
 

 

 

 

Abstract— Moving robots from their carefully designed and 

encapsulated work cells into the open, less structured human 

workspace for collaboration with workers requires robust 

error detection and recovery strategies. Foreseeing all possible 

uncertainties and unexpected events and to program in 

recovery actions at setup time is unfeasible. Online learning of 

nominal execution behaviour and automatic detection of 

anomalies using an Extended Markov Model, combined with 

interactively trained Bayesian networks for mapping 

anomalies to error causes and recovery actions, enables 

automatic recovery from previously experienced errors. A 

three-layered user-friendly model of errors—causes—

responses and a simple GUI allows non-expert user to define 

new recovery activities and error causes when not yet handled 

anomalies occur.  

I. MOTIVATION 

Today’s robot systems for industrial applications rely on 
a structured environment to avoid errors. Parts, fixtures, 
tools and stations have defined positions and the workspace 
is encapsulated to avoid intruders that could possibly 
endanger this defined environment. Expected exceptions 
from the nominal case that were either foreseen during the 
planning of the robot system, or occurred during the setup 
phase of the system are coped with by integrating additional 
sensors, adapting tool-, fixture and part geometries and 
adding additional branches to the robot program to cope with 
these deviations. Furthermore, as many robotic systems are 
complicated, any exceptions and breakdowns occurring after 
system setup often require external technicians or engineers 
to diagnose and solve problems. 

Such strictly controlled and carefully designed work 
cells are only economically feasible if the designed robot 
system will run unobstructed for a long time. Small and mid-
sized enterprises (SMEs) are often characterized by a much 
more agile production style and consequently rely on human 
workspaces. Moving robots out of their strictly controlled 
and carefully designed spaces into human workspaces, 
which are by nature unstructured environments with a high 
degree of uncertainty, requires significantly enhanced 
robustness towards unforeseen events and geometric or 
other uncertainties. (The additional need for safety measures 
to protect the human co-worker from injuries is out of scope 
of this work, see e.g. [22], [12] and many others.) A SME 
suitable robot system therefore needs semi automatic 
exception handling and error recovery capabilities that allow 
non-expert users to manage exceptions (internally and 
externally triggered) occurring in daily operation. We 
propose a novel skill-based exception handling and error 
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recovery approach that allows non-robot expert users to 
operate a robotic system embedded in a human-centric 
workspace. We briefly introduce our execution model, detail 
the Extended Markov Chain based Situation Awareness, 
which forms the base for Exception Handling, and the Error 
Recovery module employing a Bayesian network and beta-
binomial inference algorithm. The prosed system has been 
implemented in a pick & place and in an assembly work cell, 
which are finally presented. 

II. RELATED WORK 

Research in exception handling is related to the area of error 

or fault recovery [17]. Error recovery has been defined as 

“the process by which the system returns to a state where 

production can restart after an abnormal and disruptive 

condition has occurred” [23]. For a robot coworker to 

effectively handle an exception, whether through informing 

the human worker or resolving the problem by itself, the 

types of faults that typically occur in the manufacturing 

robotic assembly cases needs to be understood. Fault 

taxonomies have been presented in other related fields, 

including mobile robots [7], computing [3], autonomous 

robots in RoboCup [21], workflow systems [16], service-

oriented architecture [6], and web service [8]. Reports show 

that many errors in manufacturing systems, including CNC 

machines, are hardware related and that approximately 60% 

of all stoppages are due to tool breakdown [23]. However, 

there has been a lack of study on the likelihood of common 

errors and exceptions occurring during assembly tasks 

involving collaborative robots. One of the reasons can be 

that robot coworkers have not yet proven to be robust 

enough for industry application to be studied and 

generalized based on real assembly cases [14].  

III. SKILL-BASED EXECUTION MODEL 

At the base of the system is a Skill Execution Engine, 
which allows a more goal-oriented task description than 
strict motion based programming or planning. Without 
going into details of the skill-model [1], we assume skills to 
be independent, sensor-based motion or handling primitives 
that adapt themselves to position uncertainties and other 
deviations from an ideal state using build-in sensing and 
monitoring as well as (limited) internal error recovery. 
Robot tasks are constructed by chaining skills and control 
flow instructions, forming a state machine [2] based on 
SCXML1. While skills detect deviations from their expected 
performance and report these, the skill executor by itself 
does not provide any error recovery functionality. Features 
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of the skill executor that allow the implementation of error 
recovery functionality at higher layers are: 

 The skill executor knows and publishes the current 
state of the system at any time. This allows an error 
recovery module to relate errors on the one hand to 
specific skill models and on the other hand to 
specific application steps and therefore to draw 
conclusions like “this is an error that is very typical 
for a pick operation” or “this is an error that 
occurred already in the past at this specific 
execution step of the application”. 

 The skill executor has an interface for an error 
recovery module to stop and later continue the 
execution of the skill based application program 
thereby allowing worker interaction to recover from 
errors detected by an error recovery module. 

 The skill formalism used by the skill executor is 
built on the concept of reusable hierarchical skills 
that are easy to enhance or adapt. It is therefore 
easily possible to include additional mechanisms 
into an existing skill model to cope with errors that 
could be detected by the system but just have not 
been considered yet. 

The Situation Assessment (SA) constantly monitors the 
overall situation (robot task execution) using data published 
by the skills executor as well as by additional sensors 
dedicated for situation assessment. Deviations flagged by 
the SA are further examined by the Exception Handling 
(EH), which devises a possible cause and corrective 
measure, potentially involving user interaction. The whole 
system of skill executer, situation assessment and exception 
handling is collectively referred to as “Exception Handling 
Framework” or “EHF”. 

IV. SITUATION ASSESSMENT 

The role of Situation Assessment (SA) is to learn and 
monitor the (correct) skill execution and detect non-nominal 
conditions. Deviations from the learned, nominal behaviour 
are interpreted as Anomalies, which are passed on to the 
Exception Handler (section V). Our implementation of SA 
is based on prior work by [4] and [5], where SA was applied 
to mobile robotics. We implemented and expanded SA to 
learn skill based execution in a collaborative robotic system. 
To learn how to perform a skill correctly, SA captures the 
essence of the skill by learning the timing and sequence of 
events that make up the skill. Our approach is to generate 
one parameterized model that includes parameters in the 
space and time domain. SA learns the sequence of events 
within a skill execution by learning a set of parameters with 
a temporal component, recording the transition from one 
instantiation of the parameters to the next: 

p(𝑋) = 𝑝(𝑋1, 𝑋2, … , 𝑋𝑛)   (1) 

where 𝑋, a Situation Model, denotes a set of parameters (a 
state), 𝑛 denotes a discrete step in time, and 𝑝, a Situation, 
denotes the complete distribution of all the states within a 
skill. Each state 𝑋𝑖 of 𝑋 is parameterized: 

𝑋 = [𝑑1, 𝑑2, … , 𝑑𝑚]   (2) 

where 𝑑𝑖 are data components such as sensor values or 
robot’s internal state values. 

A.  Situation Model 

Situation Assessment uses a Situation Model as a 
template description to fuse together the different data points 
for learning a Situation. The components of the Situation 
Model (𝑑𝑖 in (2)) are real number data, which can come from 
any source and have any meaning. In our experience, 
combining space and time is critical to the success of 
learning a skill. For instance, learning a skill using a 6D F/T 
sensor, the Situation Model 𝑠 could be defined as in (3). 

𝑠𝑎 = [𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒, 𝐹x , 𝐹y , 𝐹𝑧 , 𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧]   (3) 

The component 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 of 𝑠a is a data point that 
uniquely identifies the current primitive being executed in 
the skill. In this case, the unique primitive ID provides the 
understanding of time while the understanding of space is 
provided by the F/T data. By using the primitive ID we can 
learn a skill time invariantly. This means that SA will only 
learn the sequence of the events and is invariant towards the 
duration of the execution of specific primitives. We have 
found this feature particularly useful when the duration of 
the primitives or skills is stochastic. Should it be necessary 
to catch anomalies in relation to when events occur (e.g. too 
early or late), the primitive ID in (3) can be substituted with 
a time data point. Throughout our research, we have 
successfully applied SA to monitoring digital inputs, such as 
the state of one or more grippers. Through the rest of the 
paper, we will use the following Situation Model for 
implementation and testing: 

𝑠𝑏 = [𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝en, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑]  (4) 

where 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝𝑒𝑛 and 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑 are binary outputs of 
reed switches of the gripper: 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝𝑒𝑛 is 𝑡𝑟𝑢𝑒 when the 
gripper is fully open and 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑 is 𝑡𝑟𝑢𝑒 when the 
gripper is fully closed. Our assumption is that the gripper is 
grasping an object when both readings are 𝑓𝑎𝑙𝑠𝑒, indicating 
the gripper is neither fully open nor closed. 

B.  Data Processing and Clustering 

The Situation Model serves as a template describing 
which sensors SA should fuse together into one single state. 
In general, all data points in the Situation Model have to be 
real numbers. This allows the computation of one single 
metric for each 𝑋𝑖 in (1). We have so far used the Jaccard 
similarity coefficient as a method for clustering similar 
states. Through experimentation, we have found the 
algorithm to be useful despite its simplicity.  

C.  Dynamic Learning in Situation Assessment 

SA can autonomously learn a skill without the user 
having to manually specify the states of a skill. We have 
implemented a spatiotemporal model that allows for online 
dynamic learning of states over time. For this purpose, we 
are currently using the Extensible Markov Model (EMM) as 
it is useful for online learning of sequences of states [10]. An 
example of a dynamically learned model using the EMM 
algorithm can be seen in Figure 1. In this example, a robot is 
picking up a nut from a table and placing it on a pipe in a 
single nonrecurring operation (therefore an open-ended 
chain). The EMM is also useful in learning looped tasks. 
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D.  Anomaly detection 

SA has two modes of operation: learning and detection 
during execution. In the learning mode, SA monitors the 
data points specified in the Situation Model and builds the 
Situation for the skill that is being learned. During execution 
of the same skill, SA loads the saved Situation and applies 
the same clustering process as during learning. However, 
should the clustering of the data result in a new state in (1), 
then SA will interpret that as an anomalous state has 
occurred and issue an Anomaly warning. Processing and 
handling the Anomaly is the task of the Exception Handler 
(EH) module. 

V. EXCEPTION HANDLER 

The task of EH is to receive an Anomaly from SA and 
provide a suggested solution that is most likely to solve the 
problem. For each robotic system, EH maintains a 
hierarchical four-layered Bayesian network with all 
exceptions and solutions relevant to that cell. The 
hierarchical structure allows EH to reason about the most 
suitable solution to a problem. EH provides the suggested 
solution to the user along with all other possible solutions. 
The user is free to select the suggested solution, any other 
solution or to create a new solution. The selection is stored 
in EH as a sample of user solution preference. Such samples 
are used in priming the network for inference with future 
anomalies. With the feedback of user samples, a closed 
preference-learning loop is formed to provide suggestions 
for solutions to future anomalies. In this section, we provide 
a detailed description of EH and begin with the role of the 
Exception Scenario ES in EH.  

A. Exception Scenario 

The Exception Scenario (ES) is designed as a four-
layered model consisting of Anomaly, Error, Fault and 
Response, inspired by work in [18]. The hierarchy is a four-
layered binary Bayesian network that facilitates inferring the 
most likely Response (solution) to an Anomaly (a 
deviation), an example is shown in Figure 2. At the lowest 
level of the network, Anomaly nodes model anomalies 
detected by SA. Each Anomaly node corresponds to a data 
component (di of (2)) in the Situation Model. Above 
Anomaly, the Error node models which kind of error the 
Anomaly is and if the Anomaly should even be considered 

 
2 Figure 2 shows a screen capture of GeNIe, a Bayesian modelling 

environment developed by the Decision Systems Laboratory of the 

University of Pittsburgh. Available at http://genie.sis.pitt.edu 

an error. The Fault node models the root cause of the 
Anomaly and the Response node models the solution to the 
Fault. This model resembles the diagnosis model used by 
physicians when examining a patient:  Based on symptoms 
(here: the detected error) an illness is inferred (here the 
fault) and a therapy decided (here the response). The 
intermediate step of a fault is necessary, since one and the 
same observed error (symptom) can have multiple causes.  
For example an unexpected gripper state can be due to a 
failed grasping operation, a missing object at the pickup 
position or a defective gripper itself.  

B. Bayesian Network 

 
Figure 2 is an example of a Bayesian network with three 

Exception Scenarios for the two Anomaly nodes of the 
sensors 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑜𝑝𝑒𝑛 and 𝑔𝑟𝑖𝑝𝑝𝑒𝑟𝑐𝑙𝑜𝑠𝑒𝑑 in (4). Both Error 
nodes are dependent on both Anomaly nodes, allowing the 
Bayesian network to further strengthen the belief about the 
cause of an Anomaly (simulated in GeNIe2). The first two 
scenarios with nodes 𝑠1 = {1,3,5,8} and 𝑠2 = {1,3,6,9}, offer 
two Responses to the Gripper Open Anomaly while the third 
scenario 𝑠3 = {2,4,7,10}, offers a single Response to a 
Gripper Closed Anomaly.  The numbers in curly braces 
indicate the node number in Figure 2. In this example we are 
modelling two faults {5,6} and Responses {8, 9} for the 
Gripper Open Anomaly. If a gripper is unexpectedly open 
(Gripper Open = true, Gripper Closed = false), we could 
interpret that as either a pneumatics failure (e.g. loss of air 
pressure) that can be solved by checking and replacing the 
air supply {5,8}, or an actuator failure (e.g. broken gripper) 
that can be solved by repairing the gripper {6,9}. In the 
reverse case of a closed gripper, we could interpret the 
failure as there was no object to grip and the solution is 
simply to replace the missing object. In Figure 2, the Faults 
{5,6} are modelled as belonging to the same Error, Gripper 
Operations Error {3}. This allows the network to learn user 
selections for a specific Fault, Response pair over other pairs 
belonging to the same Error node. The network is thereby 
able to encode knowledge specific to individual user 
environments. 

 
Figure 1.  Example of learning a task. The upper left corner shows the 

temporal sequence of states the skill consists of. These states were 
learned online while the robot performed the task. A full video is 

available at https://www.youtube.com/watch?v=-CKbdQ3ocQo. 

 
 
Figure. 2.    Inference of cause and solution to Gripper Open anomaly. 

Both error nodes are dependent on both anomaly nodes, allowing the 

Bayesian network to further strengthen the belief about the cause of 
an anomaly. Simulated in GeNIe1. 
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C. Inference 

The process of inferring a Response to an Anomaly in 
the Bayesian network, is the inference process of the EH. 
This process is an implementation of Bayes’ theorem: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 ∙ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑  (5) 

We have implemented Bayes’ theorem in three steps: 

 Calculate prior probabilities 

 Introduce evidence to network 

 Infer posterior probabilities 

In the following, we describe each of these steps. 

D. Inference 

A prerequisite for performing inference is the calculation 
of prior probabilities. As described in section IV, a feature 
of the EHF is to learn the user-preferred solution of a given 
anomaly. When the user selects a specific Exception 
Scenario (i.e. an Error, a Cause and a Solution) to solve a 
problem, it is fed back to the database as a sample of the user 
selection, thus learning the preference of selecting this 
Exception Scenario for a specific Anomaly. The sample data 
is used to calculate the prior probability for each node of the 
network. We treat calculating the node’s prior probability as 
an inference process that adds another layer of Bayesian 
inference as described in (5). We introduce the sample data 
from user selection of Exception Scenarios as the evidence 
to infer each node’s posterior probability. Each node of the 
Bayesian network is a binary random variable modelling an 
event that either occurs or not. For instance, if the user 
selects the ES {1,3,5,8} in Fig. 2, then the user is confirming 
that the specific ES solved the problem (e.g. that a Gripper 
Open Anomaly did happen, it was caused by missing air 
pressure and the solution was to resupply the air). At the 
same time and equally important, the user is also confirming 
that alternative events {4,6} to ES {1,3,5,8} did not occur. 
Thus, with every selection of an ES, EH registers the 
confirmed nodes on all levels of the ES, as well as the 
rejected nodes. The process of selecting any node in the 
Bayesian network over time, can be viewed as a Bernoulli 
process following a binomial distribution as in (6). 

𝑋~Binom(𝑛, 𝑝)  (6) 

where 𝑋 is the number of times a specific node has been 
selected. 𝑛 is the number of samples drawn in the sequence. 
If this process is sampled sufficiently, a distribution 
reflecting the user selection can be inferred from the sample 
set. However, in many cases it is not possible to provide a 
sample set of sufficient size and inference will be subject to 
uncertainty. To model this uncertainty, we model the user 
selection for each node as a hyper-parameter 𝑝, thereby 
modelling the user selection as a random variable itself and 
creating a hierarchical Bayesian model for calculating the 
prior probability [11]. This approach uses the samples of 
user selection as a likelihood function providing evidence to 
the inference process. Given the binomial likelihood, we 
have chosen the Beta distribution as the prior distribution 
(7).  

(𝑝 | 𝛼, 𝛽) = Be(𝛼, 𝛽)   (7) 

In (7), the user selection is modelled as the 
hyperparameter 𝑝, drawing samples from the Beta 
distribution. 𝛼 and 𝛽 is respectively the number of samples 

confirming and rejecting the selection of the node. The Beta 
distribution is a conjugate distribution to the Binomial 
distribution, thereby offering analytical tractability of the 
Bayesian inference process. The conjugate property ensures 
that when updating the prior Beta distribution (7) with new 
evidence following the Binomial distribution, the resulting 
posterior distribution is also a Beta distribution (8). 

(𝑝 | 𝛼∗, 𝛽∗) =Be(𝛼∗, 𝛽∗)  (8) 

𝛼∗ and 𝛽∗ is respectively the new number of selections 
and rejections for the specific node. Thus, obtaining the 
posterior distribution in (8) becomes simply a matter of 
adding new confirmations to the existing, and then 
calculating the mean (𝜇) and variance (𝑣𝑎𝑟) (9,10). 

 

In Figure 3, examples of Beta distributions for different 
values of 𝛼 and 𝛽 are shown. Distribution 1: 𝐵e(𝛼 = 1, 𝛽 = 
1) is a uniform distribution offering an uninformative prior 
with a mean, 𝜇 = 0.5 and a high variance (uncertainty) due 
to the low sample size. In this case, the posterior will largely 
be determined by the data. Distribution 4: 𝐵e(𝛼 = 30, 𝛽 = 5) 
has 𝜇 = 0.86 and a smaller variance, thus providing a 
comparably less uncertain estimate of the user selection 
preference, 𝑝. The sequence of graphs 1-4 in Figure 3, can 
be seen as an example of a continuous learning cycle, 
starting with no knowledge of user selection (a uniform 

distribution with no samples) towards more informative 
distributions 2-4 as the sample size increases. When a new 
node is created with no samples available (𝛼 = 𝛽 = 1), the 
Beta distribution is uniform. However, to avoid the 
uninformative uniform distribution we propose to query the 
user to provide a subjective estimate of the selection (the 
mean) of this node along with a confidence level (the 
variance). Using the equations for the mean (9) and variance 
(10), suitable values for 𝛼 and 𝛽 can then be calculated.  

E. Introducing evidence 

The Bayesian network described in section V.B and Fig. 
2 receives evidence in the form of Anomaly information 
gathered by SA. In the example shown in Figure 2, SA has 
detected that the gripper was unexpectedly fully open (thus 
providing evidence that Gripper Open = true, Gripper 
Closed = false. The evidence is in practice introduced to the 
network by clamping the two nodes to their respective 
values.  

 

Figure 3.    Four 𝐵𝑒(𝛼, 𝛽) distributions for different values of 𝛼, 𝛽. 

Note that 𝛼, 𝛽 > 0, thus 𝛼 = 𝛽 = 1 is equal to no samples. 1: 𝐵𝑒(1,1), 𝜇 

= 0.50, 𝑣𝑎𝑟 = 0.083. 2: 𝐵𝑒(2,1), 𝜇 = 0.67, 𝑣𝑎𝑟 = 0.056. 3: 𝐵𝑒(15,5), 𝜇 

= 0.75, 𝑣𝑎𝑟 = 0.0089. 4: 𝐵𝑒(30,5), 𝜇 = 0.86,  𝑣𝑎𝑟 = 0.0034. 
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F. Posterior probabilities 

After introducing evidence, posterior probabilities for all 
nodes are calculated. We have used the SMILE reasoning 
engine [9] for inference. The Response having the highest 
posterior probability is selected as the suggested solution. 
For each Response, the tree is descended towards the root 
Anomaly nodes, thus mapping out each possible path 
towards the root. The resulting list will have the most 
probable ES listed first with all other less likely alternative 
ES following in descending probability. 

VI. USER INTERFACE FOR ERROR RECOVERY 

While section V discussed the inner working of the 
actual mapping process, we focus on a more user-centric 
view in this section.  

Whenever an anomaly is detected, the error layer 
classifies it into an error cause.  If no cause is found the user 
is inquired and given the option to assign an existing cause, 
dismiss the anomaly as not indicating an error or to create a 
new cause (including a resolution, if known). Figure 4 shows 
the dialog box after successfully mapping an anomaly to an 
error and further to a recovery action.  The user can accept 

this solution or add a new solution. Figure 5 shows the 
corresponding dialog box for adding a new triplet of error, 
error cause and recovery action. The dialog boxes shown in 
Fig. 4 and 5 are designed for use at system runtime and 
therefore as simplistic as possible. A more elaborated 
interface for managing the entire network of anomalies, 
errors, causes and recovery actions is also provided and 
targeted at specifically trained users that setup a new robot 
application. 

VII. EXPERIMENTAL EVALUATION 

Within the scope of SMErobotics, this framework has 
been intensively evaluated using various experiments. A 
detailed example is the failure to grasp as described in the 
following section.  We have tested the system’s ability to 
learn the preference of selecting a solution by manually 
introducing the Gripper Open (GO) Anomaly, shown in Fig. 
6, during the execution of a skill. In this test, we have tested 
the system’s ability to learn the user preference of selecting 
the Repair Actuator (RA) Response over the Replace 
Pneumatics (RP) Response. For the purpose of the test, the 
system had initially no knowledge of user selections 
(samples), except for five samples confirming the choice of 
the RP Response as the user preferred solution to the GO 

Anomaly. Hereafter, we introduced the GO Anomaly 
repeatedly, selecting the RA Response as the solution each 
time. This process was repeated until EH started to suggest 
the RA Response, thus demonstrating EHF’s ability to learn 
the user preference of selecting the RA Response over the 
RP. 

Test results are shown in Fig. 6. Initially, EH has five 
samples confirming the selection of the RP Response for the 

GO Anomaly. Thus, when the GO Anomaly is introduced, 
EH suggests RP as the most suitable Response to the GO 
Anomaly with probability ~ 0.553. However, the user 
ignores the EH suggested RP Response and instead selects 
RA. Thus, when the GO Anomaly is introduced again, EH 
now has six samples (five for RA and one for RP), 
computing the most likely Response to be RP with 
probability ~ 0.545, and so on. At RA sample 5, EH 
computes the probability for each Response being identical 
(~ 0.526). Again, the GO Anomaly is introduced and this 
time EH suggests the RA Response with posterior 
probability ~ 0.535. Thus, with five samples confirming RP, 
it took six samples of RA for EH to suggest RA. 

VIII. CONCLUSION AND FUTURE WORK 

Through the test results in section VII, we showed that 
EH is able to learn the user preference of selecting a solution, 
even when it had learned a different preference earlier. As 
the user selects a specific solution to an Anomaly, the 
solution becomes more probable for future selection. This is 
normally helpful, but can be problematic if the user wishes 
the system to select a different solution, since learning a new 
preference can take several iterations, as the test results 
showed. This is especially true when the sample count for 
the prior solution is high. A possible future solution could be 

 
Figure 4 The system identified an error including a recovery action. 

In case of misclassification the user can add a new exception or 
dismiss the anomaly as not indication an error (button “Continue 

Learning”). 

 
Figure 5 Adding a new error cause or fault to the system. 

 
Figure 6.   Posterior probabilities for solution nodes Replace 

Pneumatics (RP) and Repair Actuator (RA) to a Gripper Open 

Anomaly. The solid line represents the posterior probability of the 

RP and the dotted line represents posterior probability of RA. For 
one sample of RP, it takes EH two samples of RA to learn the user 

preference of selecting RA. 
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to introduce additional information in the Error Layer, e.g. 
condition the error cause not only on the counting of user 
selections, but also on the state of various system variables 
at time of the user selection. 

The system is currently being integrated in further 
demonstrators in the context of the SMErobotics project and 
will see more in-depth testing and possibly enhancements in 
these demonstrators.  Concept videos of these showing the 
SMErobotics vision of future industrial robotics are 
available at http://video.smerobotics.org; especially the D2 
and D3 videos are relevant in the context of this work. 
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