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Abstract. In this work we consider laser beam diffraction by narrow elongated 

axicon with conical angle, which is small enough for multiple internal reflection 

arising. Those sorts of tapers are widely used in micro and nanooptics. We have 

to take into account more than one internal reflection for correct description of 

beam propagation through the axicon. The diffraction is simulated with two 

approaches: pure “geometrical optics” and Helmholtz equation solving with 

“Finite Elements Method”. Based on ray optics we derive analytic formulas for 

conical angles meanings, which provide maximums and minimums of intensity 

on optical axis. Derived numerical simulation verifies theoretically obtained 

results. 
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Introduction 
Axicons [1, 2] can be used to create nondiffraction Bessel beams in classical 

Optics [3, 4]. Metalized axicons with small cone angles are also utilised as near-field 

probes and tapers for sharp focusing in Nanophotonics [5, 6] and especially in near-

field microscopy [7-9] and spectroscopy [10]. To determine the optimum parameters 

of such tapers we need to provide simulation in accordance with the assumptions of 

the rigorous vectorial diffraction theory [11-14]. 

Working of metal conical structure is explained by the lightning-rod effect [15] 

which can be observed near dielectric structures [16]. The lightning-rod effect lies in 

the fact that longitudinal electric field component are enhanced near sharp structures. 

It can be observed, for example, in cases where radially polarized beams [17-19] or 

linearly polarized beams [20-22] are focused. 

The dielectric characteristics of axicons can be approximately estimated with ray 

and scalar optical theory [23, 24], and then defined more accurately with more 

rigorous methods. 
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In this work the ray optics approach was used as a rough calculation method. 

Using ray optics we derived analytic formulas for beam diffraction by the axicon with 

high numerical aperture (NA) including NAs that were over than the limiting value. 

Overcoming the limiting value of NA in ray optics means the axicon angle is small 

enough for total internal reflection arising. Consequently, we have to take into 

consideration more than one total internal reflection with further decrease of axicon’s 

angle. We obtained axicon’s angles which provide maximum and minimum values of 

intensity on the optical axis. Finite element method of solving Helmholtz equation 

was used to provide a more rigorous approach for verification of results of the 

analytical estimations. 

1. Theoretical analysis with ray optics approach 
Ray paths are described in detail in works [23]. But authors are not have deal with 

the case that axicon angle is much less than limited value. 

Let us quote few results from [23] without any proofs. Notice that every ray 

impinges to the plain base of the axicon (left side in figure 1). 0  is a half angle of 

axicon’s top. We call 0  axicon’s angle. If 0  is large enough, total internal 

reflection is absent. In addition, rays pass through the right side and converge into the 

focal straight line segment. 

 

 

Fig. 1. – Rays paths in axicon in case of absence of total internal reflection 

Such configuration remains as long as axicons angle satisfies inequality: 

0 arccos(1/ )  n ,          (1) 

Where n is refractive index of the axicon’s material. 

If refractive index of n = 1.5 the maximum angle is 48.19°. If the angle is less, 

total internal reflection occurs at the upside of the axicon (see figure 2). In this 

diagram it is apparent that the angle 0  is greater than 

0

1 1
30 arcsin

3 n
   ,          (2) 
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therefore, total internal reflection takes place at bottom side of the axicon. 

Consequently, the rays turn back and leave the axicon and travel back to the left side. 

If n = 1.5 we can derive from Eq. (2) that 0 43.94   . Ray paths for different 

angles 0 44 ,45 ,47      are also shown in figure 2 and it is obvious from the 

symmetry that rays travel back if 0 45   . 

 

   

   

 

 

Fig. 2. – Rays paths in axicon in case of double total internal reflections from top and bottom 

sides 0 44 ,45 ,47      

If the angle is less than this expression (2), full internal reflection from the bottom 

side does not occur; therefore rays leave the axicon through the bottom side and travel 

down. Nevertheless, if the angle is not much less than (2), the ray travels to the 

bottom-left direction. Thus, we can call this axicon opaque (figure 3). 

 

Fig. 3. – Rays paths in axicon in case of 0 40    

In figure 3, the horizontal projection of the ray is decreasing with a decrease of the 

angle. Therefore, if the angle 0 ver    horizontal projection becomes zero, hence the 

ray travels vertically down (figure 4). This angle is defined from the equation:
3sin (4cos 3cos ) 0ver ver vern      .          (3) 
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If n = 1.5, ver 38   . 

 

Fig. 4. – Rays paths in axicon in case of 0 ver    

    

 
 

Fig. 5. – Rays paths in axicon in case of 0 35 ;30 ;20   

For smaller meanings of the angle 0  horizontal projection of leaving ray is 

directed to the right. Although, rays do not intersect optical axis, thus focus is 

apparent (figure 5). 

In [23] the authors consider only those configurations of axicon which are 

described above. However, it is noticed that by decreasing the axicon’s angle right-

directed horizontal projection of leaving ray are increasing. If 0 30   this presents a 

special case. The rays pass through the bottom side without any refraction because the 

ray is perpendicular to the side, which happens if the refractive index lies in the range: 
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2 / 3 2n  . If we continue decreasing 0 , the vertical projection is also decreasing 

and once it reaches zero, the rays travel horizontally to the right side. 

Let us have a look to the last scheme in figure 5. We can make sure that 

horizontally leaving ray can appears if following equation takes place: 0 t 90    

( t  is the refracting angle). If we take into account previous equation, refraction law 

and the fact that the angle of incidence to the bottom side is 090 3  , if a single 

reflection is from the top side and 0 30  , we can see that 0  has to satisfy 

following equation if the leaving ray is horizontally-oriented. 

0 0cos3 cosn    .          (4) 

If n = 1.5, 0 16.78  . 

 

 

Fig. 6. – Horizontal ray path in axicon in case of 0 16.78   

If the angle does not satisfy the equation (4), vertical projection of the leaving ray 

becomes directed upwards. Therefore, rays intersect with optical axis and form real 

focus (figure 7). In contrast to the results presented in the figure 1, in this situation 

leaving ray intersects the optical axis from the bottom to the top. Once more 

distinguishing feature is that the entrance pupil diameter is much greater than exit 

pupil diameter. 

However, from the equation (4) we can determine that the angle’s interval which 

provides real focuses of the axicon with single total internal reflection is very small. 

The condition for the second total internal reflection from the bottom side is therefore 

as follows: 

0 0

1 1
cos3 1 arccos

3
n

n
               (5) 
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Fig. 7. – Real focus with single total internal reflection in the axicon 

This is three times less than the angle which is satisfying inequality in (1). In this 

case 0 16.06  , if n = 1.5. Varying the angle from (4) to (5) we can achieve focal 

segment theoretically with any length. As we can see the angles interval which 

provides real axicon’s focus, is very small and equals just 0.72 degree. 

If the angle is smaller than (5), second full internal reflection occurs at the bottom 

side, the ray falls into the top side. Here ray is refracted and travels to the up-right 

direction. Thus, we have an apparent focus again. As it is shown in figure 6, the 

leaving ray is oriented horizontally if the same equation 0 t 90    is satisfied. 

But where the angle of incidence equals 090 5   at the top side in case of double 

total internal reflection from the top and then the bottom sides. Hence, the leaving ray 

will be oriented horizontally (figure 8) if the angle satisfies the equation: 

0 0ncos5 cos   .          (6) 

If n = 1.5 this angle equals 9.785 . 

 

 

Fig. 8. – Horizontal ray path in axicon in case of 0 9.785   

If the angle even smaller than is defined from equation (6), the vertical projection 

of the ray becomes oriented downward. Rays intersect the optical axis and form the 

real focus as indicated in figure 9. The leaving ray intersects the optical axis from up 

to down (as in figure 1), but only after two total internal refractions. 
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Fig. 9. – Real focus with double total internal reflection in the axicon 

In the same way as in figure 7 we can therefore surmise derive that another total 

internal reflection occurs if following equation is satisfied: 

0 0

1 1
cos5 1 arccos

5
n

n
     .          (7) 

That is five time less than it is derived from (1). If n = 1.5, 0 9.64  . Thus, 

angle interval which provides real focus with two total internal reflections is much 

smaller and equals 0.145 degree. 

It is also possible to make sure that with the continuing decreasing of the angle we 

have infinite exchanging of real and apparent focuses. Boundaries of intervals of real 

and apparent focuses were defined by situations of total internal reflections (as in (5) 

and (7)) and the situations of leaving ray horizontality (as in (4) and (6)). 

Real focus will be observed in narrow ranges of axicon’s angles which are defined 

by the following inequalities: 

min 0 max

real real   ,          (8) 

here min

real  is achieved from equation: 

 min mincos (2 1) cosreal realn p      ,        (8a) 

and max

real  from the equation: 

maxcos (2 1) 1realn p     .        (8b) 

Equations (8a) and (8b) give boundaries for p-fold total internal reflection, 1p  . 

If p is even, the ray intersects the optical axis from up to down as it is shown in figure 

9. If p is odd, the ray intersects the optical axis from down to up as in figure 7. 

Apparent focus is observed with p-fold total internal reflection in larger ranges, 

which are further defined by adding the following inequalities: 

min 0 max

app app   .          (9) 

here 

mincos (2 1) 1, 2appn p p      ,        (9a) 

 max maxcos (2 1) cos , 1app appn p p               (9b) 

The bottom boundary for single total internal reflection is not defined by formula 

(9a). It is equals the ver , which is derived from (3). From this it is evident that the 

range of the intervals is becoming increasingly smaller. That has explicitly resulted 

from the meaning of the boundary of new total internal reflection, which can be easily 
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obtained analytically: 
1 1

arccos
2 1p n

. This indicates the boundary is decreasing if p 

is increasing. Thus, the received width of the ‘real focus gap’ is the largest and equals 

0.72 degree for p=1. As noted, other gaps are becoming increasingly narrower. 

Because of narrowness of angle ranges for real focuses, we should discuss the 

resonant phenomena. The same problems with polychromatic light can occur, because 

of dispersion transmission ranges can be different for different wavelengths. 

Furthermore, for one part of the spectrum the axicon can provide real focus and for 

another part of spectrum focus can be apparent. It is evident, therefore, that the axicon 

makes spectral redistribution as a prism. 

Thus, from the finding we can see that ray optical approach has become useful for 

understanding of rays paths and intensity distribution in an axicon. However, it is 

problematic to receive total intensity distribution and estimations of beams sizes. For 

these reasons we have to apply a more rigorous theory. 

2. Numerical simulation by means of solving Helmholtz equation with finite 

element method 
In this work we provide numerical simulation of Gaussian beam diffraction by flat 

axicon with finite element method which is realized in Comsol. 

a)    b)    c)      

d)  

Fig. 10. – Simulation results of Gaussian beam diffraction by axicons with different cone 

angles: a) 0 10.5  , b) 0 11  , c) 0 30  , d) 0 61   

In the figure 10 we show the simulation results of TE-polarized Gaussian beam 

diffraction by 2D axicons with different axicon’s angle 0 . Wavelength is λ = 532 

nm, and refraction index is n = 1.5. 

As we can see in figure 10, whereas we increase axicon angle from 10.5  to 11 , 

the internal reflection arises and the main part of energy scatters at a high angle to the 
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optical axis. Ray optics predicts that this beam splitting is in contrast to wave optics 

which takes into evanescent field. An axicon works as a refractive element and 

produces a strong light segment where the axicon angle is more 49 . 

Conclusions 
In this work we considered diffraction of Gaussian beams by the refractive axicon 

in case of numerical aperture of the axicon is much greater than limited value which 

corresponds to total internal reflection. This situation did not take into account 

because it was reckoned that axicon did not transmit light in case of out-the-limited. 

Diffraction was considered using two approaches: ray optics and numerical 

solving of the Helmholtz equation with finite elements method. In the first case 

analytical estimations are derived for high numerical aperture including the case of 

out-of-limited numerical aperture. 

However, out-of-limited numerical aperture in ray optics corresponds to total 

internal reflection arising, careful analysis of ray paths reveals that with increasing 

numerical aperture (decreasing axicon’s angle) part of incident energy passes through 

the axicon though and the transmitted rays form either real or apparent focus. 

Finally, the rigorous wave approach allowed us to verify the perceived analytical 

results. 
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