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ABSTRACT

This paper evaluates the performance of Reduction to Uniproces-

sor Transformation (RUNT) with Voltage and Frequency Scaling,

called Static RUNT (S-RUNT) and Dynamic RUNT (D-RUNT),

respectively. Simulation results show that how to assign tasks to

servers in RUNT influences energy consumption and the worst-fit

heuristic is the best in many cases. In addition, the idle task as-

signment policy saves more energy consumption in D-RUNT and

D-RUNT outperforms S-RUNT if the actual case execution time of

each task is shorter than its worst case execution time.

Categories and Subject Descriptors

C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-

TEMS]: Real-time and embedded systems

General Terms

Algorithms

Keywords

Optimal Multiprocessor Real-Time Scheduling, Multiprocessor Sys-

tems, Real-Time Systems, RUN Algorithm

1. INTRODUCTION
Real-time systems have required multiprocessors and there are

mainly two categories of multiprocessor real-time scheduling: par-

titioned scheduling and global scheduling. Partitioned scheduling

assigns tasks to processors offline and there are no migratory tasks

but it guarantees only 50% processor utilization in the worst case

[1]. In contrast, global scheduling can achieve 100% utilization

by migrating tasks among processors online but increases run-time

overhead. We are interested in optimal multiprocessor real-time

scheduling algorithms, which can achieve 100% utilization with

any implicit-deadline periodic task sets. Several optimal multi-

processor real-time scheduling algorithms have been proposed and

Reduction to UNiprocessor (RUN) [13] outperforms other optimal

algorithms with respect to the number of preemptions/migrations.
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Since the small number of preemptions/migrations improves the

practicality of the scheduling, we focus on RUN.

RUN transforms the multiprocessor scheduling problem into an

equivalent set of uniprocessor scheduling problems by the DUAL

and PACK operations and the detail of them is described in Section

3. After transforming offline, RUN uses Earliest Deadline First

(EDF) [11] to transform the uniprocessor scheduling into the mul-

tiprocessor scheduling online because EDF is optimal in implicit-

deadline periodic task sets on uniprocessors. Using these opera-

tions, RUN achieves the optimality with low overhead.

Voltage and Frequency Scaling (VFS) is one of the most popu-

lar techniques to reduce energy consumption in computer systems.

Especially, Real-Time Voltage and Frequency Scaling (RT-VFS)

can reduce energy consumption by scaling the operating frequency

and the supply voltage while meeting real-time constraints. RT-

VFS is based on the essential characteristic of real-time tasks. All

tasks can be executed slowly as long as their deadlines are met.

In most of the CMOS-based modern processors, the dynamic en-

ergy consumption E is proportional to the operating frequency f
and the square of the supply voltage V (i.e., E ∝ fV 2) [3], and

the maximum operating frequency depends on the supply voltage.

Therefore, RT-VFS can effectively reduce energy consumption at

a cubic order of the operating frequency. RT-VFS has two follow-

ing techniques: Real-Time Static Voltage and Frequency Scaling

(RT-SVFS) and Real-Time Dynamic Voltage and Frequency Scal-

ing (RT-DVFS). RT-SVFS determines the voltage and frequency

offline and does not adjust them after the system starts. RT-DVFS

can reduce energy consumption by adjusting the voltage and fre-

quency online, which potentially saves more energy consumption.

Changing the voltage and frequency takes some time due to I/O

operations. If the overhead of RT-DVFS is small, it is possible

to ignore overhead or incorporate it into execution time of tasks.

However, RT-DVFS may incur significant overhead in some sys-

tems and RT-SVFS is a good solution for these systems. There is a

trade-off between energy consumption and overhead in RT-VFS.

In our previous work, Reduction to UNiprocessor Transforma-

tion (RUNT) [4] was proposed to achieve optimal multiprocessor

real-time scheduling algorithm based on RUN with Voltage and

Frequency Scaling. Unfortunately, the performance of RUNT is

not evaluated.

This paper evaluates the performance of RUNT with RT-SVFS/RT-

DVFS, called Static RUNT (S-RUNT) and Dynamic RUNT (D-

RUNT), respectively. Simulation results show that the saved energy

consumption strongly depends on the way to assign tasks to servers

in RUNT and the worst-fit heuristic is the most energy-efficient

in many cases. In addition, the idle task assignment policy saves

more energy consumption in D-RUNT and D-RUNT outperforms

S-RUNT if tasks are completed early.



2. SYSTEM MODEL

2.1 Processor Model
The system has M processors Π = { P1, P2, ..., PM }. Each

processor Pj is characterized by the continuous normalized fre-

quency αj (0 ≤ αj ≤ 1). Here, we discuss the differences be-

tween the system model and practical environments. (i) In prac-

tical environments, the system has the discrete frequency values

F = { f1, ..., fL | fmin = f1 < ... < fL = fmax } and the dis-

crete voltage values V = { V1, ..., VL | V1 < ... < VL }. We as-

sume that Vk corresponds to fk and the voltage is also changed

at the same time as the corresponding frequency is changed. The

lowest frequency fi ∈ F such that αj ≤ fi/fmax will be selected

to achieve the lowest energy consumption while meeting real-time

constraints. (ii) The system model assumes that no overhead oc-

curs at run-time. In practical environments, the scaled frequency

interferes with the scheduling even if the frequency is not changed

dynamically. The worst case overhead is included in the worst case

execution time (WCET).

2.2 Task Model
The system has a task set T = { τ1, τ2, ..., τN }, which is a set

ofN periodic tasks onM processors. Each task cannot be executed

in parallel among processors. Each task τi has its WCET Ci and

period Ti. The jth instance of task τi is called job τi,j . Task τi
executed on a processor Pj requires Ci/αj processor time at every

Ti interval. The relative deadline Di is equal to its period Ti (i.e.,

implicit-deadline). All tasks must complete the execution by their

deadlines. The utilization of each task is defined as Ui = Ci/Ti

and the system utilization is defined as U = 1
M

∑
i
Ui. We assume

that all tasks may be preempted and migrated among processors at

any time, and are independent (i.e., they do not share resources and

do not have any precedence).

3. THE RUNT ALGORITHM
We introduce RUNT [4], which is an optimal multiprocessor

real-time scheduling algorithm based on RUN with VFS. RUNT

supports RT-SVFS/RT-DVFS techniques on uniform/independent

VFS multiprocessor systems, called Static Uniform RUNT (SU-

RUNT), Static Independent RUNT (SI-RUNT), Dynamic Uniform

RUNT (DU-RUNT), and Dynamic Independent RUNT (DI-RUNT),

respectively. Due to the space limitation, the detail of these algo-

rithms are explained in [4]. When the actual case execution time

(ACET) of each task is often shorter than its WCET [6], RUNT uses

Enhanced Cycle-Conserving EDF (ECC-EDF) [9] to reclaim slack

for reducing energy consumption. RUNT achieves a small number

of preemptions/migrations compared to RUN because these opera-

tions are performed when every scheduling event occurs. If a task

set does not satisfy the full system utilization, idle tasks are in-

serted because RUN assumes the full system utilization. An idle

task assignment policy is an important factor to reduce energy con-

sumption. Therefore, the idle ratio-fit was proposed in our previous

work. We explain the overview of the RUN algorithm, the ECC-

EDF algorithm, and the idle ratio-fit as follows.

3.1 The RUN Algorithm
RUN [13] is an optimal multiprocessor real-time scheduling al-

gorithm with a small number of preemptions/migrations. We ex-

plain the detail of RUN in offline and online phases.

Now we introduce the RUN’s specific model because RUN has

many original parameters and assumptions to explain itself. A sys-

tem is fully utilized if the system utilization U is one. Since RUN

assumes the full system utilization, idle tasks are inserted to fill in

the slack if U < 1. The total utilization of idle tasks is defined

as Uidle = M −
∑

i Ui. Note that each idle task has just the pa-

rameter of utilization and does not have other parameters including

WCET and period.

RUN transforms the multiprocessor scheduling to the uniproces-

sor scheduling by aggregating tasks into servers S. We treat servers

as tasks with a sequence of jobs but they are not actual tasks in the

system; each server is a proxy for a collection of client tasks. When

a server is running, the processor time is used by one of its clients.

Clients of a server are scheduled via an internal scheduling mech-

anism. The utilization of each server Sk is Usrv
k =

∑
τi∈Sk

Ui,

where τi ∈ Sk means that task τi is first assigned to server Sk, and

Usrv
k does not exceed one.

3.1.1 Offline Phase

In an offline phase, RUN reduces the multiprocessor scheduling

to the uniprocessor scheduling by the DUAL and PACK operations.

RUN uses EDF for uniprocessor scheduling because EDF is opti-

mal in implicit-deadline periodic task sets on uniprocessors.

The DUAL operation transforms a task τi into the dual task τ∗i ,

whose execution time represents the idle time of τi (i.e.,C∗
i = Ti−

Ci). The relative deadline of dual task τ∗i is equal to that of task τi.
The dual task τ∗i is executed exactly when the original task τi is idle

and vice versa. A schedule for the original task set is obtained by

blocking τi whenever τ∗i executes in the dual schedule. In addition,

the sum of utilizations of task τi and dual task τ∗i is one and the

utilization of dual task τ∗i is U∗
i = C∗

i /Ti. The DUAL operation

reduces the number of processors whenever N −M < M .

The PACK operation packs dual servers into packed servers whose

utilizations do not exceed one. When N −M ≥ M , the number

of servers can be reduced by aggregating them into fewer servers

by the PACK operation. The scheme how to pack servers to fewer

servers is heuristic and the PACK operation is similar to the parti-

tioning scheme. Note that if assigning tasks to processors is suc-

cessful, RUN generates the same schedule as Partitioned EDF (P-

EDF) and does not perform the DUAL and PACK operations. Oth-

erwise the DUAL and PACK operations are performed to generate

the reduction tree offline, which is used to make server scheduling

decisions online. The detail of making scheduling decisions in the

reduction tree is shown in the next subsection.

In order to explain the reduction tree, we define the following

terms with respect to servers as follows. A unit server is a server

whose utilization is one. A null server is a server whose utilization

is zero. A root server is a last packed server whose utilization is

one (unit server).

Packing the dual servers of packed servers can reduce the num-

ber of servers by at least (almost) half. We perform DUAL and

PACK operations repeatedly until all packed servers become unit

servers. Now we define a REDUCE operation to be their composi-

tion.

DEFINITION 1 (FROM DEFINITION IV.6. IN [13]). Given a

set of servers Γ and a packing π of Γ , a REDUCE operation on a

server S in Γ, denoted byψ(S), is the composition of the DUAL op-

erationϕwith the PACK operation σ for π (i.e.,ψ(S) = ϕ(σ(S))).

In addition, we define reduction level/sequence to explain the re-

duction tree as follows.

DEFINITION 2 (FROM DEFINITION IV.7 IN [13]). Let i ≥ 1
be an integer, Γ be a set of servers, and S be a server in Γ. The

operator ψi is recursively defined by ψ0(S) = S and ψi(S) =
ψ ◦ψi−1(S). {ψi}i is a reduction sequence, and the server system

ψi(Γ) is said to be at reduction level i.
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Figure 1: Reduction tree on three processors

Note that assigning tasks to servers is defined as reduction level 0

that does not perform the REDUCE operation.

Figure 1 shows the reduction tree on three processors. τ
(Ci,Ti)
i

expresses that task τi has WCET Ci and period Ti. Tasks τ1, τ2,

τ3, τ4, and τ5 are assigned to servers S1, S2, S3, S4, and S5 at

reduction level 0, respectively. The total utilization of idle tasks is

Uidle = M −
∑

i
Ui = 3 − 5 × 0.4 = 1. In this example, idle

tasks are assigned to servers at reduction level 0 uniformly, i.e.,

the utilization of each server is added to Uidle/N = 1/5 = 0.2,

respectively.

We represent a server as S
(Usrv

k
),{ Dk }

k , where Usrv
k is the uti-

lization of server Sk and Dk is the deadline set of server Sk . The

deadline set includes all (absolute) deadlines of tasks in the server.

Each server sets the earliest deadline in each deadline set when the

server is released. We assign deadline sets 5N∗, 10N∗, 15N∗,

10N∗ , and 5N∗ to servers at reduction level 0, respectively, where

N∗ means natural numbers. Servers S6, S7, S8, S9, and S10 are

generated by the DUAL operation at reduction level 1 and their uti-

lizations are 0.4 because these servers are dual servers of servers

S1, S2, S3, S4, and S5 at reduction level 0, respectively. In this ex-

ample, servers S6 and S7 are packed, servers S8 and S9 are packed,

and server S10 is not packed by the PACK operation. Servers S11,

S12, and S13 are generated by the DUAL operation at reduction

level 2. Finally, server S14 is generated by the PACK operation at

reduction level 2 and its utilization is one, and hence the REDUCE

operation is finished and the reduction tree is completely generated.

Note that the number of root servers may become more than one

because when all servers are unit servers at the highest reduction

level, then the REDUCE operation is finished. If one server is a

unit server, its dual server is a null server, which is packed into

another server when the next PACK operation is performed.

3.1.2 Online Phase

In an online phase, RUN schedules servers by the following rules

and we use Figure 1 for reference.

RULE 3 (FROM RULE IV.2 IN [13]). If a packed server is run-

ning (circled), execute the child node with the earliest deadline

among those children with work remaining; if a packed server is

not running (not circled), execute none of its children.
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Figure 2: An example of RUN scheduling on three processors

RULE 4 (FROM RULE IV.3 IN [13]). Execute (circle) the child

(packed server) of a dual server if and only if the dual server is not

running (not circled).

In the reduction tree, a thick arrow represents a scheduled server

and a thin arrow represents a non-scheduled server by each par-

ent server. If a thick arrow from a server points a task, the server

schedules the task.

In Figure 1, root server S14 is always running, regardless of these

rules, because a root server is always a unit server. Next, S14 makes

scheduling decisions in EDF order and server S12 is running at this

time. Since server S12 is running, S8 and S9 are not running by

Rule 3. Since servers S11 and S13 are not running, servers S7 and

S10 are running by Rule 4. Servers S6, S8, and S9 are not running,

and hence servers S1, S3, and S4 are running by Rule 4.

Figure 2 shows an example of RUN scheduling on three proces-

sors. Each server is executed on virtual processor V PR,v , where R
represents the reduction level and v represents the virtual processor

ID at each reduction level. The task set is shown in Figure 1 and

this example shows the scheduling decisions at time 4. This system

has three processors P1, P2, and P3, reduction level 0 has three

virtual processors V P0,1, V P0,2, and V P0,3, reduction level 1 has

two virtual processors V P1,1 and V P1,2, and reduction level 2 has

one virtual processor V P2,1.

RUN uses the following task-to-processor assignment scheme;

(i) leave executing tasks on their current processors, (ii) assign idle

tasks to their last-used processor, when available, to avoid unneces-

sary migrations, and (iii) assign remaining tasks to free processors

arbitrarily. By this scheme, each server assigns tasks to processors

P1, P2, or P3 in Figure 2. When each task completes its execu-

tion on one processor, the processor becomes idle until the server

of each task exhausts its budget. For example, server S5 running on

V P0,1 completes task τ5 on processor P1 at time 3 and P1 becomes

idle (executes idle task) in time interval [3,4).



3.2 The ECC-EDF Algorithm
ECC-EDF [9] is an RT-DVFS technique on uniprocessors and

ensured that any implicit-deadline periodic task set T with utiliza-

tion U ≤ 1 is successfully scheduled. In addition, ECC-EDF out-

performs CC-EDF theoretically and Look-Ahead EDF [12] exper-

imentally with respect to energy consumption. Therefore, ECC-

EDF is used in RUNT to achieve optimal multiprocessor real-time

scheduling with RT-DVFS as well as EDF is used in RUN. To im-

prove CC-EDF, ECC-EDF takes the elapsed time of tasks into con-

sideration and finds the maximum utilization saved by the slack

on completion of the task by calculating the minimum utilization

needed to process the slack by its deadline using following Equa-

tion 1.

Us
i =

Ci − cci
Ti − Ei

, (1)

where cci is the ACET of task τi and Ei is the elapsed time of task

τi.

3.3 Idle Ratio-Fit
The idle ratio-fit [4] assigns idle tasks to servers uniformly for

reducing energy consumption in an offline phase when the system

is not fully utilized. The idle ratio-fit is inspired by optimality on

energy-efficiency of the worst-fit. Aydin and Yang proved that a

task assignment that evenly divides the total utilization among all

the processors, if it exists, will minimize the total energy consump-

tion, and also showed that the worst-fit task assignment heuris-

tic outperforms other heuristics in energy-efficiency including the

first-, next-, and best-fit [2]. We define the idle ratio of Sk denoted

by IdleRatio(Sk), which is the ratio of the utilization of idle tasks

assigned to server Sk to the utilization of Sk, as follows.

IdleRatio(Sk) =
U idle

k

Usrv
k

, (2)

where Usrv
k is the utilization of each server Sk and U idle

k is the

utilization of idle tasks assigned to server Sk. The idle ratio-fit

lowers the idle ratio of each server on average to reduce energy

consumption. Due to the space limitation, the detail of the idle

ratio-fit is shown in [4].

4. SIMULATION STUDIES

4.1 Simulation Setups
In this section, we evaluate RUNT through simulation studies.

This system has 16 processors (M = 16) on static/dynamic and

uniform/independent VFS systems. We use three frequency sets as

follows: F1 = { 0.5, 0.75, 1.0 } , F2 = { 0.5, 0.75, 0.83, 1.0 } , F3 =
{ 0.36, 0.55, 0.64, 0.73, 0.82, 0.91, 1.0 }. When a processor goes

to idle, the processor sets its frequency to the minimum one. For

example, when a processor using F1 goes to idle, set the operating

frequency to 0.5. Due to space limitations, we only show the results

of independent VFS techniques.

This simulation uses 1, 000 task sets in each system utilization.

The system utilization U is selected from [0.3, 0.35, 0.4, ..., 1.0].
Each Ui is selected within [0.01, 0.02, 0.03, ..., 1.0]. The period Ti

of each task τi is selected within [100, 200, 300, ..., 1600]. Tasks

in each task set are ordered by decreasing utilization. The ratio of

ACET to WCET is set to the range of [0.5, 1.0] or [0.75, 1.0], or

always 1.0, represented as DI-RUNT(50%), DI-RUNT(75%), and

DI-RUNT(100%), respectively. The simulation length is the hyper-

period of each task set.

The effectiveness of RUNT is in terms of energy ratio, which is

defined as follows.

Energy Ratio =
1

T

∫ T

0

∑
Pk∈Π f

3
i

M
dt

4.2 Simulation Results

4.2.1 Task Assignment Policy

First, we evaluate the task assignment policy to examine which

heuristic is the most energy-efficient in RUNT. We use the idle

ratio-fit as the idle task assignment policy.

Figure 3 shows the simulation results of task assignment pol-

icy in SI-RUNT and DI-RUNT. In SI-RUNT, the worst-fit reduces

energy consumption the most when U ≤ 0.6 but other heuristics

outperform the worst-fit when U > 0.6 (Figures 3(a), 3(b), and

3(c)). Since SI-RUNT selects the maximum frequency among all

frequencies of servers assigned to the processor, it is necessary to

decrease them as much as possible. A simple way to realize this is

to insert idle tasks to a server, and hence the utilization of the server

can be 100%. Servers with 100% utilization can use the processors

exclusively and if the server has slack generated by inserting idle

tasks, we can decrease the frequency of the processor. Even if the

original utilization of the server which uses the processor exclu-

sively and inserting idle tasks may not be effective, isolating the

server increases the potential of decreasing the frequency assigned

to other processors. This idea is similar to T-N Plane Transfor-

mation (TNPT) [7, 8] that classifies tasks into two classes: heavy

tasks and light tasks, and a heavy task uses a processor exclusively.

In contrast, the first- and best-fit tend to increase the utilization of

each server up to 100%, and hence inserting idle tasks with low

utilization can make the utilization of each server be 100%. For

this reason, when the utilization of the task set becomes large and

few servers can decrease their frequency, the first- and best-fit can

outperform the worst-fit.

In DI-RUNT, the worst-fit reduces energy consumption the most

(Figures 3(d), 3(e), and 3(f)). The worst-fit tends to uniform the

utilization of each server, which results in well-balanced load of

each processor that can decrease the frequency effectively. When

the level of frequency becomes more fine-grained, that is to say,

the number of selectable frequency values becomes large, the ac-

tual frequency approaches theoretically optimal value. Therefore,

energy consumption in the frequency set F3 is the lowest in all fre-

quency sets.

4.2.2 Idle Task Assignment Policy

Next we measure the effectiveness of the idle task assignment

policy, called idle ratio-fit, compared to other idle task assignment

policies. We use the worst-fit as the task assignment policy because

the worst-fit outperforms other heuristics in many cases as shown

in Section 4.2.1.

Figure 4 shows the simulation results of the idle task assignment

policy with the worst-fit in SI-RUNT and DI-RUNT. In SI-RUNT,

the first-, best-, and worst-fit reduce more energy consumption than

the idle ratio-fit (Figures 4(a), 4(b), and 4(c)). This is the similar

reason to the task assignment policy discussed in Section 4.2.1. RT-

SVFS needs to decrease the frequency of all servers. In DI-RUNT,

on the other hand, the idle ratio-fit achieves the best results (Figures

4(d), 4(e), and 4(f)) because the idle ratio-fit is based on the idea of

the worst-fit and assigns idle tasks to servers uniformly. Especially,

the idle ratio-fit is superior to other idle task assignment policies in

a coarse-grained frequency set such as F1 or F2 and can save more

energy as shown in Figures 4(d) and 4(e).
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(b) SI-RUNT in Frequency Set F2
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(c) SI-RUNT in Frequency Set F3
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(d) DI-RUNT in Frequency Set F1
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(f) DI-RUNT in Frequency Set F3

Figure 3: Task Assignment Policy with Idle Ratio-Fit

Table 1: Task and idle task assignment policies

Algorithm Frequency Set Task Assignment Idle Task Assignment

SI-RUNT F1 Worst-Fit Idle Worst-Fit

SI-RUNT F2 Worst-Fit Idle First-Fit

SI-RUNT F3 Worst-Fit Idle Best-Fit

DI-RUNT F1, F2 , and F3 Worst-Fit Idle Ratio-Fit

4.2.3 Comparison of DI-RUNT with SI-RUNT

DI-RUNT is compared to SI-RUNT with respect to energy ratio.

Table 1 shows task and idle task assignment policies in each algo-

rithm. We choose these policies from the results of lowest energy

ratio in Sections 4.2.1 and 4.2.2.

Figure 5 shows the simulation results of SI-RUNT and DI-RUNT.

The smaller the ratio of ACET to WCET is, the more DI-RUNT can

reduce energy consumption because small ACET/WCET means a

large amount of dynamic slack and the ratio of slack in the utiliza-

tion of each server is increased, which results in decreasing the fre-

quency. Note that even if the ACET of each task is always equal to

its WCET, DI-RUNT outperforms SI-RUNT except for U = 1. SI-

RUNT determines the frequency of each processor before starting

the system and cannot change the frequency online. On the other

hand, DI-RUNT can make use of dynamic slack, which is produced

in the early completion of tasks, to decrease the frequency. In the

case of U = 1, the system has no idle time, and hence SI-RUNT

consumes the same energy as DI-RUNT(100%).

5. CONCLUSION
This paper evaluated the performance of RUNT, which is an

optimal multiprocessor real-time scheduling algorithm based on

RUN with RT-VFS. Simulation results show that RUNT can reduce

energy consumption with the worst-fit task assignment heuristic,

compared to other task assignment heuristics, in many cases. Inter-

estingly, the idle ratio-fit does not reduce energy consumption com-

pared to traditional assignment heuristics in RT-SVFS but reduces

energy consumption the most in all idle task assignment policies in

RT-DVFS.

In future work, we will compare RUNT to other RT-SVFS/RT-

DVFS techniques such as TNPT [7, 8] with respect to the energy

consumption and the number of preemptions/migrations. We will

implement RUNT to evaluate energy consumption and overhead in

the RT-Est real-time operating system [5]. We will integrate the

static/dynamic power management techniques such as [10] with

RUNT to reduce energy consumption effectively.
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