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Abstract. In this paper, a cryptanalysis of the Bivium keystream generator in the
SAT form is considered. For encoding the initial cryptanalysis problem into SAT
a special program system TRANSALG was used. For an obtained SAT instance we
use Monte Carlo method to search for a partitioning with good time estimation.
Several weakened cryptanalysis instances of the Bivium generator were success-
fully solved in the volunteer computing project SAT @home using corresponding
partitionings found on a computing cluster.
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1 Introduction

Volunteer computing [19] is a type of distributed computing which uses computational
resources of PCs of private persons called volunteers. Each volunteer computing project
is designed to solve one or several hard problems. When PC is connected to the project,
all the calculations are performed automatically and do not inconvenience user since
only idle resources of PC are used. Nowadays the most popular platform for organizing
volunteer computing projects is BOINC [1] that was developed in Berkeley in 2002. To-
day there are about 70 active volunteer projects, the majority of them based on BOINC.

A volunteer computing project consists of the following basic parts: server dae-
mons, database, web site and client application. The daemons include work generator
(generates tasks to be processed), validator (checks the correctness of the results re-
ceived from volunteer’s PCs) and assimilator (processes correct results). Client appli-
cation should have versions for the widespread computing platforms.

One of the attractive features of volunteer computing is its low cost — to maintatin
a project one needs only a dedicated server working 24/7. Main difficulty here lies in
the development of software and in database administration. In addition, it is crucial to
provide the feedback to volunteers using the web site of the project and special forums.
Another attractive feature of this type of computing is that volunteer project can solve
some particular hard problem for months or even years with good average performance.

Wide class of problems from modern computer science can be effectively reduced
to Boolean satisfiability problem (SAT) [2]. SAT problems are usually considered as
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the problems of search for solutions of Boolean equations in the form of CNF=1, where
CNF is a conjunctive normal form. There are many works in which various combinato-
rial problems are reduced to SAT and solved in this form. For example, such problems
can be found in areas of verification, cryptography, combinatorics and bioinformatics.
Usually if the cryptanalysis is considered as a SAT problem then it is called a logical
cryptanalysis [15]. In this case to find a secret key it is sufficient to find a solution of
corresponding satisfiable SAT instance. For solving corresponding SAT instance one
usually needs large computational resources. A volunteer computing project can pro-
vide such resources.

Below we present a brief outline of our paper. In the second section, we describe
how we utilize the TRANSALG tool for reduction of the cryptanalysis problem of the
Bivium generator to SAT. In the third section various decomposition techniques for SAT
are discussed. In the fourth section experimental results on solving weakened cryptanal-
ysis problems for the Bivium generator in the volunteer computing project SAT @home
are presented.

2 Propositional Encoding of Cryptanalysis Problem for Bivium

The Bivium generator [5] uses two shift registers of a special kind (see Fig. 1). The first
register contains 93 cells and the second contains 84 cells. To initialize the generator, a
secret key of length 80 bit is put to the first register, and a fixed (known) initialization
vector of length 80 bit is put to the second register. All remaining cells are filled with
zeros. An initialization phase consists of 708 rounds during which keystream output is
not released.
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Fig. 1. Scheme of the Bivium generator

In accordance with [16,25] we considered cryptanalysis problem for Bivium in
the following formulation. Based on the known fragment of keystream we search for
the values of all registers cells at the end of the initialization phase. Therefore, in our
experiments we used CNF encodings where initialization phase was omitted. Usually it
is believed that to uniquely identify the secret key it is sufficient to consider keystream
fragment of length comparable to the total length of shift registers. Here we followed
[8,25] and set the keystream fragment length for Bivium cryptanalysis to 200 bits.
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To encode algorithm of the Bivium generator into CNF we used TRANSALG tool
[20]. As an input TRANSALG takes a source code of a program in the domain specific
language named TA language. TA language is a procedural programming language with
C-like syntax. This source code must describe an algorithm of computing of a discrete
function. Output of TRANSALG is a CNF which encodes the considered algorithm.

Translation of a TA-program consists of two main stages. On the first stage a source
code of a TA-program is parsed, and concrete syntax tree is constructed. On the second
stage of translation, the symbolic execution of TA-program is performed. According to
the concept of the symbolic execution, interpreter operates not with concrete data, but
with symbols which encode this data — Boolean variables and Boolean vectors (ar-
rays). The symbolic execution of a TA-program results in a set of Boolean formulas,
which is called propositional encoding of the algorithm. We will consider construct-
ing of propositional encoding by TRANSALG on the example of TA-program which
describes algorithm of the Bivium keystream generator [5].

The TA-program for the Bivium generator starts from the declaration of integer
constants (see Listing 1.1). Here constant /en is equal to total length of the shift reg-
isters (177 bits); constants lenA and lenB define the lengths of each register (93 and
84 bits respectively); stream_len defines the number of bits of a keystream produced
by the generator (200 bits). After this, arrays of variables of type bit are declared.
Main data type in the TA-language is the bit type. TRANSALG uses this type to estab-
lish links between variables used in a TA-program and Boolean variables included into
corresponding propositional encoding. It is important to distinguish between these two
sets of variables. Below we will refer to variables that appear in a TA-program as pro-
gram variables. All variables included in a propositional encoding are called encoding
variables.

Global variables of type bit can be declared with attribute __in or __out. Attribute
__in marks program variables associated with Boolean variables that encode input of an
algorithm. In fact, in such a way we declare a set of variables with the following feature:
any assignment of these variables derives values of all other variables in the proposi-
tional encoding. It should be noted that in every TA-program that describes some algo-
rithm there must be declared variables which encode input of the considered algorithm.
Attribute __out marks variables which, after TA-program is executed, contain an output
of the algorithm.

Listing 1.1. Declarations of global variables and constants

define len 177;

define lenA 93;

define lenB 84;

define stream_len 200;

__in bit reg[len];

__out bit stream|[stream_len];

In the Listing 1.1 the bit array reg with attribute __in is declared. This array con-
tains a state of the shift registers of the generator. Attribute __in reports to the translator
that initial state of the registers is unknown. Encoding variables, linked with program
variables marked with attribute __in, get first Len numbers in a propositional encoding.
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Also in Listing 1.1 the bit array stream with attribute __out is declared. This array con-
tains the keystream produced by the generator. Encoding variables, linked with program
variables marked with attribute __out, get last stream_len numbers in a propositional
encoding. Thus by using attributes __in and __out we uniquely identify the sets of
Boolean variables in a propositional encoding, which encode input and output of an
algorithm respectively.

In the considered TA-program shifting of the registers is implemented in the form
of the procedure shift_regs (see Listing 1.2). This procedure updates the state of the
global bit array reg, according to the Bivium algorithm [5]. Note that as a result of
interpretation of the procedure shift_regs, new encoding variables are created only
to represent the result of feedback functions calculation. Operations of copying data
between cells add nothing to a propositional encoding — only links between program
variables and corresponding Boolean encoding variables are changed.

Listing 1.2. Function that implements one shift of the Bivium registers

void shift_regs ()
{

bit tl1 = reg[65]"reg[90]&reg[91] reg[92] reg[170];
bit t2 = reg[161]"reg[174]&reg[175] reg[176] reg[68];
int i;

for(i = lenA — 1; i > 0; i =1 — 1){
reg[i] = reg[i—1];
}

reg[0] = t2;

for(i = lenA + lenB — 1; i > lenA; i = 1 — 1){
reg[i] = reg[i—1];
}

reg[lenA] = tl;

Interpretation of a TA-program starts from executing the function main. This func-
tion is the entry of any TA-program. Presented in the Listing 1.3 function main im-
plements the base loop of the Bivium generator. One iteration of this loop outputs one
bit of keystream. For this purpose the current state of the four registers cells are taken
— their sum mod 2 gives next keystream bit. After this, the shifting of the registers is
performed by calling function shift_regs.

Listing 1.3. Implementation of the base work loop of the Bivium generator

void main ()
{
for(int i = 0; i < stream_len; i = i + 1){
bit tl1 = reg[65] "~ reg[92];
bit t2 = reg[l61] ~ reg[l76];
stream[i] = t1 " t2;
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shift_regs ();

}
}

The considered TA-program describes the generation of 200 keystream bits by the
Bivium generator. The translation of this program results in the system of 465 Boolean
equations. The transition from this system to the CNF is performed using the Tseitin
transformations [27] and procedures of Boolean minimization. During this transition to
minimize Boolean formulas, the ESPRESSO library!, which is integrated to TRANSALG
in the form of separate program module, is used. Procedures of Boolean minimization,
implemented in Espresso, operate with truth tables. If the size of a constructed formula
does not allow to effectively work with its truth table, then to decompose such formulas
into subformulas the Tseitin transformations are used. The final CNF which encodes
generating of 200 keystream bits by Bivium is constructed over the set of 642 Boolean
variables, and consists of 9560 clauses and 49920 literals.

3 SAT partitioning

In [11-14] various approaches to partitioning SAT were studied. Below we will use
the terminology from [11]. Consider a satisfiability problem for an arbitrary CNF C.
Partitioning of C' is a set of formulas

O/\Gj,,i@{l,...,S}
such that for any 4, j : 4 # j formula C' A G; A G is unsatisfiable and
CEC/\Gl\/...\/C/\GS.

When one has a partitioning of an original SAT instance, satisfiability problems for
C NGy, j€A{l,...,S} can be solved independently in parallel.

There exist various partitioning techniques. For example one can construct {G; } JS=1
using a scattering procedure [12], a guiding path solver [28] or a lookahead solver [10].
Unfortunately, for these partitioning methods it is hard in general case to estimate the
time required to solve an original problem. From the other hand in a number of papers
about logical cryptanalysis of several keystream generators there was used a partitioning
method that makes it possible to construct such estimations in quite a natural way. In
particular, in [17, 8, 26, 25] for this purpose the information about the time to solve small
number of subproblems randomly chosen from the partitioning of an original problem
was used. In the paper [23] strict formal description of this idea within the borders of
the Monte Carlo method in its classical form [18] was given.

Consider a satisfiability problem for an arbitrary CNF C' over a set of Boolean
variables X = {x1,...,2,}. We call an arbitrary set X = {z;,,...,2;,}, X C X a
decomposition set. Consider a partitioning of C' that consists of a set of 2¢ formulae

CAGjjefl,....24

! http://embedded.eecs.berkeley.edu/pubs/downloads/Espresso/index.htm
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where G, j € {1,...,2¢} are all possible minterms over X. Note that an arbitrary

formula G ; takes a value of true on a single truth assignment (a{, . ,afi) € {0,1}4.
Therefore, an arbitrary formula CAG); is satisfiable if and only if C' [f( / (a{, ce aé)]

is satisfiable. Here C [X' / (oﬂi, ce agl)] is produced by setting values of variables x;,

to corresponding o), k € {1,...,d} : x;, = o, ..., x;, = alj. A set of CNFs

_ J J
A(C;X)*{C |:X/ (al""’ad)}}(a{ 7777 a{i)G{O,l}d
is called a decomposition family produced by X.

The number of CNFs in A(C, X) is 2¢. It is possible to estimate the total time
required for processing this family based on the time of solving of SAT problems for k,
k << 29 randomly chosen CNFs from the family. This estimation can be used to plan
a computational experiment.

In [23] the Monte Carlo algorithm based on tabu search heuristics to search for de-
composition sets with good time estimations was suggested. This algorithm was imple-
mented as the parallel MPI program PDSAT. We used PDS AT running on a computing
cluster to obtain decomposition sets for logical cryptanalysis instances for the Bivium
generator. As a result we found the set of of 47 variables for Bivium (see Fig. 2). On
this figure cells corresponding to variables from decompositions sets are marked with
gray color. Time estimation for this set is 1.3391e+11 seconds for 1 processor core.
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Fig. 2. Decomposition set for logical cryptanalysis of Bivium

4 Using SAT @home project for solving weakened cryptanalysis
problems for Bivium

SAT@home? [21] is a volunteer computing BOINC-based project aimed at solving
hard combinatorial problems that can be effectively reduced to SAT. It was launched

2 http://sat.isa.ru/pdsat/
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on September 29, 2011 by ISDCT SB RAS and IITP RAS. On February 7, 2012
SAT@home was added to the official list of BOINC projects® with alpha status. Re-
cently its status was improved to beta.

The SAT @home server uses a number of standard BOINC daemons responsible
for sending and processing tasks (transitioner, feeder, scheduler, etc.). Such daemons
as work generator, validator and assimilator were implemented taking into account the
specificity of the project. The work generator decomposes the original SAT problem to
subproblems according to partitioning found by PDSAT (see section 3). The validator
checks the correctness of the results, and the assimilator processes correct results. The
client application is based on the CDCL SAT solver MINISAT [7].

The characteristics of the SAT @home project as of 22 of February 2015 are (ac-
cording to BOINCstats*):

— 2948 active PCs (active PC in volunteer computing is a PC that sent at least one
result in last 30 days) about 80% of them use Microsoft Windows OS;

1432 active users (active user is a user that has at least one active PC);

versions of the client application for CPU: Windows x86, Windows x86-64, Linux
x86, Linux x86-64;

average real performance: 6 teraflops, maximal performance: 10 teraflops.

The dynamics of the real performance of SAT @home can be seen at the SAT @home
performance page”.

With respect to the estimation obtained by PDSAT the solving of one instance of
cryptanalysis of the Bivium ciper in the SAT @home project with its current perfor-
mance would take about 3 years (using decomposition set of 47 variables [23]). That
is why we decided to solve weakened cryptanalysis problems for this generator. Below
we use the notation Bivium K to denote a weakened cryptanalysis problem for Bivium
with known values of K variables (in corresponding SAT instance) encoding last K
cells of the second shift register. In particular we considered the Bivium9 problem.
We used PDSAT to find a decomposition set with good time estimation for Bivium9.
As a result we obtained the decomposition set of 43 variables with time estimation
4.2873e+09 seconds. From September 2014 to December 2014 with the help of this
decomposition set, 5 Bivium9 instances were solved in SAT @home. During the cor-
responding experiment for each cryptanalysis instance the search space was divided
into 146602 equal tasks, each containing 60 millions subproblems. For processing one
such task about 2 hours of modern CPU core is needed. The client application was
based on a modified version of MINISAT 2.2. Time estimation by PDS AT shows good
consistency with real solving time of these cryptanalysis instances. As far as we know
there are no other available experimental results on solving such problems.

5 Related Work

The first work that used SAT-solvers for cryptanalysis was [15]. The authors of [8, 17,
26] presented some estimations of the time required for logical cryptanalysis of the

3 http://boinc.berkeley.edu/projects.php
* http://boincstats.com/
> http://sat.isa.ru/pdsat/performance.php
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Bivium cipher. Topics related to organization of SAT solving in distributed environ-
ments were considered in many papers, for example in [4, 6, 10-12, 28]. In [22] a desk-
top grid for solving SAT which used conflict clauses exchange via peer-to-peer protocol
was described. Apparently, [3] became the first paper about the use of a desktop grid
based on the BOINC platform for solving SAT, but it did not evolve into a full-fledged
volunteer computing project. The predecessor of the SAT@home was the BNB-Grid
system [9, 24], that was used to solve first large scale cryptographic problems in 2009.

6 Conclusions

Obtained results show that SAT @home can be successfully used for solving hard log-
ical cryptanalysis problems. We plan to use SAT@home for solving non-weakened
cryptanalysis problem of the Bivium generator. Also we plan to solve in SAT @home
cryptanalysis problems for other keystream generators.
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