Automatic Weight GGeneration and Class
Predicate Stability in RDF Summary Graphs

Mehmet Aydar, Serkan Ayvaz, and Austin Melton

Kent State University, Department of Computer Science,
241 Math and Computer Science Building. Kent, OH 44240, USA
{maydar, sayvazl, amelton}@kent.edu
http://www.kent.edu/cs

Abstract. In this current study, we use graph localities and neighbor-
hood similarity to enhance the summary graph generation approach for
building a summary graph structure for intelligent exploration of seman-
tic data. The key improvements to what we have previously proposed in-
clude the addition of a string similarity measure for the literal neighbors,
development of a stability measure to evaluate the accuracy of class rela-
tions, the addition of auto-generated property weights, and the detection
of noise properties.

Keywords: Semantic Web, RDF, Graph Summarization, Automatic
Property Weight

1 Introduction

In the recent years, there has been significant progress in publishing semantic
data in the Web as an ever-growing number of organizations adopt Semantic
Web technologies. The Linked Open Data Initiative [4] along with several other
Semantic Web projects has promoted publishing various open datasets in RDF
model by using a standard methodology, with the links between data items from
different data sources on the Web. While this has made available thousands of
general purpose datasets including DBpedia [2], FreeBase [5] and GeoNames [1],
and many domain-specific data sources in the Resource Description Framework
(RDF) data model, there is still a long way to go as Linked Open Data is still a
small portion of the information available on the Web.

An RDF graph consists of a set of RDF triples. In Semantic Web, the size
of RDF graphs can be very large, and processing an entire graph for each query
can be costly in terms of time and resources. A summary graph consists of the
type classes, members of the type classes, and the relations between the type
classes with each type class representing a collection of RDF resources having
the same type. The summary graph structure demonstrating the inferred class
types and class relations can be beneficial for intelligent explorations of semantic
data as it helps understand underlying structure and provides an intermediate
index structure for semantic searches to avoid unnecessary traversals of entire
RDF graphs.

2 Automatic Weight Generation and Class Predicate Stability

In our previous work, we proposed an efficient algorithm for auto-generating
a summary graph structure from an RDF dataset; our main goal was faster
computations. In this current study, we focus on key improvements in summary
graph generation process for potentially more accurate results.

1.1 Contribution and Outline
The main contributions of present study include the following:

— We auto-generate the importance weight of each property and each string
word for each of the reference IRIs, and we apply the weights in the pairwise
similarity calculation.

— We add a string similarity measure when two graph vertices are literal type.

— We generate the summary graph along with the classes and class relations
with a stability measure for each class relation. And we propose that the sta-
bility measures can also be utilized in semantic search algorithms to generate
more accurate results.

The rest of the paper is organized as follows. We briefly review the graph sum-
marization problem and discuss in detail the key improvements to our existing
solution. Then, we present the results of the evaluations. Finally, we review the
related work and follow this with our conclusion and future work.

2 Augmenting Graph Summary Computations

The Linked Data consist of a collection of RDF statements that intrinsically rep-
resents a labeled, directed multi-graph with which the resources are expressed
unambiguously. RDF statements describe resources in the form of triples, con-
sisting of subject-predicate-object expressions that describe a resource, the type
of a resource (type triple), or a relationship between two resources [9]. The sub-
ject in an RDF triple is either an Internationalized Resource Identifier (IRI) or
a blank node, the predicate is an IRI, and the object is either an IRI, a literal or
a blank node. The subjects and objects of triples in the RDF graph form RDF
nodes.

Each RDF node that corresponds to a unique RDF entity is represented with
a unique IRI, and the values such as strings, numbers and dates are represented
by literal nodes. A literal node can consist of two or three elements: a lexical
form, a datatype IRI and a language tag. The language tag in a literal node
is included if and only if the datatype IRI of the literal node corresponds to
rdf:langString [6]. A predicate in an RDF triple is also called a property of the
RDF subject node. A predicate can be one of two types: a DatatypeProperty
where the subject of the triple is an IRI and the object of the triple is a literal
or an ObjectProperty where both the subject and object of the triple are IRIs.
Each object of a subject node is called a neighbor of that subject node.

Automatic Weight Generation and Class Predicate Stability 3

2.1 Summary Graph Generation

A summary graph of a data graph is the directed graph such that each node in
the summary graph is a subset of the original graph nodes of the same type. Let
G = (V, L, E) be a data graph such that V is the finite set of vertices; L denotes
the finite set of edge labels; and F is the set of edges of the form I(u,v), with
u€V,v eV and!l € L. Note that an edge I(u,v) represents the RDF triple
(u,l,v). We define a summary graph as G' = (V’/, L', E’), such that V' contains
equivalence classes of V. E/ and L’ are, respectively, the sets of edges and labels
in the graph G’. As we will see, L' C L, and the elements of E’ are defined by
the elements in the equivalence classes in V’ and the edges in E.

There exists several methods to obtain a summary graph: (1) A summary
graph can be obtained from the dataset ontology, if the dataset is already tied
to an ontology. (2) Another way to obtain the summary graph is to locate the
type triples in the dataset and to organize the type classes and relations accord-
ingly, if the data set is published using a standard vocabulary [11]. (3) Or the
summary graph can be built automatically by inferring the class types based on
the similarity of the RDF nodes. Our graph summarization approach is based
on method 3.

In our previous study, we proposed an algorithm for building a summary
graph structure based on pairwise similarity matrices of the graph entities[3].
An efficient graph node pair similarity metric was introduced utilizing the graph
localities and neighborhood similarity within the Jaccard measure context [13]
in conjunction with RoleSim similarity [15], without relying on the existence of
a common vocabulary such as rdf:type or owl:sameas. The intuition is that the
nodes that have similar predicates connected to similar neighbors tend them-
selves to be similar nodes; thus, they should be in the same class. The properties
of the entities were treated as the dimensions of the entities when measuring the
entity similarity. The direct similarities of the entities were taken into account
along with the similarity of the neighbors with which they interact. Therefore,
our summary graph generation algorithm initially calculates the similarity of
the IRI node pairs that share at least one common edge label. Consequently the
algorithm generates the distinct classes based on a given threshold such that the
nodes u and v get put into the same class if their dissimilarity is less than the
defined threshold: e. More details of our summary graph generation approach
can be found in [3].

In this current study, we enhance our core summary graph generation ap-
proach [3] by incorporating literal node similarities, applying auto-generated
importance weights of the IRI node descriptors and developing a measure de-
scribing the degree of confidence of the summary graph class relations. In the
following sections, we describe these key improvement points in detail.

2.2 Literal Node Similarity

As stated in [3], our graph summarization approach is based on calculating the
similarity of entities by utilizing the predicates of the IRI nodes. Our premise

4 Automatic Weight Generation and Class Predicate Stability

is that similar nodes tend to have similar properties and interact with similar
neighbor nodes, which are either IRIs or literals. It is challenging to infer the
semantics of literal nodes. An effective literal node similarity metric is needed
for calculating the similarity of pairs of IRI nodes when some of the neighbors of
the IRI nodes are literal nodes. We think that incorporating literals when com-
puting the similarity of pairs can be beneficial when identifying similar entities,
particularly in datasets where the entities are commonly described using literals.
Thus, we are taking the similarity of literal neighbor nodes into account when
doing similarity calculations in present study.

While incorporating literals in the computation of the similarity of IRI node
pairs, we are assuming that all the literals are in the same language, as the same
literals may have totally different meanings in different languages. Thus there is
only one value for the rdf:langString component of the literal nodes if present. In
this work, we disregard the third component of rdf:langString if present, which
means we work only with the lexical form and the data type URI component of
a literal node. Both the lexical form and the data type URI component clearly
impact the similarity of a pair of literal nodes. Thus, they indirectly impact the
similarity of IRI nodes in the calculation of neighborhood similarity, and their
impacts need to be weighted. Since calculating the similarity of literal nodes
when data types are different is meaningless, we only give weight to the data
type factor when the two data types are equal. For the lexical form components
of the literal nodes, we use a string similarity technique based on common words
within the two lexical forms along with their auto-generated importance weights.
More details about the importance weights will be given in the following section.

2.3 Descriptor Importance and Automatic Detection of Noise
Labels

An IRI node is described through its predicates and the collection of literal
neighboring nodes in the lexical form. We call these the descriptors of the IRI
nodes. The similarity of two IRI nodes is calculated from their descriptor sim-
ilarities including the similarities of their neighbors. The accuracy of pairwise
graph node similarity is often impacted by the weight of a property associated
with the graph nodes when the nodes are object nodes or with the weight of
a string literal word referenced by the graph nodes when the nodes are literal
type. Each descriptor may have a different impact on an IRI node. Therefore,
identifying appropriate metrics for generating weights for the IRI descriptors to
be utilized in the pairwise graph nodes similarities is a formidable yet significant
task.

In this paper, we investigate the factors that can impact the weight of a
descriptor. We propose an approach for generating the importance weights of
the IRI node descriptors automatically. Our approach is based on two premises:
(1) the weight of a descriptor may differ for each IRI for which it is a descriptor
and (2) the weight increases proportionally by the number of times a descriptor
appears in the reference IRI, but it is offset by the frequency of the descriptor
in the entire RDF dataset. It is a similar notion to the term frequency-inverse

Automatic Weight Generation and Class Predicate Stability 5

document frequency (tf-idf) [16,20], a commonly used technique in information
retrieval, indicating that some words may be important in some documents but
not as important in other documents. More exactly, the importance of a word
in a document increases by its frequency in the document but its importance
decreases by its frequency in the corpus [18]. We apply the tf-idf concept to the
properties and nodes in RDF graphs to compute the weight of properties. tf-idf
is calculated as follows:

where the term frequency (tf) [16] represents the frequency of a proposition p
with respect to a graph subject node u. More exactly, when v € V and p € L,
then

f(p,u) = {v eV :ip(u,v) € B}, 2)

Equivalently, f(p,u) is the number of RDF triples with subject u and prop-
erty p.

To define tf(p, u), it is helpful to have a notation for the set of all properties
with subject w. Thus, for u € V, L(u) = {q € L : v € V with q(u,v) € E}.
Then

fp,u)
quL(u) flg,u)’

The inverse document frequency (idf) [20] represents the frequency of a prop-
erty usage across all graph nodes, and it is defined as

tf(p,u) = 3)

In Vi .
H{ueV:peL(u}

idf (p, G) = (4)

We apply a similar approach to calculate the weight of word importance in
literal nodes, which can consist of a set of words. A string literal is a range for a
DatatypeProperty. We assert that the weight of word importance depends upon
the source subject node, the frequency of the word within the triple collection
for each subject node, and the frequency of the word within the entire data set.

We calculate the property importance and assign weights depending on the
degree of distinctiveness of a property describing an entity. With property dis-
tinctiveness, we mean the uniqueness of a property in describing the key charac-
teristics of an entity type. For instance, if a property is specific to an entity type,
it is a distinguishing character of the type from other types. When a property
exists in all entity types, its quality of being distinctive is low. The noise labels
tend to be common for a majority of entities if not for all entities. By increasing
importance weights of properties with a higher degree of distinctiveness, we re-
duce the importance of noise labels automatically. As a result, the noise labels
have significantly less impact on the overall similarity measures.

6 Automatic Weight Generation and Class Predicate Stability

2.4 Class Relation Stability Metric

The summary graph from an RDF dataset is built automatically, and the con-
structed summary graph is also represented in RDF in our approach. The IRI
nodes that have similarity higher than a defined threshold are considered to be of
the same type, and they are categorized in the same class in the summary graph.
A class relation between a class ¢l and a class ¢2 is generated as a predicate and
represented as I(cl, ¢2) when there is at least one relation {(u,v) such that v and
v are IRIs in the dataset, G = (V, E, L), and u € ¢l and v € ¢2 with both ¢1 and
¢2 being type classes in the summary graph, G’ = (V', E’, L’). Then we have
l € L' and I(cl,c2) € E’. However, automatically generated summary graphs
can be error prone. Therefore, a metric to measure the degree of confidence of
a relation between classes in the summary graph would be beneficial. We call
this metric Class Predicate Stability (CPS). The CPS is similar to the stability
concept introduced by Paige and Tarjan [17].

For a triple (c1, p, ¢2) in the summary graph G’ with c1 and ¢2 being type class
IRI nodes and p being a predicate between them, the CPS metric is calculated
as the number of the IRI nodes w in class ¢l having a triple of the form (u,p,v)
with u € ¢l and v € ¢2 divided by the total number of the IRI nodes in ¢l in
the summary graph. CPS(cl, p, c2) is formulated as

|(u,p,v) s u € cl,v € c2}]
()
1]

where |cl| is the number of IRI nodes in the class c1. Note that |c1| > 0. We
define full CPS as follows: for two classes in the summary graph either all the
IRI nodes from cl are connected with a predicate p to at least one IRI node in
c2 or none of the IRI nodes in ¢l are connected with the predicate p to an IRI
node in ¢2.

The CPS value for a triple (c1,p,¢2) in the summary graph indicates how
strongly connected and how coarsely partitioned the type classes cl and c2 are
with the predicate p. Thus, the average of all the CPS values in the summary
graph is a measure of accuracy for the generated summary graph. CPS(G’) is
formulated as

CPS(cl,p,c2) =

|E'| o
z CPS(cl", p*, c2")
CPS(G) = = l (6)

where G’ = (V/,E', L’) is the summary graph and p’(cl?,¢2?) € E’, and thus
] > 0.

Another advantage of calculating the CPS metric is that it can further be
utilized in semantic search algorithms. In traditional semantic search algorithms,
the relations between two different type classes are assumed to be tightly coupled
[21]. In real situations this assumption may not always be true, especially if the
summary graph is auto-generated as in our study. We propose that the CPS
metric can be used as an impact factor between two type classes and utilized in
the semantic search graph traversal for more accurate results.

Automatic Weight Generat

3 Evaluations

ion and Class Predicate Stability 7

In the evaluations, we assessed the effectiveness of the proposed improvements

on three datasets: a subset of DBpedia [2

mantic Web content repository for Clinica
a subset of Lehigh University Benchmark
knowledge base systems.

]; a subset of SemanticDB [10], a Se-
1 Research and Quality Reporting; and
(LUBM) [12], a benchmark for OWL

< < L2 e e
£ 53388 558 .
. % & e 8¢ S 5¢ 469 &
S ¢ 585 5 5 T 855 &N
£ %55%5% 8338575 ¢ Yo
£ % L%HR33IF L8585 s e
% 2 B 23 339 cag £ 88F S & &
5% %3%28888 5L 8F T F e
% %, 39 egee 88554 & 3 o
Y% 0 @ T % 3 S S 2559 3L L & & ¥ o
) 3c%338 5285858 8P &8
2 D B o B O 0% :39@.6",;«6\»51,
> % TN 0g S 5 L S L
O%QO%*“-‘TP)NOO OOW‘O@Q&”@?,@@ & s o
%, %, 8 ¥ OOO Ooo TSP S o >
6‘,& %, 0 OO OO IRy ég"’b ,bg* & @ o
8 %, 70 O g€ & X
& s,),_é} .,3% Q (o) O% %\@@@ \?@o 6“‘8’
&, 7577 0 O P oo e
& 5% Q o U O o &P oo
Yo, 952 @) ‘éo < O e o o
&y, 385 O & O g St
M2, O (0] (@) o
Svens 180 o o A0
33, oo™ Neo
Evengp8 O Q¢ ©
Nt:254 o) 1) coro ner\/G‘a“"Az
Event:39, Lo Corona!
O rteryGraft:55
Evsm:zgzo OcorcnarYA
Event:316 O o O CoronaryArteryGraft:32
Event:260 O P Octag 8C°r°"arvAﬂeryGran:1o7
Coron,
00 O CorgeArteryGraft: 145
procedue 075 O oorenanyane,
S\“g\ca\ & u‘e-_gg o » a2 S C°"0na A ’YGIHFI:72
icalP 1O’ A23% 2= Co G,
Surgic? ged‘“e' o (0] G OCG "’"a,yA,’ raft.g
(P (" O 7on, e,
su‘g‘ca ‘ocad“ 2 [e) o) Co,bn a’hq,?s "aftgs
g*C e O [0, %ony, 14, VSt
o RS z(\o@z_@«o MR Sy, "%4 one, 190
)] cp\?‘a“ &6\3‘ @51,'1,&,500 OOQ ’7@0%7’?‘@,_1, '8/1:77
o o & PO g%, g g
©F o H Og OOO@«,_ %, 7%, 7 Yoy 0
. 2 & ®, 7, 5 " 7s
TS 8500000000008 %% % %
F L& STy genuTE %% G Y
& &8 O R Y
@ & 8 G ¢ O ELETE8S3 AT
s & “uwgEFetEgaT L@
& Gga a3

Fig. 1. A figure consisting of different types
class types.

of entities and elements belonging to the

We ran the datasets for summary graph generation with the core summary

graph generation algorithm that was prop
the improvements suggested in this work.

osed in our previous work [3] and with
The improvements include taking the

literal neighbor similarity and the dynamic property weight assignment into
account in type generation. The goal of our evaluations was to investigate the

impact of the improvements in real world

datasets.

The reason for selecting these three datasets was that they represent different

aspects of real world semantic data. Thus
proach in different types of datasets. Sem
data repository in Healthcare. It provide

, we tested the applicability of our ap-
anticDB is a domain specific semantic
s structured type information for the

entities that we utilized as the ground truth for automatic verification of the
accuracy in the evaluations. Lehigh University Benchmark (LUBM) is a struc-

8 Automatic Weight Generation and Class Predicate Stability
Table 1. A Sample of RDF Triples from Each Dataset
Dataset Subject Predicate Object
SemanticDB SurgeryProcedure:236 hasCardiacValveAnatomyPathologyData CardiacValveAnatomyPathologyData:70
SemanticDB SurgeryProcedure:236 hasCardiacValveRepairProcedureData CardiacValveRepairProcedureData:16
SemanticDB SurgeryProcedure:236 SurgeryProcedureClass ”cardiac valve”
SemanticDB SurgeryProcedure:236 CardiacValveEtiology ”other”
SemanticDB SurgeryProcedure:236 CardiacValveEtiology Event:184
SemanticDB SurgeryProcedure:236 belongsToEvent Event:184
SemanticDB SurgeryProcedure:236 SurgeryProcedureDescription ”pulmonary valve repair”
SemanticDB SurgeryProcedure:236 CardiacValveStatusologyData "native”
SemanticDB SurgeryProcedure:104 hasCardiacValveAnatomyPathologyData CardiacValveAnatomyPathologyData:35
SemanticDB SurgeryProcedure:104 SurgeryProcedureClass ”cardiac valve”
SemanticDB SurgeryProcedure:104 CardiacValveEtiology ”rheumatic”
SemanticDB SurgeryProcedure:104 belongsToEvent Event:81
SemanticDB SurgeryProcedure:104 SurgeryProcedureDescription ”mitral valve repair”
SemanticDB SurgeryProcedure:104 CardiacValveStatus "native”
LUBM Student49 telephone 7 XXX-XXX-XXXX
LUBM Student49 memberOf http://www.Department3.University0.edu
LUBM Student49 takesCourse Course32
LUBM Student49 name ”UndergraduateStudent49”
LUBM Student49 emailAddress ”Student49@Department3. University0.edu”
LUBM Student49 type UndergraduateStudent
LUBM Student10 telephone ? XXX-XXX-XXXX"
LUBM Student10 memberOf http://www.Department3.University0.edu
LUBM Student10 takesCourse Course20
LUBM Student10 name ?UndergraduateStudent10”
LUBM Student10 emailAddress ?Student10@Department3. University0.edu”
LUBM Student10 type UndergraduateStudent
DBPedia Allen_Ginsberg wikiPageUsesTemplate Template:Infobox_writer
DBPedia Allen_Ginsberg influenced John_Lennon
DBPedia Allen_Ginsberg occupation ”Writer, poet” @en
DBPedia Allen_Ginsberg influences Fyodor_Dostoyevsky
DBPedia Allen_Ginsberg deathPlace ”New York City, United States” @en
DBPedia Allen_Ginsberg deathDate 71997-04-05"
DBPedia Allen_Ginsberg birthPlace ”Newark, New Jersey, United States” @en
DBPedia Allen_Ginsberg birthDate ”1926-06-03”
DBPedia Allen_Ginsberg deathPlace ?New York City, United States” @en
DBPedia Albert_Camus wikiPageUsesTemplate Template:Infobox_philosopher
DBPedia Albert_Camus influenced Orhan_Pamuk
DBPedia Albert_Camus influences Friedrich_Nietzsche
DBPedia Albert_Camus schoolTradition Absurdism
DBPedia Albert_Camus deathPlace ”Villeblevin, Yonne, Burgundy, France” @en
DBPedia Albert_Camus deathDate 71960-01-04"
DBPedia Albert_Camus birthPlace ”Drean, El Taref, Algeria” @en
DBPedia Albert_Camus birthDate ”1913-11-07"

Automatic Weight Generation and Class Predicate Stability 9

tured and well-known benchmark dataset, which has type information available.
However, the entities can have multiple types. Unlike SemanticDB, LUBM data
has hierarchical types. For instance, an entity can have both types: Student type
and Graduate Student type. Therefore, we performed a manual verification pro-
cess for the ground truth to ensure the accuracy of evaluations. Lastly, DBPedia
is a commonly used general purpose dataset, which is a central source in the
Linked Open Data Cloud [4]. Type information is not always present for entities
in DBPedia. Moreover, some entities have several types, including hierarchical
types, which makes it problematic for automatic verification of accuracy results.
Therefore, we manually verified the accuracy of the ground truth in the evalu-
ations. Table 1 demonstrates a sample of RDF triples from each dataset in the

evaluations.

Table 2. An Excerpt from Dynamically Assigned Weights of Descriptors

Dataset Node_Pair Descriptor_Type Descriptor Weight
LUBM (Student49,Student10) Property memberOf 14.7%
LUBM (Student49,Student10) Property takesCourse 44.1%
LUBM (Student49,Student10) Property emailAddress 14.0%
LUBM (Student49,Student10) Property type 5.7%

LUBM (Student49,Student10) Property name 7.5%

LUBM (Student49,Student10) Property telephone 14.0%
SemanticDB (Procedure:236,Procedure:104) Literal " cardiac” 13.6%
SemanticDB (Procedure:236,Procedure:104) Literal " native” 15.2%
SemanticDB (Procedure:236,Procedure:104) Literal ”other” 14.3%
SemanticDB (Procedure:236,Procedure:104) Literal ” pulmonary” 22.8%
SemanticDB (Procedure:236,Procedure:104) Literal "repair” 17.2%
SemanticDB (Procedure:236,Procedure:104) Literal ”valve” 16.9%
DBPedia (Allen_Ginsberg,Albert_Camus) Property wikiPageUsesTemplate 2.2%
DBPedia (Allen_Ginsberg,Albert_Camus) Property influences 58.3%
DBPedia (Allen_Ginsberg,Albert_Camus) Property deathDate 2.2%
DBPedia (Allen-Ginsberg,Albert_Camus) Property birthDate 2.4%
DBPedia (Allen_Ginsberg,Albert_Camus) Property birthPlace 2.1%
DBPedia (Allen_Ginsberg,Albert_Camus) Property deathPlace 2.1%
DBPedia (Allen_Ginsberg,Albert_Camus) Property influenced 30.7%

We also evaluated the performance of dynamic assignment of descriptor
weights. Table 2 shows a sample of dynamically assigned descriptor weights from
each dataset. As expected, the algorithm assigned higher weights to the prop-
erties with a higher degree of distinctiveness describing the resource type. For

10 Automatic Weight Generation and Class Predicate Stability

instance in LUBM dataset, takesCourse property is more descriptive of the Stu-
dent type than the name property, which is a common property for all class types
in the dataset. Thus, takesCourse was assigned a weight of 44.1% as compared
to the weight of 7.5% for name.

We observed that higher class dissimilarity threshold results in more coarse
classes, whereas the classes become more granular when the threshold is chosen
smaller. The beta factor and the class dissimilarity threshold can be tuned differ-
ently in various datasets. Their optimum values depend on the characteristics of
the datasets. For each dataset, we kept the beta factor and the class dissimilarity
threshold the same in both evaluations; core algorithm and algorithm with the
improvements. We found that the class dissimilarity threshold ranging between
0.3 to 0.6 in combination of the beta factor of 0.15 appeared to work well in our
evaluations.

It is clear that the evaluation with the suggested improvements generates a
summary graph with better accuracy and stability, as demonstrated in Table 3.
We noticed that the literal similarity improves the class generation accuracy in
datasets that have frequently used terminology as in the case of SemanticDB
and LUBM. On the other hand, it may have an adverse effect in datasets with
lengthy and diverse vocabulary of literals as in the example of DBPedia.

Table 3. Evaluation Results

Dataset Algorithm #Triples Class_Threshold #Iterations Stability Accuracy
SemanticDB Core 6,450 0.5 4 61.0% 87.3%
SemanticDB With Improvements 6,450 0.5 4 68.2% 94.1%
LUBM Core 6,484 0.3 3 67.8% 90.7%
LUBM With Improvements 6,484 0.3 3 78.4% 98.6%
DBPedia Core 10,000 0.6 3 82.4% 92.8%
DBPedia With Improvements 10,000 0.6 3 89.1% 92.2%

Figure 1 illustrates a small sample set of entities in the RDF graph from
SemanticDB and their corresponding class types in the summary graph. As
demonstrated in Figure 1, the classes C-E1 and C-E2 represent the entities that
are patient event types. They are classified in two different classes because when
compared with the original dataset we observed that the entities in C-E1 are
more specifically patient surgery-related event types while the entities in C-E2
are patient-encounter related event types. Also, the classes E-SP1 and E-SP2 are
surgical procedure types. More specifically, the entities in E-SP1 are coronary
artery and vascular procedure-related procedures while the entities in E-SP2 are
cardiac valve related-procedures. The classes C-VP and C-CAG represent the en-
tities that are related to vascular procedures and coronary artery grafts, respec-
tively. We implemented a basic algorithm to name the classes based on the class

Automatic Weight Generation and Class Predicate Stability 11

member IRIs. The classes C-E1, C-E2, C-SP1, C-SP2, C-VP and C-CAG are

named as C-Event-1, C-Event-2, C-SurgicalProcedure-1, C-SurgicalProcedure-
2, C-VascularProcedure and C-CoronaryArteryGraft, respectively.

C-MedicalDiagnosis

C-HeartChamberStatus

C-GraftSegment

C-CoronaryArteryGraft

51%
hasCoronaryArteryGraft

6%
hasVascularProcedure

C-SurgicalProcedure-1

6%

hasMedication

C-VascularProcedure
7%

Y Y
C-Medication-1 C-Medication-2

90%
hasCardiacValveAPData

hasMedication

C-SurgicalProcedure-2

C-CardiacValveAnamoyPathologyData

Fig. 2. An excerpt from the generated summary graph.

The summary graph is generated along with the classes and the class relations
with a stability measure for each relation. Figure 2 shows an excerpt from the
summary graph representing the class relations from SemanticDB dataset. The
percentage values beside the predicates are the stability (CPS) measure.

4 Related Work

Many methods have been proposed for calculating the graph node similarities in
an RDF data set, including our previous study [3]. While most of the similarity
calculations do not take the property weights into account, for example, [3] and

[14], there are some studies that try to calculate the property weights and apply
them in similarity calculations.

12 Automatic Weight Generation and Class Predicate Stability

H-Match[7] tried to detect the property weights using the distinct value based
weight generation, assigning higher weight to a property that references more
distinct values. However, a training set of instances may not always be available.

In [8] the authors suggest that properties with a maximum or an exact car-
dinality of 1 have a higher impact in instance matching, thus having a higher
property weight. This assumption does not work well in instance type discovery.
For instance, in a university related dataset a more specific property hasPresi-
dent should have more impact in type discovery than a more general property
hasName, even though both of the properties have the cardinality of one. In this
case, the assumption would misleadingly assign the same weight to both of the
properties.

On the other hand, [19] considers the ratio of the number of distinct val-
ues of a property to the number of instances in a dataset in addition to the
number of distinct values referenced by the property. However, they primarily
focus on instance matching, where property weights naturally yield precedence
to properties that make the instances more unique. Unlike the instance matching
approach, we emphasize the properties that would help describe the entity types
more distinctively.

In [17] the authors defined the stability concept to be used in a coarsest
partitioning problem. They utilized the stability concept on directed graphs. In
our work, we leverage the stability concept to be used in a summary graph which
is in RDF model.

5 Conclusion

In this paper, we described enhancements to our pairwise graph node similar-
ity calculation with the addition of the property and string word importance
weights. We introduced the Class Predicate Stability metric, which allows eval-
uation of the degree of confidence of each class predicate in the summary graph.
We experimented with the enhanced method applied in our previous core sum-
mary graph generation technique. The results show that our enhanced method
can yield more accurate results over the pure summary graph generation tech-
nique. Future work will focus on improvement of the scalability of the proposed
method. Furthermore, our plan is to investigate obtaining the optimum value of
the class dissimilarity threshold automatically and improving the class genera-
tion algorithm to discover the hierarchy of the class types.

Acknowledgments The authors would like to thank the Kent State University
Semantic Web Research Group (SWRG) members for their helpful feedback.

References

1. GeoNames, June 2015. http://www.geonames.org/.
2. Sren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. Springer, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Automatic Weight Generation and Class Predicate Stability 13

Serkan Ayvaz, Mehmet Aydar, and Austin C Melton. Building summary graphs
of rdf data in semantic web. In Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th International. IEEE, 2015.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story so far.
International journal on semantic web and information systems, 5(3):1-22, 2009.
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data, pages 1247-1250. ACM, 2008.

Dan Brickley and R. V. Guha. RDF Schema 1.1. W3¢ Recommendation, February
2014.

Silvana Castano, Alfio Ferrara, Stefano Montanelli, and C Quix. H-match: an
algorithm for dynamically matching ontologies in peer-based systems. In SWDB,
pages 231-250. Citeseer, 2003.

Keith Cortis, Simon Scerri, Ismael Rivera, and Siegfried Handschuh. Discovering
semantic equivalence of people behind online profiles. In In Proceedings of the
Resource Discovery (RED) Workshop, ser. ESWC, 2012.

Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. W3¢ Recommendation, February 2014.

Christopher D Pierce, David Booth, Chimezie Ogbuji, Chris Deaton, Eugene Black-
stone, and Doug Lenat. Semanticdb: A semantic web infrastructure for clinical
research and quality reporting. Current Bioinformatics, 7(3):267-277, 2012.
Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea.
Apples and oranges: a comparison of rdf benchmarks and real rdf datasets. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pages 145-156. ACM, 2011.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl knowl-
edge base systems. Web Semantics: Science, Services and Agents on the World
Wide Web, 3(2):158-182, 2005.

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., 1988.

Glen Jeh and Jennifer Widom. SimRank: a measure of structural-context similarity.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 538-543. ACM, 2002.

Ruoming Jin, Victor E Lee, and Hui Hong. Axiomatic ranking of network role
similarity. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 922-930. ACM, 2011.

Hans Peter Luhn. A statistical approach to mechanized encoding and searching
of literary information. IBM Journal of research and development, 1(4):309-317,
1957.

Robert Paige and Robert E Tarjan. Three partition refinement algorithms. STAM
Journal on. Computing, 16(6):973-989, 1987.

Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cam-
bridge University Press, 2011.

Md Hanif Seddiqui, Rudra Pratap Deb Nath, and Masaki Aono. An efficient met-
ric of automatic weight generation for properties in instance matching technique.
International Journal of Web & Semantic Technology, 6(1):1, 2015.

Karen Sparck Jones. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation, 28(1):11-21, 1972.

14 Automatic Weight Generation and Class Predicate Stability

21. Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k ex-
ploration of query candidates for efficient keyword search on graph-shaped (rdf)
data. In Data Engineering, 2009. ICDE’09. IEEE 25th International Conference
on, pages 405-416. IEEE, 2009.

