
Towards a Unifying Model Transformation Bus

Māris Jukšs1, Bruno Barroca1, Clark Verbrugge1, Hans Vangheluwe2,1

1 {mjukss,bbarroca,clump,hv}@cs.mcgill.ca

School of Computer Science, McGill University
Montréal, Québec, Canada

2 hans.vangheluwe@uantwerp.be

Department of Mathematics and Computer Science
University of Antwerp, Belgium

Abstract. Even after the advance of model driven engineering, reusable
tool integration remains one of the greatest software engineering chal-
lenges. As we venture toward generic heterogeneous modeling tool inter-
operability, we focus on the most commonly used application program-
ming interface (API)-level tool integration. In this paper, we propose a
unifying model transformation bus. It is a model-driven framework uti-
lizing multi-paradigm modeling (MPM) techniques which aims towards
automated interoperability realized from a specification. We demonstrate
an MPM specification for integrating model transformations engines us-
ing their APIs while orchestrating method calls and data conversions.
Finally, we discuss the implications of such system, its benefits, limita-
tions and future use.

Keywords: multi-paradigm modeling, API-level interoperability, data
conversion, orchestration, integration

1 Introduction

The required effort to perform complex application programming interface (API)-
level integration between an arbitrary pair of programming languages often re-
quires the knowledge of both programming native interfaces. The problem of
tool integration is specially magnified when we try to apply Multi-Paradigm
Modeling (MPM) solutions by reusing existing modeling tools—e.g., integrating
different textual modeling languages with a graphical one[1].

A typical tool integration involves dealing with the marshaling of the data
structures between several APIs including the interaction and communication
issues between several tools. Adding to that, most of the reused tools are them-
selves made from reusing other tools, and therefore prone to evolution from
operating system updates, versioning, which often raise painful incompatibili-
ties. At the end of the day, we may face a low degree of reuse among several
integration projects.

From the integration engineer point of view, one has to consider the type
of interfaces that a particular set of tools provide, ranging from graphical-user
interfaces, to textual command-shell interfaces, and APIs. Although APIs are



2 Jukšs, Barroca, Verbrugge, Vangheluwe

the most commonly established way of performing tool integration, they do not
offer service orientation as an interaction paradigm. APIs are still being defined
as being merely a set of methods/functions organizing reusable algorithms over
a set of predefined data structures that corresponds to the resources being ma-
nipulated by those algorithms.

In addition, while performing API-level integration, we have to face a big-
ger problem: in general, software tools are written in different programming
languages. This is mainly due to a set of pragmatic reasons, ranging from dif-
ferent expressiveness and quality guarantees (e.g., type soundness), to different
tool support (e.g., graphical editors, and advanced textual editors, debuggers,
simulators, optimizers, and model-checkers). Therefore, typical API-level tool
integration is currently performed resorting to the available programming lan-
guage native interfaces (e.g., JNI, etc.) and middleware (e.g., CORBA, RMI).
Having to learn and use a set of (possibly new) arbitrary native language in-
terfaces (-NLI) in order to perform such integration is a laborious, tedious and
error-prone task.

In this paper, we explore a minimal general approach to specify tool integra-
tion in a common reusable backbone. We explore how a unifying interface with
advanced linguistic facilities—the unifying model transformation bus (UMTB)—
can be used to decouple the recurrent burden of data conversion out from the
tool’s code, and push it into a reusable (model-driven-)middleware that can be
systematically reused to handle data conversions among several heterogeneous
tool integrations. Contributions of our work include: a solution for an MPM
problem by performing data conversions in a platform independent way (i.e.,
using a State Chart formalism) that can be reused between APIs written in dif-
ferent programming languages; generation of the wrappers around APIs from an
integration-specification; and using a platform independent representation (PIR)
for common data representation, which is essentially typed attributed graph.

2 Related work

Concepts related to our work are model transformation (MT) chaining, tool
integration and orchestration. Related work mentioned below typically addresses
the integration through the use of some sort of an adapter (i.e., the wrapper)
around the tool’s API. However, we did not see any related work touch the
issue when the tools being integrated are developed using different programming
languages, and specially different from the ones used in the integration platform.
When the API implementation technology does not support the integration,
orchestration and communication frameworks (standards such as OSLC3) used.
When the tool wrappers are described it is unclear how the data in the technical
space of the API tool is actually accessed using the adapters as in [3, 5]. One of
the main contributions of our work is the integration of APIs regardless of their
implementation language with the only requirement being the common support

3 http://open-services.net



Towards a Unifying Model Transformation Bus 3

of the network sockets on each of the languages to enable communication. Most
importantly, we address how to actually access the API data and convert it into
our chosen common data representation.

In [2] automated MT chain is generated from MT repository, input model
MM incompatibility is also automatically addressed. A model transformation en-
vironment [6] addresses transformation composition for Eclipse plugins. Model
bus [4] is the work closest to ours as it takes a “bus” approach connecting several
components. Our approach targets API level tools and is not limited to three
entry points (Java Metadata Interface, CORBA, Web Service) of the model bus.
ModelBus4 addresses integration through common repository, it does not target
heterogeneous API tool integration. UniTI [9] focuses on the transformation
reuse and composition through unified transformation representation. Transfor-
mation composition modeling framework [7] addresses UML centric transforma-
tion composition.

3 Running example

We will now discuss an orchestration of ATL5 and GrGen6 transformations at
their API-level and identify the challenges that UMTB shall address. Consider
orchestration of two model transformations that operate on a tree, where the
result of the first transformation is the input of the second. In the first, the tree
initialization is performed in ATL, this constitutes a case when a transformation
exists created in a popular tool from the EMF universe. In the second part,
the tree manipulation transformation is implemented in GrGen. The ability of
GrGen to perform fast model transformations easily motivates the integration
of such tool. The actual transformations on this paper were omitted for brevity
as they are considered black boxes.

Both of the tools support XMI Ecore model import. However, the interoper-
ability of tools through a common exchange format may not always be possible.
One of the ways of approaching this is to orchestrate both transformations from
a single separate program. Take a programming language Python which, for the
sake of an example, the integration engineer is most familiar with. The language
appears to have a support for executing both Java and C-sharp binaries through
third party libraries. A project pyjnius 7 allows for Java code execution within
Python and Python for .NET 8 integrates C-sharp. We executed a compiled ATL
transformation from within Python. In our orchestration prototype, the result of
the transformation is returned and explored (i.e., using a visitor pattern) using
the native method calls specific to the returned object (through pyjnius). The
result of the so called parsing is stored into the Python representation of the
tree. The motivation for using common representation (in this case a Python

4 http://www.modelbus.org
5 http://eclipse.org/atl/
6 http://www.info.uni-karlsruhe.de/software/grgen/
7 https://github.com/kivy/pyjnius
8 http://pythonnet.sourceforge.net/



4 Jukšs, Barroca, Verbrugge, Vangheluwe

tree structure) is to eliminate the excessive number of conversions between the
tool formats if we wish to integrate more heterogeneous tools into the solution.
Next, the returned Python object is converted into the GrGen object which is
then used to execute the second transformation. The result is again converted
back into Python representation.

The integration of two API tools in this manner exposed a knowledge gap
of integrating Java and C-sharp into Python. In addition, the integration effort
required the knowledge of the native code constructs in order to realize conver-
sion between objects (Java and C-sharp). The resulting solution, though sound,
is not well suited for evolution of its respective parts. Changes in data, 3rd party
APIs, and programming languages, will most certainly impose a dramatic im-
pact on this prototype. We need a reusable integration solution that allows us to
abstract from these changes. UMTB is aiming for a semi-automated integration
generated from a specification.

4 Solution prototype

We now detail our vision of the prototype specification and resulting component
interaction in order to solve the integration problem presented in our running
example. In Figure 1 on the left, a view of a typical interaction between the
UMTB components is shown using a syntax of UML Sequence Diagrams. On the
right is shown the proposed UMTB architecture. The interaction results from an

Figure 1. A view of the component interaction during an API call to the Wrapper
(left) and UMTB architecture (right).

execution of a human understandable textual notation (HUTN) [8] code inside
the Orchestrator upon a tree model instance located on the Modelverse Kernel
component (MvK) [8]. MvK consists of a model management engine and model
repository that is shared and visible among all of the components (except for
the Tool’s API and its Wrapper) within the UMTB. MvK internally manipulates



Towards a Unifying Model Transformation Bus 5

models persisted in a PIR which is basically a typed-directed-attributed graph
that is used to describe values, types and metatypes (types of types).

We envision the following process of an API method execution on the Wrap-
per. Every API method call initiated in Orchestrator is directed to the Parser
component. The Parser component behaves as a controller that interacts with
the Wrapper and MvK to create copies of data to and from these two compo-
nents. The Parser, according to its configuration initiates a sequence of messages
to the Wrapper. These messages are intended to: create a call-scope symbol for
each API call; instantiate the parameter values in the Wrapper memory space;
call the method; and return the value.

The call-scope symbol created on the Wrapper is used to store not only the
values of the evaluated parameters, but also the method’s return value. In the
UML Sequence Diagram, the call-scope symbol is followed by the creation of the
required parameter values. In this particular case, the input model resides on
the MvK as do all the variables created and modified in the Orchestrator. The
Parser component initiates the parameter variable creation on the Wrapper. The
variable is read from the MvK, and recreated in the Wrapper during an interac-
tion between Parser, Wrapper and MvK. The process of variable creation as well
as reading the variables is guided by a multi-formalism statechart specification
residing in the Parser and is described in greater detail in Section 4.2. Once
all the parameter variables are created in the Wrapper memory space, the API
call is executed. The resulting value is transferred to the MvK through similar
statechart guided interaction between the components.

4.1 UMTB specification

We present the prototype of an ATL tree transformation Wrapper specification
on the left in Figure 2. We omit, for brevity, similar specification for the C-sharp

Figure 2. Header of the Wrapper for the ATL tree transformation on the left. On the
right in the dashed rectangle is the example orchestration in HUTN of two Wrappers
to chain two transformations to address our running example. Wrapper server flower
with one petal corresponding to an API function in bottom right.



6 Jukšs, Barroca, Verbrugge, Vangheluwe

based GrGen transformation. At the top of the specification are all necessary
native Java code imports required to execute the API methods in the Wrapper
and run the Wrapper specific code (italics indicate the native code snippets
injected into generated Wrapper programs). In this particular instance, an ATL
transformation package is imported for the Transform method as well as the
Node package of the EMF code implementing the Node tree model. The Node
class specification can be seen within the dashed rectangle in Figure 3.

Next follows the include section of a Java Wrapper template, that is reusable
across all Java APIs. The Wrapper template contains the minimal server im-
plementation including the communication channel. Wrapper template is con-
structed using a template language (such as EGL from Eclipse, for example) to
allow for native code snippet injection indicated in specification. The resulting
Wrapper after generation is a program in the native code, that links (imports)
the API and needs to be compiled.

The communication channel for the purpose of this paper is assumed to be
socket based TCP/IP connection between bus components, ensuring the ex-
change of messages and the data encoded into strings. The choice of communi-
cation channel however is open for flexibility. The use of sockets was motivated
by their typically universal interface across platforms and languages as well as
the freedom from using third party communication libraries.

The server, or simply the server loop of the Wrapper, if expressed using a
statechart, resembles a flower with transition loops initiating from and terminat-
ing at a “Waiting” state, see the bottom right of Figure 2. The pre-conditions
of the transitions are taken from the Wrapper Getter, Setter, and API specifi-
cations highlighted and underlined in all listings. The actions of the transitions
are triggering the actual native code snippets in the bodies of Getter, Setter,
and API specifications.

The initialization section of the specification contains the native code exe-
cuted at the instantiation of the Wrapper. The variables created in this section
are global and will be used in the Getter, Setter and API specifications. Notably
the symbol table sym table is created with an intent to keep the variables in-
stantiated in the Wrapper memory-space. The container visited is used to keep
track of visited elements during navigation of the data structures. A current
object is used as a pointer during visiting the data structure in the Wrapper.
This section in the specification also includes other objects the integration engi-
neer may need, a stack for example. There is also an initialization section in the
Parser not shown here. It is intended to create variables used in the MvK spe-
cific HUTN code, as shown in Section 4.2, and it also contains the exchangeable
PIR data metamodels in this case the metamodel of the tree structure we are
transforming. This ensures that the data coming to and from PIR is properly
modeled.

The API section of the specification contains the API methods we want to
expose. In this example, the result of Transform API function call is returned
from a function. The body of this function (as do the bodies of Getters and
Setters) is injected into Wrapper code during generation. When the Wrapper



Towards a Unifying Model Transformation Bus 7

receives the message Transform the body of the function will be executed pro-
vided that the parameters are instantiated within the call-scope of the Wrapper
memory space, and the return of the function call is then stored in the same
call-scope.

The notable syntax elements of the API specification, as well as Getter and
Setter function specifications, are the following. The pre-condition or the triggers
of the Wrapper server statechart (the message identifiers of the petal transitions)
are specified after the keyword as. The return identifier is specified after keyword
returns. The return identifier is used to tag the messages containing primitive
return values (strings). Note that communication channel is only allowed to
sends primitive strings. The variable values, the primitive ones such as integers
or floats in this prototype solution need to be converted to and from strings at
the level of communication channel. It is possible however to specify the API,
Getters and Setter functions to only return strings thus taking care of primitive
type conversions explicitly. The name and the type of the function parameter(s)
is indicated inside the brackets. The use of Getters and Setters is described in
the following section.

4.2 Reading and creating Wrapper variables

The data conversion between bus components is central in our approach. We
propose that every data structure (model) participating in the integration is
converted to and from the PIR according to the specification. We identify two
cases of data exchange, first is reading the variable from the Wrapper using
Getters. This is necessary to get the return value of an API call (reading can
also be used on demand). The second case is of creating the variables in the
Wrapper using Setters to execute methods requiring instantiated objects.

To get the result of an ATL transformation into PIR we need to make a copy
of the tree object in the MvK/Modelverse by exploring the Java tree object. We
start with the Wrapper Getters on the right in Figure 3. They are a part of the
Wrapper specification from Figure 2 and are used to read the data structures in
the Wrapper. Note that the native code in this paper does not handle exception
scenarios, for brevity. On the left in the Figure is the statechart describing the
interaction between the Parser component, the Orchestrator, the Wrapper and
MvK. The Getter (and Setter) definition shares the API definition syntax. In
addition, we highlight and underline the message identifier in both Getter spec-
ification and the statechart to aid the comprehension. The return identifiers are
underlined.

The statechart is designed by integration engineer with an intention to visit
in depth first manner the tree object in Java Wrapper space and copy it to
MvK tree model. The visitor paradigm is achieved by advancing the current
pointer over the data structure by calling the Getters’ code in the Wrapper. The
copying is ensured by executing MvK HUTN code specified in the statechart. The
current pointer is also maintained on the MvK side by the Parser. Essentially, in
this example, both pointers are associated with the same data structure element
during the copying process.



8 Jukšs, Barroca, Verbrugge, Vangheluwe

Figure 3. On the left a statechart implementing the copying of the tree from ATL Java
Wrapper into PIR in MVK by visiting the tree in depth first manner. Java specific
Getters on the right. EMF tree interface in dashed rectangle.

Inside the dashed rectangle in Figure 3, we show the possible tree structure
for visualization, and its definition from an EMF project. Also note that the in-
tegration engineer could have designed the statechart differently, such as visiting
the tree in breadth-first manner. The statechart also relies on Getter functions,
such as get label in order to receive the data associated with the structure (such
as the node label, in our example).

The statechart post-condition issues narrow-cast messages with one of W,O
or MVK identifiers followed by a →. These messages are sent to Wrapper,
Orchestrator and MvK respectively. At the entry point into the statechart in
Figure 3, the symbol table is queried for an existence of a variable. In case of
success, the statechart enters the Node state where the entry action creates a
node in the MvK. Subsequent entries into the Node state will create the tree
in MvK, and advance the current pointer in MvK. The current pointer within
the Wrapper is also advanced using the get next Getter. The statechart is also
performing backtracking when the tree leafs are reached by using the stack in
both Wrapper and MvK spaces. Statechart terminates when the Wrapper tree
visiting is over. The location of copied MvK object can then be returned to the
Orchestrator for further processing.

In Figure 4, we demonstrate the creation of the variable inside the Wrapper
space. Description of Getters applies here. For brevity, certain MvK code snip-
pets in the statechart were encapsulated into functions such as get next. The



Towards a Unifying Model Transformation Bus 9

Figure 4. On the left a statechart implementing the copying of the tree from PIR in
MVK to GrGen C-sharp Wrapper by visiting the tree in depth first manner. C-sharp
specific Setters on the right (error handling omitted).

behavior of this function is to advance the current pointer similar to what the
Java get next Getter is doing just using the HUTN code. In this example, we
show the Setters from GrGen C-sharp Wrapper. Notice that both statecharts for
reading and creating Wrapper variables do not contain the native code and only
platform independent HUTN code. This allows for a good deal of reusability of
these statecharts. Statechart for creating tree structure in ATL Java Wrapper
can now be repurposed for C-Sharp by reimplementing the Setters. Also note
that both statecharts in this section are not exactly the same. Since the intention
of both is to navigate tree structure in depth first manner, they appear similar
in structure, and actually could be made almost exactly the same in structure
(i.e., completely reused) except for their transition specification and entry ac-
tions. Difference in statecharts was intentionally made to demonstrate several
engineers working on an integration. This statechart visits MvK tree and makes
a copy in the Wrapper.

5 Conclusion and Future Work

In this paper we explore the UMTB, a model-driven alternative to the use of
the Native Language Interfaces on performing API-level tool integration. We
show how statechart models located in the Parser can be reused for data con-
version between API tools in different programming languages. We aim towards
automated generation of Wrapper component from a specification using native
code injection specific to the integrated API. The common data representation
in MvK component was used as a middle-ground for data conversion. In our



10 Jukšs, Barroca, Verbrugge, Vangheluwe

approach, we do not impose a particular communication channel to be used to
exchange messages between UMTB components. Possible communication chan-
nels could include process pipes for example.

In future work, we need to investigate the construction effort and the reusabil-
ity gains of UMTB, especially for data conversion. We will also explore other
formalisms for specifying data converted on the bus, such as for instance class
diagrams. Ideally, these formalisms should be analyzable so that we can reason
about these data conversion specifications, and prove properties such as their
correctness: such as for instance termination. The process of specifying UMTB
can be augmented to aid the engineer with code completion when using native
code of choice, syntax directed editing for the diagram construction, and wiz-
ards. Also, we could provide design-time navigation through the data structures
in an API of choice, in order to assist the UMTB specification. Finally, auto-
mated deployment decisions of the UMTB is another topic that needs a further
development.

References

1. Barroca, B., Mustafiz, S., Mierlo, S.V., Vangheluwe, H.: Integrating a neutral action
language in a devs modelling environment. SIMUTOOLS ’15: Proceedings of the
8th EAI International Conference on Simulation Tools and Techniques (2015)

2. Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of model
transformations with incompatible metamodels. In: Model-Driven Engineering Lan-
guages and Systems, Lecture Notes in Computer Science, vol. 8767, pp. 602–618.
Springer International Publishing (2014)

3. Biehl, M., El-Khoury, J., Loiret, F., Törngren, M.: On the modeling and generation
of service-oriented tool chains. Softw. Syst. Model. 13(2), 461–480 (May 2014)

4. Blanc, X., Gervais, M.P., Sriplakich, P.: Model bus: Towards the interoperability
of modelling tools. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) Model Driven
Architecture, Lecture Notes in Computer Science, vol. 3599, pp. 17–32. Springer
Berlin Heidelberg (2005)

5. Clavreul, M., Barais, O., Jézéquel, J.M.: Integrating legacy systems with MDE. In:
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engi-
neering - Volume 2. pp. 69–78. ICSE ’10, ACM, New York, NY, USA (2010)

6. Kleppe, A.: MCC: A model transformation environment. In: Rensink, A., Warmer,
J. (eds.) Model Driven Architecture Foundations and Applications, Lecture Notes
in Computer Science, vol. 4066, pp. 173–187. Springer Berlin Heidelberg (2006)

7. Oldevik, J.: Transformation composition modelling framework. In: Distributed Ap-
plications and Interoperable Systems, 5th IFIP WG 6.1 International Conference,
DAIS 2005, Athens, Greece, June 15-17, 2005, Proceedings. pp. 108–114 (2005)

8. Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani, E., Kühne, T.: Multi-level
modelling in the modelverse. MULTI 2014 – Multi-Level Modelling Workshop Pro-
ceedings 1286, 83–92 (2014)

9. Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A unified
transformation infrastructure. In: Model Driven Engineering Languages and Sys-
tems, Lecture Notes in Computer Science, vol. 4735, pp. 31–45. Springer Berlin
Heidelberg (2007)


