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Abstract. The purpose of this note is to augment information systems with a re-

lation of betweenness among things in the universe of the system and derive from

it a geometric representation of granules of things in Euclidean spaces. Next, the

notion of betweenness renders a service in introducing a new notion of a hyper–

granule. An application to conflict resolution by defining coalitions of agents as

granules or hyper–granules and their mixed strategies as elements of convex hulls

spanned on things defining the granule is proposed. Finally, hyper–granules of-

fer a new classifying algorithm which exploits neighborhoods of things and in a

sense is an improved with respect to similarity variant of nearest neighbor classi-

fier.
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1 Introduction: Basic Notions

We would like to recall here basic facts about notions mentioned in Abstract, to make

this note self–contained. We begin with the Lukasiewicz rough inclusion.

1.1 The Lukasiewicz Rough Inclusion

Given a set of things U , a rough inclusion is a ternary relation µ ⊆ U×U× [0, 1] which

renders the notion of ‘to be a part to a degree’. It is rooted in mereology, see, e.g., [3]

whose basic notion is that of a part which is a transitive and irreflexive relation π on

the product U × U along with its reflexive closure, the ingredient ingr, i.e., ingr =
part ∪ ‘ =′. The rough inclusion µ on the set U × U should satisfy the requirements

1. I1. µ(x, y, 1) if and only if ingr(x, y).
2. I2. µ(x, y, 1) and µ(z, x, r) imply µ(z, y, r).
3. I3. µ(x, y, r) and s < r imply µ(x, y, s).
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A rough inclusion µ induces a mereological distance dµ by means of the formula

dmu(x, y) = min{sup{r : µ(x, y, r)}, sup{s : µ(y, x, s)}}. (1)

Assuming that suprema in the formula (1) are achieved, we have

Proposition 1. dµ(x, y) = 1 if and only if x = y.

In the case when things in the universe U are described by means of a finite set A of

attributes so each thing x ∈ U is represented by its information set {a(x) : a ∈ A},
we can define the Lukasiewicz rough inclusion µL by taking as its value on a pair x, y
in U the quotient of the cardinality of the indiscernibility set IND(x, y) = {a ∈ A :
a(x) = a(y)} and the cardinality of the set A:

µL(x, y) =
card(IND(x, y))

card(A)
, (2)

cf., [3], Ch.6.

1.2 Betweenness

The notion of betweenness plays an essential role in axiomatization of elementary

geometry of Euclidean spaces due to Tarski, see Tarski and Givant [4], it is formalized

as a relation B(x, y, z) (‘y is between x and z’); intuitively, B(x, y, z) means that y lies

on the straight line segment with endpoints x, z.

Van Benthem [1] proposed an extension of the betweenness relation based on

the relation of nearness N(x, y, z) (‘x is closer to y than z’) which in terms of the

distance dµ would be defined by means of

N(x, y, z) if and only if dµ(x, y) > dµ(z, y). (3)

The relation N thus defined, does satisfy all axioms for nearness in Van Benthem

[1], i.e.,

1. N1. N(z, u, v) and N(v, u, w) imply N(z, u, w) (transitivity).

2. N2. N(z, u, v) and N(u, v, z) imply N(u, z, v) (triangle inequality).

3. N3. N(z, u, z) is not true for each pair u, z (irreflexivity).

4. N4. z = u or N(z, z, u) (selfishness).

5. N5. N(z, u, v) implies N(z, u, w) or N(w, u, v) (connectedness).

For the proof, cf., [3] Ch. 6.

Betweenness relation in the sense of Van Benthem TB(z, u, v) (‘u is between z

and v’) introduced in Van Benthem [1] is rendered by a formula

TB(z, u, v) ⇔ [for each w ∈ U (u = w) or N(u, z, w) or N(u, v, w)]. (4)

This means that for each thing w distinct from z, either u is closer to z than is w or u is

closer to v than is w.
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2 Granules from Indiscernible Things

We assume that things in the set U are described by means of values of N real valued

attributes in the setA; from this point of view the set U becomes the setR(U) ⊆ RN of

vectors in RN . As said above, each thing x ∈ U is represented by the vector [ai(x)]
N
i=1

where < a1, a2, . . . , aN > is a fixed ordering of attributes.

We consider a pair a, b of things in U such that a, b have in common attribute values

in a set ∆ ⊂ A, where ∆ is non–empty; formally, this means that IND(a, b) = ∆. Let

card(∆) = δ ·N. (5)

Example 1. We consider things a, b and a thing cwhich agrees with a and b on the set∆
and has 1

2 · (N − δ ·N) attribute values in common with a and 1
2 · (N − δ ·N) attribute

values in common with b; we assume for simplicity that it is possible otherwise we

should consider ⌊ 12 · (N − δ ·N)⌋ and ⌈ 12 · (N − δ ·N)⌉, respectively which would only

make calculations more cumbersome. Please observe that we do not specify positions

of values, i.e., we do not specify particular attributes on which these values are taken,

with exception for ∆ only. Therefore, it makes sense to identify all such things into a

class [c] in which all things have values on attributes in ∆ same as a and b and share

with each of a, b one half of the remaining values.

Our Thesis is

Proposition 2. c is between a and b.

Proof. We find the distance dµL
between a, c and b, cwith respect to the rough inclusion

µL; by definition (1),

dµL
(a, c) =

δ ·N + 1
2 · (N − δ ·N)

N
=

1 + δ

2
= dµL

(c, b). (6)

We now consider an arbitrary thing x which for some quotient α in [0, 1] has α · δ ·N
values of attributes in∆ in common with a and for some quotient β ∈ [0, 1] has β ·(N−
δ ·N) values of attributes not in ∆ in common with a and at most (1−β) · (N − δ ·N)
values in common with b. We have

dµL
(x, a) =

α · δ ·N + β · (N − δ · n)

N
= β + (α− β) · δ, (7)

and

dµL
(x, b) ≤

α · δ ·N + (1− β) · (N − δ · n)

N
= 1− β + (α+ β − 1) · δ. (8)

Let us assume, to the contrary, that (1) dµL
(x, a) > dµL

(c, a) and (2) dµL
(x, b) >

dµL
(c, b).
Condition (1) means after substitution of values in (6) and (7) that

β + (α− β) · δ >
1

2
+
δ

2
, (9)
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i.e.,

α · δ + β · (1− δ) >
1

2
+
δ

2
. (10)

Similarly, condition (2) yields after values in (6) and (8) are substituted into it,

α · δ − β · (1− δ) >
3

2
· δ −

1

2
. (11)

Adding inequalities (10) and (11) yields

2 · α · δ > 2 · δ, (12)

and, as δ > 0,

α > 1 (13)

which is impossible. This proves our proposition.

This example has served as a motivation for further generalizations.

We have already observed that we have not specified the attributes selected and

actually we have discussed classes of equivalence of things, two things x, y being

equivalent if and only if they have had same fractions of attribute values for attributes

in ∆ and same fraction of attribute values not in ∆. Hence, for fractions γ of values

in ∆ and ε of values in A \∆ common with a, and, at most 1 − ε values of attributes

in A \ ∆ in common with b, we denote with the symbol [γ, ε] the class of things

satisfying those conditions. We regard, hence, the vector [γ, ε] as the representation of

that class in the vector space R2, the representation space. In particular, the thing a is

represented as [1, 1], the thing b is represented as [1, 0], and, the thing c is in the class

[1, 1
2 ]. Thus, in the Euclidean plane, c is the midpoint in the segment with endpoints b

and c, i.e. c is between a and b in the elementary geometry sense.

The proof above does suggest a more general result.

Proposition 3. For α ∈ [0, 1], the class [1, α] is between classes [1, 0] of b and [1, 1] of

a in the representation space.

Proof. This proof goes on similar lines as proof of the previous proposition. Let d
denotes the class [1, α] and let x be in the class [γ, ε]. Assuming to the contrary that

(1)dµL
(x, a) > dµL

(d, a) and (2) dmuL
(x, b) > dmuL

(d, b), we obtain inequalities

γ · δ + ε · (1− δ) > δ + α · (1− δ), (14)

and,

γ · δ + (1− ε) · (1− δ) > δ + (1− α) · (1− δ). (15)

Sidewise addition of (14) and (15) yields the inequality

2 · γ · δ > 2 · δ, (16)

i.e., γ > 1, impossible. The proposition is proved.

It turns out that the whole interval from [1, 0] to [1, 1] consists of classes between

[1, 0] and [1, 1]. In the representation space of classes [γ, ε], betweennness in the mere-

ological sense coincides with betweenness in the geometric sense of the Euclidean ge-

ometry of the plane.
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2.1 The Case ∆ = ∅

In this case δ = 0 and our proofs above are not valid. In this case, given things a, b in

U , with IND(a, b) = ∅, for a choice of γ ∈ [0, 1], we form things which have γ · N
attribute values in common with a and (1 − γ) ·N attribute values in common with b.
We represent this class of things as before with the vector [γ, 1 − γ] in the Euclidean

plane. In this representation, a is represented as [1, 0] and b is represented as [0, 1], so

[γ, 1− γ] is a convex combination of [1, 0] and [0, 1].

Proposition 4. For each choice of γ ∈ [0, 1], the class of things represented as [γ, 1−γ]
is between a and b in the sense of betweenness relation B.

Proof. For a point [ε, δ] with ε, δ ∈ [0, 1] and ε+ δ ≤ 1, if, e.g., ε > γ then δ < 1− γ.

It follows that things and their classes which are between a and b are located in the

representation space in the segment with endpoints [1, 0] for a and [0, 1] for b, i.e.,

between these endpoints in the geometrical sense.

This suggests a generalization. We define a more general betweenness relation

GB(x, a1, a2, . . . , an)

(‘x is between a1, a2, . . . , an’) if and only if for each thing y 6= x he thing x is closer

than y to some ai in the mereological sense of (3).

2.2 The General Case

We consider a set V = {a1, a2, . . . , an} of things in U . For a choice of γ1, γ2, . . . ,
γn ∈ [0, 1] with

∑

i γi = 1, which we summarily denote by the vector γ, we denote as

(V, γ) the class of things which have the fraction γi of attribute values in common with

the thing ai. As above, the fact is true that

Proposition 5. The class (V, γ) of things represented by the vector γ = [γ1, γ2,
. . . , γn] satisfies the relation GB((V, γ), a1, a2, . . . , an).

Proof of this proposition goes on lines of the preceding proof.

Proposition 6. The relation GB(x, a1, a2, . . . , an) holds for a class x=

({a1, ..., an}, [γ1, γ2, . . . , γn]) (17)

if and only if [γ1, γ2, . . . , γn] belongs in the convex hull of vectors [1, 0, 0..., 0],
[0, 1, 0, 0, ..., 0], ..., [0, 0, ..., 0, 1] representing, in this order, classes a1, a2, ..., an.

3 A Geometric Representation of Granulation

In the general case, the process of forming of a class x=(V, γ) represented by the vector

γ = [γ1, γ2, ..., γn] can be regarded as forming of a granule of things gr(V, γ). This

granulation process is different of previously considered in that it does involve a sort of
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a shuffling map, which takes into x things having specified fractions of attribute values

in common with the corresponding classes ai but over arbitrary sets of attributes of

cardinality γi · N . This secures a kind of control over values in contradiction to our

previous granulation paradigm in which only a fixed part of a given thing attribute

values was coming from the granule center, cf., [3], Chs. 5–7.

For a given vector γ=[γ1, γ2, . . . , γn] in the representation space, representing

the granule gr(V, γ), the size of the granule gr(V, γ) is

∏

j≤n

(

N −
∑

k<j γk ·N
γj ·N

)

. (18)

The number of granules of type represented by a vector γ = [γ1, γ2, . . . , γn] is the

number of sequences k1, k2, . . . , kn of natural numbers such that
∑

i ki = N , i.e.,

it equals the number of integer–valued vectors on the hyperplane
∑

i xi = N , given

recurrently by the function φ(N,n):

φ(N, 1) = 1, (19)

φ(N, k + 1) =

N
∑

j=0

φ(N − j, k). (20)

It follows that φ(N,n) is of order Θ(Nn−1).
Let us observe that those estimates concern all objects generated by the process

described above; in reality, only a small fraction of those objects will exist in the set U .

Hence, we define a U–granule gU (γ) as g(γ) ∩ U .

3.1 Granular Classifiers

Assume that a decision partition is imposed on the things in the set U into decision

classes D1, D2, . . . , Dm. For a U–granule g = gU (γ), we denote with Pr[g,Di]
the probability that a randomly chosen thing in g is assigned to the class Di. Then

the Bayesian decision on g is the class D(g) = Di∗ such that Pr[g,Di∗ ] =
max{Pr[g,Di] : i = 1, 2, . . . ,m}.

The mapping g → D(g) from U–granules into their Bayesian decisions is the

Bayesian granular classifier. It is deterministic as the covering into granules is finer

than the partition into decision classes.

4 An Application Proposal: Conflict Resolution

We propose to apply the afore described results to the problem of conflict resolution.

In a conflict, we have a finite number of agents declaring their standpoints on a

number of issues; those standpoints are conflicting, i.e., on each issue there are agents

having distinct standpoints. A resolution of a conflict means some process leading to
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a rationally chosen set of non–conflicting standpoints for all agents. Examples can be

saddle points in two–person zero–sum games, either for pure or mixed strategies, or,

the Nash equilibrium points in continuous convex–concave games. In each of these

cases, agents reach a set of strategies which is satisfying for each of them.

Such a rationale is difficult to be obtained in less formalized conflicts, and, our

example deals with such a conflict. We base our approach on the example of a

conflict in Pawlak [2], for which that author gave an analysis in terms of the rough

set–theoretical approach.

Example 2. The conflict described in [2] does involve six agents: A1, A2,..., A6 and

five issues I1, I2, ..., I5 with the standpoints 0 (disagreement), 1 (agreement) and N (the

neutral standpoint equivalent to ‘do not care’). Hence, when standpoints N and 0 or 1

are confronted, N means 0 or 1, respectively.

This case is visualized in Table Fig.1 below.

agent I1 I2 I3 I4 I5

A1 0 1 1 1 1

A2 1 N 0 0 0

A3 1 0 0 0 N

A4 N 0 0 N 0

A5 1 0 0 0 0

A6 N 1 0 N 1

Fig. 1. The setting of a conflict

In this case, the set of agents V = {Ai1 , Ai2 , . . . , Aik
} forming a granule is called a

coalition, and standpoints of them on issues are their pure strategies. Given coefficients

γ1, ..., γk summing up to 1, sequences of issues in the granule (V, [γ1, ..., γk]) are mixed

strategies of agents. Given a partition of the set of agents into coalitions C1, C2, ..., Cm,

we call a conflict resolution a set i1, i2, ..., im} of mixed strategies issued from granules

generated by C1, C2, .., Cm which are consistent, i.e., conflict–less.

We use the Lukasiewicz rough inclusion as the measure of similarity of agents, and,

we include in one coalition agents for which pairwise similarity measures are greater

than their similarity degrees to other agents.

From Fig. 1, it follows that agents A1 and A6 are similar to degree of 0.8, agents

A2, A3, A4, A5 are similar to each other to degree of 1.0, and, agent A1 is similar to

A2, A3, A4, A5 to degree not greater than 0.4. Only A6 is similar to A2, A3, A4 to

degree 0.8, and, to A5 to degree 0.6.

We decide to consider coalitions V1 = {A1, A6} and V2 = {A2, A3, A4, A5}.
Forming all possible granules over V1 and V2 yields possible mixed strategies of both

coalitions. Due to their number, we list in Figs.2,3 a selection of six of those strategies

for each of the two coalitions.
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We find exemplary boldfaced mixed strategies N1ON1 for the coalition V 1 and

NN0NN for the coalition V 2 which are identical for both coalitions: each of them can

provide a conflict resolution; it is true that this requires a ‘gentleman’s agreement’ to

accept the results of this procedure; for instance, each of these solutions would require

that A1 gives up on its standpoint on issue I1, which in real practice can be impossible

due, e.g., to political and religious reasons. The specific bargained for standpoints can

be: 01001, 11001, 01011, 11011.

N11N1 N1011 N10N1 N1011 010N1 01111

Fig. 2. Selected mixed strategies for the coalition V1

1N00N 1N000 NN0N0 NN0NN N00N0 100NN

Fig. 3. Selected mixed strategies for the coalition V2

5 The Thing Point of View: Hyper–Granules

The approach presented above begins with a group G of things and ends with the

notion of collection of things between G. Among those things are virtual ones not

present in the decision/information system. Therefore, we now propose the analysis

from the viewpoint of things in the information system.

We consider a maximal set of things X with the property

∀x ∈ X .∃Y ⊆ X \ {x}.Btw(x, Y ). (21)

We call X a hyper–granule.

Lemma 1. For each x ∈ X , it is true that Btw(x,X \ {x}.

Lemma 2. For each y /∈ X , it is true that Btw(y, Y ) holds for no Y ⊆ X . Moreover,

there exists an attribute a such that the value a(y) 6= a(x) for each x ∈ X . Contrarily,

for each x ∈ X , and, for each attribute a, it is true that a(x) ∈ {a(y) : y ∈ X \ {x}.

The hyper–granule X is attribute–self–contained in the sense of Lemma 2.

For the hyper–granule X , we consider the complementary set of objects U \ X ;
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let X ′ be a hyper–granule of objects in U \X . Iterating this procedure, we define in the

universe set U a set of hyper–granules {X (i) : i ∈ I}, where X (j+1) is a hyper–granule

in the set U \
⋃

i≤j X
(i). The remnant of U consist of outliers unable to enter any

hyper–granule.

We denote with the symbol H(x) the hyper–granule containing the thing x. For

a thing x, we consider sets of thing in H(x) \ {x} which we denote with the generic

symbol N(x) with the property that Btw(x,N(x)) and all coordinates of the vector

representing x with respect to N(x) are positive; we will call any such set a neighbor-

hood of x; in the example in Fig.4, for instance, N(4) = {8, 10}.

A neighborhood N(x) of x is irreducible if it is of minimal possible cardinality;

such is N(4) pointed to above..

6 Applications: Hyper–Granules as Coalitions in Conflicts and a

Decision Prediction Modal Logic

We will discus first the problem of conflict resolution.

6.1 Hyper–Granules as Coalitions in Conflicts

We return to Fig. 1, showing standpoints of agents A1–A6 on issues I1–I5. As before,

we regard the standpoint N as ‘don’t care’ a fortiori N can be 0 or 1. We observe that

A1 cannot be considered as a candidate to the hyper–granule of A2–A6 as the issue I1

on A1 takes value 0 not taken by any of A2–A6.

On the other hand, due to our convention about N , agents A2–A6 make a hyper–

granule X . This hyper–granule can produce a between element NN0NN representing

sixteen specific bargaining propositions, from 00000 to 11011. The agent A1 remains

as an outlier due to value 0 on I1 which cannot be supplied by any other agent.

The bargaining between X and A1 can focus on I3 on which A1 takes value of

1 and all other agents adopt the standpoint 0.

6.2 A Decision Prediction Logic and a Decision Assignment Algorithm

We will regard the universe U of the informaton system as the training set on which

the decision is given, and we consider the additional test set on which decision is to be

learned on the basis of its values on U .

Given a test thing x about which we assume that there exist neighborhoods of it in

the set U , and for a formula φ, we declare that

x |= φ⇔ y |= φ for each irreducible N(x)and each y ∈ N(x) . (22)

Modal operators L of necessity and M of possibility are introduced as follows.

x |= Lφ⇔ y |= φ for each N(x) and each y ∈ N(x) . (23)



106

x |= Mφ⇔ y |= φ for some N(x) and some y ∈ N(x) . (24)

It follows that

L = ¬M¬. (25)

x |= L(φ⇒ ψ)⇒ (x |= Lφ⇒ x |= Lψ). (26)

x |= Lφ⇒ x |= φ. (27)

Our decision relation formula φ is vd ∈ A where A ⊆ Vd, i.e, A is a subset of the

set of decision values; the formula x |= (vd ∈ A) reads that decision value proposed

for x is in the set A of decision values. Necessitation means stressing this hypothesis

by conforming it on all neighborhoods of x, and, possibility indicates possible sets of

values of decision for x.

7 Appendix: Computational Aspects of Hyper–Granules

We consider an information system S = (U,A, V ) where U is a set of things, A is a

set of attributes,and, V is a set of attribute values. We will need the notion of a dual

information matrix S∗ defined as the triple (A, V, U), where for each pair (a, v) the

entry in the cell S∗(a, v) is

{x ∈ U : a(x) = v}. (28)

Computing hyper–granules

The Algorithm proceeds as follows.

HYPER–GRANULE (U,A,V)

1. Form the dual information matrix S∗;

2. For each x in U do

3. if there is a cell (a, v) such that S∗(a, v) = {x}
4. then remove x from all cells.

6. Repeat steps 2-4 until

7. all cells are either empty or each contains at least two things;

8. Return X=the set of all things that occur in at least one non–empty cell.

Repeating the algorithm with the dual information matrix (A, V, U \ X ) we may

eventually obtain further hyper–granules.

The complexity of the algorithm is Θ(|A| · |V | · |U |) as we do take into account

neither the cost of inserting a symbol into a cell nor deleting it from a cell.

We consider an information system TEST in Fig. 4. The dual information matrix

TEST∗ is shown in Fig. 5. We have to remove from all cells the things 2, 5, 9. As each

remaining cell is either empty or some at least two–element set, the hyper–granule is

X = {1, 3, 4, 6, 7, 8, 10}. For the remaining subsystem TEST1=(A, V, {2, 5, 9}), we
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obtain the dual information matrix TEST1∗ shown in Fig. 6. After steps 2–4 of the algo-

rithm, all cells are empty so there is no second hyper–granule: things 2, 5, 9 are outliers.

We would like to observe in addition that it is easy to read off from the dual in-

formation matrix the coordinates of a thing in the representation space; e.g., the thing

4 can be represented as the vector [0, 0, 0, 0, 0, 0, 0, 1
3 , 0,

2
3 ] in the simplex spanned

on unit vectors representing, respectively, things 1, 2, ..., 10 in the vector space R10.

Hence, N(4) = {8, 10} is an irreducible neighborhood of the thing 4; another

irreducible neighborhood of 4 is {1, 10} with coordinates [ 12 , 0, ..., 0,
1
2 ].

7.1 A Decision Assigning Algorithm

For a new test thing y, we consider in the universeU (the training set) the hyper–granule

H(y) ⊆ U ∪ {y} along with irreducible neighborhoods N1(y), . . . , Nk(y) (if there are

any). Let D(y) ⊆ Vd be the least set of decision values with the property that

If x ∈
⋃

i

Ni(y) then d(x) ∈ D(y). (29)

By (22), the hypothetical d(y) belongs in D(y). Now, given j ≤ k, the neighborhood

Nj(y) votes for decision value dj(y) in the manner as follows. For z ∈ Nj(y), we

denote with qj(z) the coordinate with which z enters the vector representing y with

respect to N(y). Then

dj(y) = argminv∈D(y)||v −
∑

z

qj(z) · d(z)||, (30)

where || − || is a metric chosen for Euclidean space containing Vd. Given a parameter

p ≤ k, we select p neighborhoods from among N1(y), N2(y), . . . , Nk(y) with greatest

values of qj = maxzqj(z) and let

d(y) = argminv∈D(y)||v −
∑

j≤p

qj
∑

j≤p qj
· dj(y)||. (31)

This approach may be regarded as a two–step variant of nearest neighbor classifier:

neighborhoods which are irreducible are at the same time closest to the thing; an

important factor not present in usual nearest neighbor classifiers is that neighborhoods

guarantee also that attribute values in the thing come from neighborhood members

which double stresses the similarity among the thing and neighborhood members.

To give a procedure for computing neighbors of things, we define some useful no-

tions,

I(x, y) = {a ∈ A : a(x) = a(y)}, (32)

and,

f(x, y) =
card(I(x, y))

card(A)
. (33)
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thing a1 a2 a3 a4 a5 a6

1 1 0 0 1 1 0

2 0 1 1 0 1 2

3 1 0 0 1 0 1

4 0 0 1 1 1 0

5 0 0 2 1 0 0

6 1 1 0 0 1 1

7 0 1 0 1 0 1

8 1 0 1 0 1 0

9 1 2 0 0 2 1

10 0 0 1 1 0 0

Fig. 4. Information system TEST

value a1 a2 a3 a4 a5 a6

0 {2, 4, 5, 7, 10} {1, 3, 4, 5, 8, 10} {1, 3, 6, 7, 9} {2, 6, 8, 9} {3, 5, 7, 10} {1, 4, 5, 8, 10}
1 {1, 3, 6, 8, 9} {2, 6, 7} {2, 4, 8, 10} {1, 3, 4, 5, 7, 10} {1, 2, 4, 6, 8} {3, 6, 7, 9}
2 ∅ {9} {5} ∅ {9} {2}

Fig. 5. The dual information matrix TEST ∗

value a1 a2 a3 a4 a5 a6

0 {2, 5} {5} {9} {2, 9} {5} {5}
1 {9} {2} {2} {5} {2} {9}
2 ∅ {9} {5} ∅ {9} {2}

Fig. 6. The dual information matrix TEST1∗

For X ⊆ A and x ∈ U , we let V (x,X) = the sequence a(x) : a ∈ X in the assigned

order of attributes; the symbol 0n denotes the sequence of length n of 0.

Procedure Irreducible Neighborhood(x)

Input: the thing x

Output List of irreducible neighborhoods of x

variable sets z, Az(x, y), nz(x, y), N (x, y), vz(x, y)

Initialization: N (x, y)← ∅,
1. order coefficients f(x, y) in descending order

2. in descending order of f(x, y) do
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3. while Az(x, y) 6= A do

4. z ← {y}, A{y}(x, y) ← I(x, y), n{y}(x, y) ← {y}, v{y}(x, y) ←

[V (x, I(x, y)), 0|A|−|I(x,y)|]

5. in descending order of f(x, z′), for each z′ /∈ z such that

(A \Az(x, y)) ∩ I(x, z
′) 6= ∅ do

6. Az∪{z′}(x, y)← Az(x, y) ∪ (A \Az(x, y)) ∩ I(x, z
′)),

nz∪{z′}(x, y)← nz(x, y) ∪ {z
′},

z ← z ∪ {z′},

vz∪{z′}(x, y) = vz(x, y) + [0|A|−|vz(x,y)|, V (x, (A \ Az(x, y)) ∩

I(x, z′), 0|A|−|vz(x,y)|−|V (x,(A\Az(x,y))∩I(x,z′)|],

p(z′)← |V (x, (A \Az(x, y)) ∩ I(x, z
′))|

7. if Az(x, y) = A then

8. N (x, y)← N (x, y) ∪ {nz(x, y)}

9. from
⋃

yN (x, y) output the list of sets of minimal cardinality=the list of irre-

ducible neighborhoods of x

10.
|I(x,y)|

|I(x,y)|+
∑

z′∈nz\{y} p(z′) is the coordinate of y in the representation vector of

x, and,
p(z′)

|I(x,y)|+
∑

z′∈nz\{y} p(z′) is the coordinate of z′ in the representation vector of x

with respect to the irreducible neighborhood nz(x, y).

As an example let us assign decision values to things 1, 2, . . . , 10 in TEST, in

Fig. 7.1. For simplicity, the thing 4 is regarded as a test thing. The set D(4) is {0, 1}.
Irreducible neighborhoods of 4 are of cardinality 2 and they are: N1(4) = {1, 10} with

coordinates [ 16 ,
5
6 ]; N2(4) = {1, 10} with coordinates [ 46 ,

2
6 ]; N3(4) = {7, 8} with

coordinates [ 26 ,
4
6 ]; N4(4) = {8, 10} with coordinates [ 16 ,

5
6 ].

Now, N1(4) votes for 1
3 · 1 + 2

3 · 1 = 1 = d1(4);

N2(4) votes for 4
6 · 0 + 2

6 · 1→ 0 = d2(4);

N3(4) votes for 2
6 · 1 + 4

6 · 1 = 1 = d3(4);

N4(4) votes for 1
3 · 1 + 2

3 · 1 = 1 = d4(4).

The final decision value is the nearest of 0, 1 to the value
2

3
·1+ 5

6
·1+ 4

6
·0+ 4

6
·1

2

3
+ 5

6
+ 4

6
+ 4

6

= 13
17 which

is d(4) = 1.
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value a1 a2 a3 a4 a5 a6

0 {4, 7, 10} {1, 3, 4, 8, 10} {1, 3, 6, 7} {6, 8} {3, 7, 10} {1, 4, 8, 10}
1 {1, 3, 6, 8} {6, 7} {4, 8, 10} {1, 3, 4, 7, 10} {1, 4, 6, 8} {3, 6, 7}

Fig. 7. The dual information matrix TEST ∗ after removing outliers

1 2 3 4 5 6 7 8 9 10

0 2 1 new thing 1 2 1 1 0 1

Fig. 8. Decision values for TEST; thing 4 regarded as a test thing
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