARKING 0.774 0.715 0.746 0.726
ENS LANDMARKING 0.798 0.753 0.773 0.761
J48 MODEL 0.734 0.673 0.693 0.680
MLP MODEL 0.734 0.686 0.694 0.689
NB MODEL 0.677 0.579 0.610 0.579
3-NN MODEL 0.677 0.651 0.641 0.644
RF MODEL 0.782 0.735 0.753 0.742
SVM MODEL 0.734 0.627 0.714 0.633
ENS MODEL 0.774 0.722 0.744 0.730
J48 TIME 0.718 0.635 0.673 0.642
MLP TIME 0.790 0.701 0.801 0.720
NB TIME 0.403 0.546 0.601 0.376
3-NN TIME 0.766 0.729 0.732 0.731
RF TIME 0.774 0.715 0.746 0.726
SVM TIME 0.766 0.638 0.872 0.642
ENS TIME 0.774 0.722 0.744 0.730
J48 COMPLEXITY 0.806 0.739 0.799 0.757
MLP COMPLEXITY 0.774 0.715 0.746 0.726
NB COMPLEXITY 0.750 0.730 0.718 0.723
3-NN COMPLEXITY 0.710 0.648 0.663 0.653
RF COMPLEXITY 0.806 0.746 0.793 0.761
SVM COMPLEXITY 0.806 0.713 0.844 0.736
ENS COMPLEXITY 0.815 0.758 0.801 0.773
J48 ALL 0.847 0.815 0.829 0.821
MLP ALL 0.718 0.674 0.676 0.675
NB ALL 0.573 0.619 0.607 0.569
3-NN ALL 0.766 0.716 0.733 0.723
RF ALL 0.806 0.746 0.793 0.761
SVM ALL 0.782 0.669 0.847 0.685
ENS ALL 0.782 0.735 0.753 0.742
J48 FEAT.SELEC. 0.839 0.802 0.821 0.810
MLP FEAT.SELEC. 0.710 0.661 0.666 0.663
NB FEAT.SELEC. 0.581 0.632 0.619 0.578
3-NN FEAT.SELEC. 0.774 0.722 0.744 0.730
RF FEAT.SELEC. 0.823 0.758 0.822 0.777
SVM FEAT.SELEC. 0.774 0.657 0.842 0.669
ENS FEAT.SELEC. 0.782 0.735 0.753 0.742
BASELINE| MAJ. CLASS 0.500 0.500 0.339 0.404
BASELINE RANDOM 0.501 0.505 0.505 0.486

13

