

Abstract— Moving robots from their carefully designed and

encapsulated work cells into the open, less structured human

workspace for collaboration with workers requires robust

error detection and recovery strategies. Foreseeing all possible

uncertainties and unexpected events and to program in

recovery actions at setup time is unfeasible. Online learning of

nominal execution behaviour and automatic detection of

anomalies using an Extended Markov Model, combined with

interactively trained Bayesian networks for mapping

anomalies to error causes and recovery actions, enables

automatic recovery from previously experienced errors. A

three-layered user-friendly model of errors—causes—

responses and a simple GUI allows non-expert user to define

new recovery activities and error causes when not yet handled

anomalies occur.

I. MOTIVATION

Today’s robot systems for industrial applications rely on
a structured environment to avoid errors. Parts, fixtures,
tools and stations have defined positions and the workspace
is encapsulated to avoid intruders that could possibly
endanger this defined environment. Expected exceptions
from the nominal case that were either foreseen during the
planning of the robot system, or occurred during the setup
phase of the system are coped with by integrating additional
sensors, adapting tool-, fixture and part geometries and
adding additional branches to the robot program to cope with
these deviations. Furthermore, as many robotic systems are
complicated, any exceptions and breakdowns occurring after
system setup often require external technicians or engineers
to diagnose and solve problems.

Such strictly controlled and carefully designed work
cells are only economically feasible if the designed robot
system will run unobstructed for a long time. Small and mid-
sized enterprises (SMEs) are often characterized by a much
more agile production style and consequently rely on human
workspaces. Moving robots out of their strictly controlled
and carefully designed spaces into human workspaces,
which are by nature unstructured environments with a high
degree of uncertainty, requires significantly enhanced
robustness towards unforeseen events and geometric or
other uncertainties. (The additional need for safety measures
to protect the human co-worker from injuries is out of scope
of this work, see e.g. [22], [12] and many others.) A SME
suitable robot system therefore needs semi automatic
exception handling and error recovery capabilities that allow
non-expert users to manage exceptions (internally and
externally triggered) occurring in daily operation. We
propose a novel skill-based exception handling and error

* The research leading to these results has been funded by the European

Union’s seventh framework program (FP7/2007-2013) under grant
agreements #608604 (LIAA: Lean Intelligent Assembly Automation) and

#287787 (SMErobotics: The European Robotics Initiative for

Strengthening the Competitiveness of SMEs in Manufacturing by
integrating aspects of cognitive systems).

A. B. Beck and A. R. Fugl are with the Danish Technology Institute. E-

mail: anbb@dti.dk and arf@dti.dk

recovery approach that allows non-robot expert users to
operate a robotic system embedded in a human-centric
workspace. We briefly introduce our execution model, detail
the Extended Markov Chain based Situation Awareness,
which forms the base for Exception Handling, and the Error
Recovery module employing a Bayesian network and beta-
binomial inference algorithm. The prosed system has been
implemented in a pick & place and in an assembly work cell,
which are finally presented.

II. RELATED WORK

Research in exception handling is related to the area of error

or fault recovery [17]. Error recovery has been defined as

“the process by which the system returns to a state where

production can restart after an abnormal and disruptive

condition has occurred” [23]. For a robot coworker to

effectively handle an exception, whether through informing

the human worker or resolving the problem by itself, the

types of faults that typically occur in the manufacturing

robotic assembly cases needs to be understood. Fault

taxonomies have been presented in other related fields,

including mobile robots [7], computing [3], autonomous

robots in RoboCup [21], workflow systems [16], service-

oriented architecture [6], and web service [8]. Reports show

that many errors in manufacturing systems, including CNC

machines, are hardware related and that approximately 60%

of all stoppages are due to tool breakdown [23]. However,

there has been a lack of study on the likelihood of common

errors and exceptions occurring during assembly tasks

involving collaborative robots. One of the reasons can be

that robot coworkers have not yet proven to be robust

enough for industry application to be studied and

generalized based on real assembly cases [14].

III. SKILL-BASED EXECUTION MODEL

At the base of the system is a Skill Execution Engine,
which allows a more goal-oriented task description than
strict motion based programming or planning. Without
going into details of the skill-model [1], we assume skills to
be independent, sensor-based motion or handling primitives
that adapt themselves to position uncertainties and other
deviations from an ideal state using build-in sensing and
monitoring as well as (limited) internal error recovery.
Robot tasks are constructed by chaining skills and control
flow instructions, forming a state machine [2] based on
SCXML1. While skills detect deviations from their expected
performance and report these, the skill executor by itself
does not provide any error recovery functionality. Features

N. Naumann is with the Fraunhofer Institute for Production Systems

and Automation. E-mail: Martin.Naumann@ipa.fraunhofer.de
B. Kahl is with the Gesellschaft für Produktionssysteme GmbH

Stuttgart. E-mail: bjoern.kahl@gps-stuttgart.de

1 Apache Commons SCXML executor,

http://commons.apache.org/proper/commons-scxml/.

Skill-based Exception Handling and Error Recovery

for Collaborative Industrial Robots

A. B. Beck, A. D. Schwartz, A. R. Fugl, M. Naumann, B. Kahl

FinE-R 2015

The path to success: Failures in Real Robots

Page 5 IROS 2015, Hamburg - Germany

October 2, 2015

mailto:anbb@dti.dk

of the skill executor that allow the implementation of error
recovery functionality at higher layers are:

 The skill executor knows and publishes the current
state of the system at any time. This allows an error
recovery module to relate errors on the one hand to
specific skill models and on the other hand to
specific application steps and therefore to draw
conclusions like “this is an error that is very typical
for a pick operation” or “this is an error that
occurred already in the past at this specific
execution step of the application”.

 The skill executor has an interface for an error
recovery module to stop and later continue the
execution of the skill based application program
thereby allowing worker interaction to recover from
errors detected by an error recovery module.

 The skill formalism used by the skill executor is
built on the concept of reusable hierarchical skills
that are easy to enhance or adapt. It is therefore
easily possible to include additional mechanisms
into an existing skill model to cope with errors that
could be detected by the system but just have not
been considered yet.

The Situation Assessment (SA) constantly monitors the
overall situation (robot task execution) using data published
by the skills executor as well as by additional sensors
dedicated for situation assessment. Deviations flagged by
the SA are further examined by the Exception Handling
(EH), which devises a possible cause and corrective
measure, potentially involving user interaction. The whole
system of skill executer, situation assessment and exception
handling is collectively referred to as “Exception Handling
Framework” or “EHF”.

IV. SITUATION ASSESSMENT

The role of Situation Assessment (SA) is to learn and
monitor the (correct) skill execution and detect non-nominal
conditions. Deviations from the learned, nominal behaviour
are interpreted as Anomalies, which are passed on to the
Exception Handler (section V). Our implementation of SA
is based on prior work by [4] and [5], where SA was applied
to mobile robotics. We implemented and expanded SA to
learn skill based execution in a collaborative robotic system.
To learn how to perform a skill correctly, SA captures the
essence of the skill by learning the timing and sequence of
events that make up the skill. Our approach is to generate
one parameterized model that includes parameters in the
space and time domain. SA learns the sequence of events
within a skill execution by learning a set of parameters with
a temporal component, recording the transition from one
instantiation of the parameters to the next:

p(𝑋) = 𝑝(𝑋1, 𝑋2, … , 𝑋𝑛) (1)

where 𝑋, a Situation Model, denotes a set of parameters (a
state), 𝑛 denotes a discrete step in time, and 𝑝, a Situation,
denotes the complete distribution of all the states within a
skill. Each state 𝑋𝑖 of 𝑋 is parameterized:

𝑋 = [𝑑1, 𝑑2, … , 𝑑𝑚] (2)

where 𝑑𝑖 are data components such as sensor values or
robot’s internal state values.

A. Situation Model

Situation Assessment uses a Situation Model as a
template description to fuse together the different data points
for learning a Situation. The components of the Situation
Model (𝑑𝑖 in (2)) are real number data, which can come from
any source and have any meaning. In our experience,
combining space and time is critical to the success of
learning a skill. For instance, learning a skill using a 6D F/T
sensor, the Situation Model 𝑠 could be defined as in (3).

𝑠𝑎 = [𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒, 𝐹x , 𝐹y , 𝐹𝑧 , 𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧] (3)

The component 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 of 𝑠a is a data point that
uniquely identifies the current primitive being executed in
the skill. In this case, the unique primitive ID provides the
understanding of time while the understanding of space is
provided by the F/T data. By using the primitive ID we can
learn a skill time invariantly. This means that SA will only
learn the sequence of the events and is invariant towards the
duration of the execution of specific primitives. We have
found this feature particularly useful when the duration of
the primitives or skills is stochastic. Should it be necessary
to catch anomalies in relation to when events occur (e.g. too
early or late), the primitive ID in (3) can be substituted with
a time data point. Throughout our research, we have
successfully applied SA to monitoring digital inputs, such as
the state of one or more grippers. Through the rest of the
paper, we will use the following Situation Model for
implementation and testing:

𝑠𝑏 = [𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝en, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑] (4)

where 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝𝑒𝑛 and 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑 are binary outputs of
reed switches of the gripper: 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝𝑒𝑛 is 𝑡𝑟𝑢𝑒 when the
gripper is fully open and 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑 is 𝑡𝑟𝑢𝑒 when the
gripper is fully closed. Our assumption is that the gripper is
grasping an object when both readings are 𝑓𝑎𝑙𝑠𝑒, indicating
the gripper is neither fully open nor closed.

B. Data Processing and Clustering

The Situation Model serves as a template describing
which sensors SA should fuse together into one single state.
In general, all data points in the Situation Model have to be
real numbers. This allows the computation of one single
metric for each 𝑋𝑖 in (1). We have so far used the Jaccard
similarity coefficient as a method for clustering similar
states. Through experimentation, we have found the
algorithm to be useful despite its simplicity.

C. Dynamic Learning in Situation Assessment

SA can autonomously learn a skill without the user
having to manually specify the states of a skill. We have
implemented a spatiotemporal model that allows for online
dynamic learning of states over time. For this purpose, we
are currently using the Extensible Markov Model (EMM) as
it is useful for online learning of sequences of states [10]. An
example of a dynamically learned model using the EMM
algorithm can be seen in Figure 1. In this example, a robot is
picking up a nut from a table and placing it on a pipe in a
single nonrecurring operation (therefore an open-ended
chain). The EMM is also useful in learning looped tasks.

FinE-R 2015

The path to success: Failures in Real Robots

Page 6 IROS 2015, Hamburg - Germany

October 2, 2015

D. Anomaly detection

SA has two modes of operation: learning and detection
during execution. In the learning mode, SA monitors the
data points specified in the Situation Model and builds the
Situation for the skill that is being learned. During execution
of the same skill, SA loads the saved Situation and applies
the same clustering process as during learning. However,
should the clustering of the data result in a new state in (1),
then SA will interpret that as an anomalous state has
occurred and issue an Anomaly warning. Processing and
handling the Anomaly is the task of the Exception Handler
(EH) module.

V. EXCEPTION HANDLER

The task of EH is to receive an Anomaly from SA and
provide a suggested solution that is most likely to solve the
problem. For each robotic system, EH maintains a
hierarchical four-layered Bayesian network with all
exceptions and solutions relevant to that cell. The
hierarchical structure allows EH to reason about the most
suitable solution to a problem. EH provides the suggested
solution to the user along with all other possible solutions.
The user is free to select the suggested solution, any other
solution or to create a new solution. The selection is stored
in EH as a sample of user solution preference. Such samples
are used in priming the network for inference with future
anomalies. With the feedback of user samples, a closed
preference-learning loop is formed to provide suggestions
for solutions to future anomalies. In this section, we provide
a detailed description of EH and begin with the role of the
Exception Scenario ES in EH.

A. Exception Scenario

The Exception Scenario (ES) is designed as a four-
layered model consisting of Anomaly, Error, Fault and
Response, inspired by work in [18]. The hierarchy is a four-
layered binary Bayesian network that facilitates inferring the
most likely Response (solution) to an Anomaly (a
deviation), an example is shown in Figure 2. At the lowest
level of the network, Anomaly nodes model anomalies
detected by SA. Each Anomaly node corresponds to a data
component (di of (2)) in the Situation Model. Above
Anomaly, the Error node models which kind of error the
Anomaly is and if the Anomaly should even be considered

2 Figure 2 shows a screen capture of GeNIe, a Bayesian modelling

environment developed by the Decision Systems Laboratory of the

University of Pittsburgh. Available at http://genie.sis.pitt.edu

an error. The Fault node models the root cause of the
Anomaly and the Response node models the solution to the
Fault. This model resembles the diagnosis model used by
physicians when examining a patient: Based on symptoms
(here: the detected error) an illness is inferred (here the
fault) and a therapy decided (here the response). The
intermediate step of a fault is necessary, since one and the
same observed error (symptom) can have multiple causes.
For example an unexpected gripper state can be due to a
failed grasping operation, a missing object at the pickup
position or a defective gripper itself.

B. Bayesian Network

Figure 2 is an example of a Bayesian network with three

Exception Scenarios for the two Anomaly nodes of the
sensors 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝𝑒𝑛 and 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑 in (4). Both Error
nodes are dependent on both Anomaly nodes, allowing the
Bayesian network to further strengthen the belief about the
cause of an Anomaly (simulated in GeNIe2). The first two
scenarios with nodes 𝑠1 = {1,3,5,8} and 𝑠2 = {1,3,6,9}, offer
two Responses to the Gripper Open Anomaly while the third
scenario 𝑠3 = {2,4,7,10}, offers a single Response to a
Gripper Closed Anomaly. The numbers in curly braces
indicate the node number in Figure 2. In this example we are
modelling two faults {5,6} and Responses {8, 9} for the
Gripper Open Anomaly. If a gripper is unexpectedly open
(Gripper Open = true, Gripper Closed = false), we could
interpret that as either a pneumatics failure (e.g. loss of air
pressure) that can be solved by checking and replacing the
air supply {5,8}, or an actuator failure (e.g. broken gripper)
that can be solved by repairing the gripper {6,9}. In the
reverse case of a closed gripper, we could interpret the
failure as there was no object to grip and the solution is
simply to replace the missing object. In Figure 2, the Faults
{5,6} are modelled as belonging to the same Error, Gripper
Operations Error {3}. This allows the network to learn user
selections for a specific Fault, Response pair over other pairs
belonging to the same Error node. The network is thereby
able to encode knowledge specific to individual user
environments.

Figure 1. Example of learning a task. The upper left corner shows the

temporal sequence of states the skill consists of. These states were
learned online while the robot performed the task. A full video is

available at https://www.youtube.com/watch?v=-CKbdQ3ocQo.

Figure. 2. Inference of cause and solution to Gripper Open anomaly.

Both error nodes are dependent on both anomaly nodes, allowing the

Bayesian network to further strengthen the belief about the cause of
an anomaly. Simulated in GeNIe1.

FinE-R 2015

The path to success: Failures in Real Robots

Page 7 IROS 2015, Hamburg - Germany

October 2, 2015

http://genie.sis.pitt.edu/
https://www.youtube.com/watch?v=-CKbdQ3ocQo

C. Inference

The process of inferring a Response to an Anomaly in
the Bayesian network, is the inference process of the EH.
This process is an implementation of Bayes’ theorem:

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 ∙ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (5)

We have implemented Bayes’ theorem in three steps:

 Calculate prior probabilities

 Introduce evidence to network

 Infer posterior probabilities

In the following, we describe each of these steps.

D. Inference

A prerequisite for performing inference is the calculation
of prior probabilities. As described in section IV, a feature
of the EHF is to learn the user-preferred solution of a given
anomaly. When the user selects a specific Exception
Scenario (i.e. an Error, a Cause and a Solution) to solve a
problem, it is fed back to the database as a sample of the user
selection, thus learning the preference of selecting this
Exception Scenario for a specific Anomaly. The sample data
is used to calculate the prior probability for each node of the
network. We treat calculating the node’s prior probability as
an inference process that adds another layer of Bayesian
inference as described in (5). We introduce the sample data
from user selection of Exception Scenarios as the evidence
to infer each node’s posterior probability. Each node of the
Bayesian network is a binary random variable modelling an
event that either occurs or not. For instance, if the user
selects the ES {1,3,5,8} in Fig. 2, then the user is confirming
that the specific ES solved the problem (e.g. that a Gripper
Open Anomaly did happen, it was caused by missing air
pressure and the solution was to resupply the air). At the
same time and equally important, the user is also confirming
that alternative events {4,6} to ES {1,3,5,8} did not occur.
Thus, with every selection of an ES, EH registers the
confirmed nodes on all levels of the ES, as well as the
rejected nodes. The process of selecting any node in the
Bayesian network over time, can be viewed as a Bernoulli
process following a binomial distribution as in (6).

𝑋~Binom(𝑛, 𝑝) (6)

where 𝑋 is the number of times a specific node has been
selected. 𝑛 is the number of samples drawn in the sequence.
If this process is sampled sufficiently, a distribution
reflecting the user selection can be inferred from the sample
set. However, in many cases it is not possible to provide a
sample set of sufficient size and inference will be subject to
uncertainty. To model this uncertainty, we model the user
selection for each node as a hyper-parameter 𝑝, thereby
modelling the user selection as a random variable itself and
creating a hierarchical Bayesian model for calculating the
prior probability [11]. This approach uses the samples of
user selection as a likelihood function providing evidence to
the inference process. Given the binomial likelihood, we
have chosen the Beta distribution as the prior distribution
(7).

(𝑝 | 𝛼, 𝛽) = Be(𝛼, 𝛽) (7)

In (7), the user selection is modelled as the
hyperparameter 𝑝, drawing samples from the Beta
distribution. 𝛼 and 𝛽 is respectively the number of samples

confirming and rejecting the selection of the node. The Beta
distribution is a conjugate distribution to the Binomial
distribution, thereby offering analytical tractability of the
Bayesian inference process. The conjugate property ensures
that when updating the prior Beta distribution (7) with new
evidence following the Binomial distribution, the resulting
posterior distribution is also a Beta distribution (8).

(𝑝 | 𝛼∗, 𝛽∗) =Be(𝛼∗, 𝛽∗) (8)

𝛼∗ and 𝛽∗ is respectively the new number of selections
and rejections for the specific node. Thus, obtaining the
posterior distribution in (8) becomes simply a matter of
adding new confirmations to the existing, and then
calculating the mean (𝜇) and variance (𝑣𝑎𝑟) (9,10).

In Figure 3, examples of Beta distributions for different
values of 𝛼 and 𝛽 are shown. Distribution 1: 𝐵e(𝛼 = 1, 𝛽 =
1) is a uniform distribution offering an uninformative prior
with a mean, 𝜇 = 0.5 and a high variance (uncertainty) due
to the low sample size. In this case, the posterior will largely
be determined by the data. Distribution 4: 𝐵e(𝛼 = 30, 𝛽 = 5)
has 𝜇 = 0.86 and a smaller variance, thus providing a
comparably less uncertain estimate of the user selection
preference, 𝑝. The sequence of graphs 1-4 in Figure 3, can
be seen as an example of a continuous learning cycle,
starting with no knowledge of user selection (a uniform

distribution with no samples) towards more informative
distributions 2-4 as the sample size increases. When a new
node is created with no samples available (𝛼 = 𝛽 = 1), the
Beta distribution is uniform. However, to avoid the
uninformative uniform distribution we propose to query the
user to provide a subjective estimate of the selection (the
mean) of this node along with a confidence level (the
variance). Using the equations for the mean (9) and variance
(10), suitable values for 𝛼 and 𝛽 can then be calculated.

E. Introducing evidence

The Bayesian network described in section V.B and Fig.
2 receives evidence in the form of Anomaly information
gathered by SA. In the example shown in Figure 2, SA has
detected that the gripper was unexpectedly fully open (thus
providing evidence that Gripper Open = true, Gripper
Closed = false. The evidence is in practice introduced to the
network by clamping the two nodes to their respective
values.

Figure 3. Four 𝐵𝑒(𝛼, 𝛽) distributions for different values of 𝛼, 𝛽.

Note that 𝛼, 𝛽 > 0, thus 𝛼 = 𝛽 = 1 is equal to no samples. 1: 𝐵𝑒(1,1), 𝜇

= 0.50, 𝑣𝑎𝑟 = 0.083. 2: 𝐵𝑒(2,1), 𝜇 = 0.67, 𝑣𝑎𝑟 = 0.056. 3: 𝐵𝑒(15,5), 𝜇

= 0.75, 𝑣𝑎𝑟 = 0.0089. 4: 𝐵𝑒(30,5), 𝜇 = 0.86, 𝑣𝑎𝑟 = 0.0034.

FinE-R 2015

The path to success: Failures in Real Robots

Page 8 IROS 2015, Hamburg - Germany

October 2, 2015

F. Posterior probabilities

After introducing evidence, posterior probabilities for all
nodes are calculated. We have used the SMILE reasoning
engine [9] for inference. The Response having the highest
posterior probability is selected as the suggested solution.
For each Response, the tree is descended towards the root
Anomaly nodes, thus mapping out each possible path
towards the root. The resulting list will have the most
probable ES listed first with all other less likely alternative
ES following in descending probability.

VI. USER INTERFACE FOR ERROR RECOVERY

While section V discussed the inner working of the
actual mapping process, we focus on a more user-centric
view in this section.

Whenever an anomaly is detected, the error layer
classifies it into an error cause. If no cause is found the user
is inquired and given the option to assign an existing cause,
dismiss the anomaly as not indicating an error or to create a
new cause (including a resolution, if known). Figure 4 shows
the dialog box after successfully mapping an anomaly to an
error and further to a recovery action. The user can accept

this solution or add a new solution. Figure 5 shows the
corresponding dialog box for adding a new triplet of error,
error cause and recovery action. The dialog boxes shown in
Fig. 4 and 5 are designed for use at system runtime and
therefore as simplistic as possible. A more elaborated
interface for managing the entire network of anomalies,
errors, causes and recovery actions is also provided and
targeted at specifically trained users that setup a new robot
application.

VII. EXPERIMENTAL EVALUATION

Within the scope of SMErobotics, this framework has
been intensively evaluated using various experiments. A
detailed example is the failure to grasp as described in the
following section. We have tested the system’s ability to
learn the preference of selecting a solution by manually
introducing the Gripper Open (GO) Anomaly, shown in Fig.
6, during the execution of a skill. In this test, we have tested
the system’s ability to learn the user preference of selecting
the Repair Actuator (RA) Response over the Replace
Pneumatics (RP) Response. For the purpose of the test, the
system had initially no knowledge of user selections
(samples), except for five samples confirming the choice of
the RP Response as the user preferred solution to the GO

Anomaly. Hereafter, we introduced the GO Anomaly
repeatedly, selecting the RA Response as the solution each
time. This process was repeated until EH started to suggest
the RA Response, thus demonstrating EHF’s ability to learn
the user preference of selecting the RA Response over the
RP.

Test results are shown in Fig. 6. Initially, EH has five
samples confirming the selection of the RP Response for the

GO Anomaly. Thus, when the GO Anomaly is introduced,
EH suggests RP as the most suitable Response to the GO
Anomaly with probability ~ 0.553. However, the user
ignores the EH suggested RP Response and instead selects
RA. Thus, when the GO Anomaly is introduced again, EH
now has six samples (five for RA and one for RP),
computing the most likely Response to be RP with
probability ~ 0.545, and so on. At RA sample 5, EH
computes the probability for each Response being identical
(~ 0.526). Again, the GO Anomaly is introduced and this
time EH suggests the RA Response with posterior
probability ~ 0.535. Thus, with five samples confirming RP,
it took six samples of RA for EH to suggest RA.

VIII. CONCLUSION AND FUTURE WORK

Through the test results in section VII, we showed that
EH is able to learn the user preference of selecting a solution,
even when it had learned a different preference earlier. As
the user selects a specific solution to an Anomaly, the
solution becomes more probable for future selection. This is
normally helpful, but can be problematic if the user wishes
the system to select a different solution, since learning a new
preference can take several iterations, as the test results
showed. This is especially true when the sample count for
the prior solution is high. A possible future solution could be

Figure 4 The system identified an error including a recovery action.

In case of misclassification the user can add a new exception or
dismiss the anomaly as not indication an error (button “Continue

Learning”).

Figure 5 Adding a new error cause or fault to the system.

Figure 6. Posterior probabilities for solution nodes Replace

Pneumatics (RP) and Repair Actuator (RA) to a Gripper Open

Anomaly. The solid line represents the posterior probability of the

RP and the dotted line represents posterior probability of RA. For
one sample of RP, it takes EH two samples of RA to learn the user

preference of selecting RA.

FinE-R 2015

The path to success: Failures in Real Robots

Page 9 IROS 2015, Hamburg - Germany

October 2, 2015

to introduce additional information in the Error Layer, e.g.
condition the error cause not only on the counting of user
selections, but also on the state of various system variables
at time of the user selection.

The system is currently being integrated in further
demonstrators in the context of the SMErobotics project and
will see more in-depth testing and possibly enhancements in
these demonstrators. Concept videos of these showing the
SMErobotics vision of future industrial robotics are
available at http://video.smerobotics.org; especially the D2
and D3 videos are relevant in the context of this work.

REFERENCES

[1] R. H. Andersen, “Definition of Hardware-Independent Robot Skills

for Industrial Robotic Co-Workers”, ISR, 2014

[2] R. H. Andersen , L. Dalgaard , A. B. Beck, J. Hallam, “An

Architecture for Efficient Reuse in Flexible Production Scenarios”,

Accepted for IEEE Int. Conf. on Automation Science and
Engineering (IEEE CASE 2015)

[3] A. Avizienis, et al, “Basic concepts and taxonomy of dependable
and secure computing,” IEEE Transactions on dependable and

secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[4] A. B. Bech, “Situation Assessment for Mobile Robots”. PhD thesis,
DTU Electrical Engineering, Danish Technological Institute, 2012.

[5] A. B. Beck, C. Risager, N. A. Andersen, O. Ravn, "Spacio-
Temporal Situation Assessment for Mobile Robots," in 14th

International Conference on Information Fusion (FUSION), 2011.

[6] S. Bruning, et al, "A Fault Taxonomy for Service-Oriented

Architecture," High Assurance Systems Engineering Symposium,

10th IEEE , vol., no., pp.367,368, 14-16, Nov. 2007

[7] J. Carlson, R. R. Murphy, "How UGVs physically fail in the field,"

IEEE Transactions on Robotics, vol.21, no.3, pp.423,437, 2005

[8] K.S.M Chan, et al., “A Fault Taxonomy for Web Service

Composition,” Service-Oriented Computing - ICSOC 2007
Workshops, Lecture Notes in Computer Science, pp 363-375, 2009

[9] J. M. Druzdzel, "SMILE: Structural Modeling, Inference, and

Learning Engine and GeNIe: a development environment for
graphical decision-theoretic models." AAAI/IAAI. 1999.

[10] M. Dunham et al, ”Extensible Markov Model”. Fourth IEEE
International Conference on Data Mining, 371-374, 2004

[11] N. Fenton, M. Neil, ”Risk Assessment and Decision Analysis with
Bayesian Networks”, First edn., CRC Press, 2013

[12] T. Gecks, D. Henrich, "Human-robot cooperation: safe pick-and-

place operations.", IEEE International Workshop on Robots and
Human Interactive Communication. 2005.

[13] S. Haddadin, et al. ”Towards the Robotic Co-Worker,” The 14th
International Symposium ISRR, pp 261-282, 2011.

[14] J. Huckaby, H. I. Christensen, “Toward a knowledge transfer
framework for process abstraction in manufacturing robotics,” in

ICML Workshop on Theoretically Grounded Transfer Learning,

2013.

[15] C. Kemp, et al, "Challenges for robot manipulation in human

environments [Grand Challenges of Robotics]," Robotics &
Automation Magazine, IEEE , vol.14, no.1, March 2007

[16] M. Klein, C. Dellarocas; “Knowledge-based Approach to Handling

Exceptions in Workflow Systems”, Computer Supported
Cooperative Work, Volume 9, Issue 3-4, pp 399-412, 2000

[17] P. Loborg, “Error recovery in automation: An overview,” in Proc.
AAAI., Stanford, CA, pp. 94–100, 1994

[18] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference”, First edn, Morgan Kaufmann, 1998.

[19] M. D. Schmill, et al, “The Role of Metacognition in Robust AI

Systems,” AAAI-08 Workshop on Meta-reasoning, Chicago, 2008

[20] J. Shah, et al, “Improved human-robot team performance using

chaski, a human-inspired plan execution system,” in Proceedings of
the 6th international conference on Human-robot interaction, 2011.

[21] G. Steinbauer, “A Survey about Faults of Robots Used in
RoboCup,” RoboCup 2012: Robot Soccer World Cup XVI, Lecture

Notes in Computer Science Volume, pp 344-355, 2013

[22] D. Stengel et al. "An Approach for Safe and Efficient Human-
Robot Collaboration.", The 6th International Conference on Safety

of Industrial Automated Systems. 2010.

[23] C. Syan, Y. Mostefai, "Status monitoring and error recovery in
flexible manufacturing systems", Integrated Manufacturing

Systems, Vol. 6 Issue 4, pp.43 – 48, 1995

FinE-R 2015

The path to success: Failures in Real Robots

Page 10 IROS 2015, Hamburg - Germany

October 2, 2015

http://video.smerobotics.org/

