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Abstract. OpenML is an online, collaborative environment for machine
learning where researchers and practitioners can share datasets, work-
flows and experiments. While it is integrated in several machine learning
environments, it was not yet integrated into environments that offer a
graphical interface to easily build and experiment with many data anal-
ysis workflows. In this work we introduce an integration into the popular
RapidMiner environment, that will allow RapidMiner users to import
data directly from OpenML and automatically share all their workflows
and experiments. OpenML will then link these results to all other results
obtained by other people, possibly with other tools, creating a single con-
nected overview of the best workflows on a large set of machine learning
problems. This is useful to learn and build on the results of others, to col-
laborate with many people online, and it provides a wealth of information
to study how to construct workflows for new machine learning problems.
We demonstrate the capabilities of this integration and identify several
research opportunities.
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1 Introduction

The field of meta-learning studies which Machine Learning algorithms work well
on what kind of data. The algorithm selection problem is one of its most natural
applications [24]: given a dataset, identify which learning algorithm (and which
hyperparameter setting) performs best on it. Different approaches leverage meta-
learning in different ways, such as building predictive meta-models based on data
characterizations [3, 20], iteratively testing the most promising algorithms [17]
and model-based hyperparameter optimization [8]. However, all these solutions
focus on recommending just a single algorithm.

Even-though the obtained results are very useful, it has been widely rec-
ognized that the quality of the results can be markedly improved by also se-
lecting the right pre-processing and post-processing operators [7, 19, 32]. For ex-
ample, the quality of k Nearest Neighbour algorithms typically degrades when
the number of features increases [9], so it makes sense to combine these algo-
rithms with feature selection [14] or feature construction. The complete chain of



pre-processing operators, algorithms and post-processing operators is typically
referred to as a workflow.

Meta-learning research is built on the premise that the relation between
data and a good algorithm can be learned. For this, a key prerequisite is to have
access to a vast amount of executed experiments to serve as historical train-
ing data. Experiment databases [34] have been designed to collect previously
executed experiments, divesting researchers from the burden of executing these
many experiments over and over again. OpenML [26, 35] is an online platform for
machine learning where researchers and practitioners can share datasets, work-
flows and experiments automatically from many machine learning environments,
and build directly on each other’s results. Hence, it provides an exceedingly rich
resource for meta-learning research. However, it currently has limited support
for workflows.

One of the additional challenges is the enormous increase of the search space:
besides finding the right (order of) operators, each operator also has its own
parameters to be tuned. Currently, there is only little work that addresses the
question whether the relation between the dataset and the complete workflow of
pre-processing, modelling and post-processing operators can be learned.

In order to foster progress in this challenging research area, we have inte-
grated OpenML into RapidMiner. RapidMiner is a data analysis environment
that has a graphical interface for users to easily experiment with many (slightly)
different workflows, as well as support for generating machine learning workflows.
By means of this integration, the full set of RapidMiner workflows can be shared
on OpenML, as well as the ensuing experimental results as these workflows are
run and evaluated on many input datasets. Collecting this information in an
organized fashion will open up novel research opportunities in meta-learning.

2 Related Work

The algorithm selection problem has attracted a lot of attention. In meta-
learning approaches, the data is characterised by so-called meta-features, over
which a model can be built [3]. Significant effort has been devoted to creating
these features, and they typically fall in one of the following categories [31]:
statistical, information theoretic or landmarker [20].

Another way to find an appropriate algorithm is by subsampling the data:
when training a algorithm on a small subset of the data, the time to execute
and evaluate an algorithm is much lower. The underlying assumption is that
if a algorithm works well on a small subsample of the data, it also works well
on more data. Much research has been done to study which sample sizes and
techniques are appropriate to obtain a reliable model [15, 21].

Even though these techniques work well, it has been correctly observed that
learning curves do cross [16]. Some algorithms perform particularly well when
trained on large amounts of data. In [25], a partial learning curve is built on
small data samples to iteratively select the most promising algorithms in a time-
constrained setting, showing significant time savings.



However, it usually doesn’t suffice to recommend a single algorithm. Typ-
ically, the algorithm contains many hyperparameters that need to be tuned,
and the model might benefit from certain pre-processing and post-processing
operators. Many strategies have been proposed to optimise the hyperparame-
ters of a given algorithm, including gradient decent methods [4], Bayesian opti-
mization techniques [33] and genetic algorithms [13, 22]. However, most of these
approaches do not leverage historical information on the performance of hyper-
parameter settings on previously seen problems. One simple way to do this is to
use meta-learning to build a model that recommends parameter settings [30], or
to view multiple algorithm configurations as individual algorithms [17]. Other
research leverages meta-learning to recommend when certain hyperparameters
should be tuned, or to predict a good initial parameter setting to speed up
Bayesian optimization [8].

The task of selecting appropriate pre-processing and post-processing opera-
tors has been less studied in the literature. Case-based reasoning has been an
early approach to select the most promising workflow out of a repository of
previously successful workflows [10, 18]. Planning algorithms were also leveraged
to construct and test possible workflows on the fly [1]. Most interestingly, the
authors of [6, 12, 19] have independently from each other created a technique
that exploits a meta-algorithm to predict what workflow to use. Their results
suggests that the even the structure and operators of a workflow can be learned.
In [7], the term Full Model Selection Problem was introduced, along with a par-
ticle swarm optimisation method to converge to a solution. The authors of [32]
propose a framework in which these methods can be defined, along with particle
swarm optimisation and genetic algorithm methods. Finally, graphical or other
interfaces have emerged as a practical solution to manually construct and test
many workflows, e.g. Weka [11], KNIME [2], ADAMS [23], and RapidMiner [28].
For a more complete overview of existing work in this area, see [29].

A common theme in this area is that a large body of workflows, and their
evaluations on large numbers of datasets, is required for almost any of these
methods to work well. In fact, it is often a limiting factor in demonstrating
the practical applicability of these systems. By integrating OpenML and Rapid-
Miner, it is our aim to work towards building the right infrastructure to foster
large scale research in this direction.

3 OpenML Connector

The integration1 consists of three new RapidMiner operators: one for download-
ing OpenML tasks, one for executing them and one for uploading the results.
Typically, they will be connected as shown in Figure 1(a). However, this modu-
larization in three operators will likely be beneficial in some cases. The operators
require an OpenML account to interact with the server.

1 Available on http://www.openml.org/



(a) Main Workflow

(b) Subroutine solving OpenML task

Fig. 1. Example of a RapidMiner workflow solving an OpenML task.

Download OpenML Task In order to make experiments reproducible, OpenML
works with the concept of tasks [27, 35]. A task is a container that includes the
input dataset(s), the data splits depending on the chosen evaluation procedure
(e.g., cross-validation or holdout), and other necessary inputs. The “Download
OpenML Task” operator downloads such tasks from OpenML and passes it to
the output port.

Execute OpenML Task The “Execute OpenML Task” is a so-called super-
operator ; it contains a sub-workflow that is expected to solve the task that is
delivered at the input port. The subroutine is executed for each defined training
set, and produces a model. This model is then used to predict the labels for
the observations in the associated test set. An example of such a sub-workflow,
including several pre-processing steps, is shown in Figure 1(b). The output of
this super-operator is a data structure containing predictions for all instances in
the test sets, and basic measurements such as run times.

Upload OpenML Task This operator uploads all relevant details of the work-
flow and the resulting predictions to OpenML. Details of the workflow are the
set of all operators, and the parameter settings for each operators. The predic-



tions contain the class label and confidences per class for classification tasks, or
the predicted values for regression tasks. This enables OpenML to calculate all
relevant performance measures, such as area under the ROC curve or RMSE.
Also the run times for each fold are uploaded.

Example Workflows The main contribution of the RapidMiner plugin is that
it automates the export of workflows to OpenML. Typically, a chain of oper-
ators is executed in order, possibly consisting of pre-processing operators that
change the feature set. For example, the Support Vector Machine algorithm of
RapidMiner can not operate on nominal features. In contrast to many WEKA
algorithms, which automatically provide a workaround, in RapidMiner the work-

(a) SVM

(b) PCA / k-NN

Fig. 2. Subprocess of the Execute OpenML Task operator, combining various pre-
processing models and the actual model using the “Group Models” operator.
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Fig. 3. Performance of RapidMiner and Weka algorithms on the “Spambase” dataset.

flow creator needs to define a solution. A possible solution could be to use the
Nominal to Numerical operator. As this operator changes the feature set for
each subsample of training set, the same pre-processing operations need to be
performed on the test set. Figure 2 shows how the RapidMiner Group Models
operator should be used to combine all pre-processing models and the algorithm
model. This ensures that evaluation process is executed on the same features as
constructed in the training set.

4 Research Opportunities

RapidMiner contains a large number of operators, covering a wide range of meth-
ods on various Machine Learning tasks. The OpenML integration thus opens up
many research opportunities. We present some basic results obtained by using
the RapidMiner plugin, and point out directions for future work.

Decent Machine Learning research is conducted over a wide range of datasets.
Yet, the results we present cover only a very small number of datasets. There-
fore, no real conclusions can be drawn from these experiments, and interesting
patterns should be addressed in future work.

Classification We can now easily compare the performance of various Rapid-
Miner algorithms against similar algorithms implemented in a different work-
bench, for example WEKA, because evaluations of other workbenches are already
available on OpenML. Figure 3 shows the result of 11 algorithm implementations
on the “spambase” dataset.All algorithms are executed with their respective de-
fault parameter settings. In the case of ensembles the base-algorithm is denoted;
in case of Support Vector Machines, the kernel was denoted.

One surprising observation is that performance differs significantly between
different implementations of the same basic algorithms. For example, even a
fairly simple algorithm like Naive Bayes does not yield the same performance in
both workbenches. In particular the difference in performance of the Random
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Fig. 4. Performance of regression algorithms on the “Wine Quality” dataset.

Forest and Boosting implementations of WEKA and RapidMiner is striking.
Figure 3(a) shows the predictive accuracy of the algorithms. The results suggest
that most WEKA algorithms are superior to their RapidMiner equivalents in
terms of predictive accuracy. However, when measuring the Area Under the ROC
Curve, most RapidMiner algorithms perform somewhat better, see for example
the Support Vector Machines as shown in Figure 3(b).

The fact that two implementations of the same algorithm yield very differ-
ent results can have various reasons. For example, different implementations can
handle missing values differently, e.g., by replacing missing values by the mean
of that attribute, or removing all observations that contain missing values.2 If
there is no parameter to control this behaviour, important aspects of model
building are hidden from us. Finding these differences can therefore help us un-
derstand what kind of pre-processing steps are important for certain algorithms.
Another possible explanation for why these results differ may be that the default
parameter settings of the different implementations were optimized differently.

Regression RapidMiner also contains many algorithms than can perform re-
gression tasks. In the next setup, we run some of these on the “Wine Quality”
dataset [5].Figure 4 shows some results.

Figure 4(a) shows the Mean Absolute Error of all regression algorithms.
There is a large group of algorithms with equivalent performance. Three al-
gorithm perform eminently worse. Figure 4(b) shows run times. There seems no
direct relation between good performance and higher run times.

It seems reasonable to assume that for regression tasks pre-processing steps
become even more important, as many algorithms do not natively deal with ir-
relevant features (e.g., k-NN) or nominal values (e.g., Support Vector Machines).
Fairly simple workflows can already make a big difference for regression tasks.

Learning Curves When running a algorithm on samples of increasing size,
a learning curve can be constructed. These can be used to perform algorithm

2 Note that the Spambase dataset used in Figure 3 has no missing features.
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Fig. 5. Learning Curves of RapidMiner algorithms on the “Mushroom” dataset.

selection, as is done in [16, 25]. In [21] algorithm selection is used done by running
algorithms on small samples of the data. The RapidMiner plugin can also operate
on these data samples, and supports the creation of learning curves.

Figure 5 shows some of these curves. The x-axis shows the size of the sam-
ple, and the y-axis shows the performance on each sample. The curves behave
as expected. In most cases, a larger sample size results in a higher accuracy.
Furthermore, the curves do cross occasionally. An algorithm that performs well
on a small sample is not necessarily competitive on larger samples, e.g., Rule
Induction.

The Pairwise Comparison method described in [25] selects algorithms based
on their performance on small samples. Enabling this method to operate on
workflows would be a non-trivial but very useful extension.

Full Model Selection The authors of [7] first introduced this term, describing
it as: given a set of pre-processing methods, feature selection algorithms and
algorithms, select the combination of these that obtains the highest predictive
accuracy for a given data set. The authors of [32] developed an uniform frame-
work for solving this problem, and also came up with a competitive algorithm
based on genetic algorithms. Workflows constructed in RapidMiner seem well
fitted for this application, and the plugin introduced here could help with the
experimentation and exploitation of such techniques.

Workflow Mining The authors of [19] propose a data mining advisor that
attempts to extract knowledge from previously ran workflows to build new ones.
Having access to a large repository of executed workflows gives the possibility of
extracting knowledge about which components work well in combination with
each other. By collecting a large set of workflow results in OpenML similar
experiments can be conducted on large scale.



5 Conclusions

We have developed and presented an integration of the OpenML online collabo-
ration platform within the RapidMiner workbench. OpenML currently contains
over half a million experiments, yet few of those cover complex workflows. Recent
work in meta-learning suggests that pre-processing and post-processing opera-
tors are an important part of successful algorithm selection solutions. It seems
a logical next step to stimulate meta-learning and algorithm selection research
on complete Machine Learning workflows, and this plugin is meant to enable
and foster the automated sharing and collection of experiments that explore the
performance of many possible workflows on many machine learning problems.
Several opportunities for ongoing and future research have been identified, which
can be pursued on an unprecedented scale through OpenML. We also hope to
stimulate the integration of OpenML into other workbenches that deal with
complex machine learning workflows.
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