CUDA Parallel Algorithms for Forward and
Inverse Structural Gravity Problems

Alexander Tsidaev

Bulashevich Institute of Geophysics, Yekaterinburg, Russia
pdc@tsidaev.ru

Abstract. This paper describes usage of CUDA parallelization scheme
for forward and inverse gravity problems for structural boundaries. For-
ward problem is calculated using the finite elements approach. This
means that the whole calculation volume is split into parallelepipeds
and then the gravity effect of each is calculated using known formula. In-
verse problem solution is found using iteration local corrections method.
This method requires only forward problem calculation on each iteration
and does not use the operator inversion. Obtained results show that even
cheap consumer video cards are highly effective for algorithm paralleliza-
tion.

Keywords: geophysics - parallel algorithm - forward gravity problem -
inverse gravity problem - CUDA

1 Introduction

Gravity field measurement and interpretation is one of the simplest geophysical
methods. It does not require additional preparations (unlike, e.g., the method
of artifical magnetization in magnetometry) or large amount of sensors (unlike
seismometry). But despite this apparent simplicity, the interpretation of big
amounts of data is very hard. For a long time only 2D density models along
profiles were constructed, but now we have a need in 3D models construction as
they are much more informative.

3D geophysical problems solution usually requires high-performance calcu-
lations, especially if input data is specified on a big grid. In many cases the
performance of regular personal computers is not enough, this leads to the need
of supercomputers usage. But currently the supercomputers are not widely dis-
tributed and accessing one of them can be problematic. Even taking into account
that the data can be sent over the Internet to any distant supercomputer, the
big amount of data to send makes the process very slow.

But now we can use a different parallelization approach. With big popularity
of videogames, a standard video card of personal computer became much more
than just a display adapter. It is a mini-computer with higher performance than
central processing unit (CPU) itself. Performance of top-class graphical process-
ing units (GPU) is similar to the performance of 10-years old supercomputers.

CUDA for Forward and Inverse Gravity Problems 51

But even cheap consumer GPU can provide a high speed up of calculations if
program was parallelized correctly.

Compute Unified Device Architecture (CUDA) is a parallelization technol-
ogy by one of the leading GPU producers, nVidia. Current paper is dedicated
to the usage of CUDA for the creation of efficient programs for gravity geo-
physical problems. Section 2 contains description of gravity structural forward
problem and algorithm for its parallelization using CUDA. Section 3 describes
the inverse gravity problem for structural boundaries and the idea of local cor-
rections method. In the 4 section the comparison of different calculation schemes
is provided.

2 Forward gravity problem for structural boundary

In general, gravity potential that is produced by some object is calculated as
(for details one may refer to, e.g., [1])

o(&,n,Q)dV
W(x,y,z) =
) ”Jxﬂé—m2+w—yv+@—zv

(1)

Here x,y, 2z - point of observation; o(&,,() is the density value at a point
(¢,m,¢) under Earth surface; v = 6.67408 - 10~ *m? - kg=! - 572 is a gravitational
constant. z axis direction is downwards.

If we neglect the sphericity of Earth, the first derivative by z of (1) can be
taken as anomaly gravity field Ag on Earth surface. This is the main formula
for gravity forward problem:

0(57 m, C)(C - Z)dV
[(€ —2)2+ (n —)2 + (¢ —)2/

Ag = Wz’(x,y,z) = 7/ (2>

It is clearly seen from (2) that gravity field on Earth level depends only on
density distribution. While density values may vary between neighbour points, in
regional studies of big squares we can ignore this variance. In such scales Earth
gradiental density distribution could be replaced with the structural model of
homogeneous layers with constant densities (Fig. 1(a)). In [2] it is shown that the
topography of structural boundaries between these layers is the only element,
which produces non-constant gravity field in this model (Fig. 1(b)). This is 3D
analogue of Strakhov boundaries parameterization, which was presented in [3].

As the result, we do not need to know absolute density values for layers and
the gravity effect of structural boundary could be calculated up to a constant as

52 Alexander Tsidaev

&) H=0
7 2(z,y)
02
£) H=0
z(z,y)
AU Hasympt

Fig. 1. 2-layer model with absolute density values (a) and its parameterization (b)

dxdy H

Vi@ =202+ y—y)? + (2 = 2)2 Ly

Ag=U(z,y,z) :’YAU/

—00 —

=7yAo 7 7 (\/(x ! - (3)
1

g3
Il

—00 —00 —J}/)2+ (y—y’)2+z($,y)2

N CET eI H2>dm‘”

here (z,y’) - point of observation on Earth level (where 2z’ = 0); z(z,y) -
structural boundary surface; H - asymptote of z(z,y), Ao - density jump on a
surface z(z,y), it is equal to the difference (o7 — 02) between density values of
layers above (o1) and below (o2) the structural boundary.

Direct calculation using formula (3) is complicated by the weak singularity in
the point (x = ',y = ¢/, 2(x,y) U H = 0), so the formula is inapplicable for the
shallow surfaces. To avoid this limitation in [2] we offered an idea of more stable
and efficient structural gravity problem calculation using the finite elements
approach. We split the observation plane into a set of rectangular elements x; =
E,yi =1 (0 <4 < N,0 < j < M, the same discretization is used for the
boundary too) and calculate a field Ag(2’,y’) as a sum

Ag(a'y') =vAc -y Agi;(a'y) (4)
ij

of gravity effects of parallelepiped elements (whose formula could be obtained
analytically)

CUDA for Forward and Inverse Gravity Problems 53

Agii(2'y) = —y) - In(|€ = 2| + R) + (§ = 2') - In(In — y'| + R)—

€)= (6o
(R

Eit1|Mi+1

— (- arctg

()

g Iny 1H

Here R = /(€ —2)> + (1 — y)* + ¢2.

In addition to the possibility to calculate field of near-surface boundaries,
this method has another advantage over direct calculation using (3): there is no
need for the “real” asymptote for a boundary. Since the boundary gravity effect
calculation is actually replaced with calculation of gravity effect for the limited
body, any horizontally located plane could be used instead of asymptote H. But
it is better to take the average value of the boundary: for all other H the field
will contain additional constant component, which is equal to the gravity effect
of a flat layer located between H and boundary average depth.

It is obvious that the algorithmic implementation of (4) should contain two
nested loops: one iterates through points of observation (z/,%3’), and another
iterates through the surface discretes (£,7). This is very close to the CUDA
internal structure, which has blocks and threads [4]. Programmer can run any
number of calculation blocks, and each block will execute the same program code
in parallel in predefined (and permanent for all blocks) number of threads. So if
we run calculation of (5) on N - M blocks in N - M threads and then summarize
results for all threads inside each block, the combination of the block results
will be exactly the gravity effect of the structural boundary (up to vAc). The
described scheme is presented on Fig. 2.

Block #1 Block #2

Thread #3
Thread #2 4
Thread #1-

Fig. 2. Blocks and threads parallelization scheme: each block calculates observed field
value in specific point (top), each block thread calculates the gravity effect of single
parallelepiped (bottom).

54 Alexander Tsidaev

This method also provides a good scalability across multiple GPUs. Each
graphic card can calculate gravity field in a separate set of grid rows, and host
then can easily combine results from different GPUs together. Number of graphic
cards in single PC is limited by the number of physical PCle slots and PCle
channels, but it is almost always possible to insert at least two GPUs in one
motherboard. Another option is to use several CUDA-enabled PCs connected
with MPT (Message Passing Interface) over a local network. But one should con-
trol the performance of the process due to a big overhead of network operations.

3 Inverse gravity problem for structural boundary

Inverse gravity problem occurs when it is needed to restore density distribu-
tion by known (observed) gravity field. This problem has big practical necessity
because it allows one to explore Earth structure mathematically, without such
costly operations as borehole drilling. But the problem is ill-posed so the solution
is not unique (there are continuum of solutions that produce the same gravity
effect) and the solution process of the problem is unstable.

Direct inversion of (3) gives us the Fredholm equation of first kind. It can
be reduced to a system of linear equations, which then could be solved using
Tikhonov regularization scheme and approximate methods. This approach has a
good description in [5], one of possible parallelization schemes is provided there
as well. But for the big grids this system of linear equations will be very large
(i.e. N2 - M?) and so some additional algorithms would be needed to operate
such a big data. This is the reason to use iterative method of local corrections.

The method of local corrections [6, 7] was developed by I. Prutkin and its idea
is that the main contribution to the gravity field at some point (z, y) is introduced
by the masses located directly under that point. Since the boundaries between
density layers rarely have large gradients, this assumption can be considered as
true. Main formula of the method is simple:

zn
n+1l __ xy (6)

ot =
Y 1+ (O‘/’YCAU) " Zxy (U-Ty - U;rly)

here 27, is the position of a boundary 2 in a point (x,y) on nth iteration; U,
is the observed field in the point (z,y); Uy, is the gravity field of nth iteration
boundary 27, ; c is cubature formula coefficient; « is regularization parameter.

Parameter « is very important. This is not the regularization parameter in
Tikhonov’s sense. It acts more like stabilizing factor, which does not allow bound-
ary to deviate too far from the previous approximation. It should be selected
relatively small, 0 < o < 1.

I. Prutkin selected the estimated asymptote level for a z(x,y) as the initial
approximation 2°. In [2] we offered modified technique. We construct initial
approximation using a priori data obtained using another geophysical methods
(e.g. seismic surveys). This reduces the number of iterations and also forces the

method to produce more geologically meaningful solutions.

CUDA for Forward and Inverse Gravity Problems 55

It is clearly seen from (6) that the only calculation that is needed on each
iteration of local corrections method is the forward gravity problem solution for a
density boundary of previous approximation. So the parallelization idea is quite
simple and relies on parallelization algorithm described in section 2:

1. Calculate field of the boundary of nth approximation using CUDA parallel
scheme.

2. Calculate difference U — U™ between observed and obtained fields.

3. If mean value of the difference is less than some preselected ¢, then exit.
Current approximation of z(z,y) is the solution.

4. Else calculate (n + 1)th approximation of the boundary by (6) and repeat
algorithm from the first step.

4 Calculations and results

Algorithms were implemented for different hardware to evaluate efficiency. Pro-
gram for CPU was written in C++ and compiled with gce (g++ -03) compiler.
GPU implementation is also in C++4 and CUDA part was compiled with pro-
prietary nvce compiler while gce has been used for the host code. The grid with
of 256x256 nodes was taken as input data. Tesla M2050 GPUs were accessed on
“Uran” supercomputer, which is located in Krasovskii Institute of Mathematics
and Mechanics (Yekaterinburg). Results of testing are presented in Table 1.

Table 1. Duration of forward problem calculation on different hardware

Hardware Calculation time, s |Speed up factor
1 CPU core (Intel Xeon E5520) 3968.16 (66+ minutes)|1x

1 GPU (nVidia GTX580) 62.412 64x

1 GPU (nVidia GTX780 Ti) 32.711 121x

1 GPU (Tesla M2050) 27.841 143x

2 GPUs (nVidia GTX780 Ti) 16.862 235x

2 GPUs (Tesla M2050) 13.693 290x

4 GPUs (Tesla M2050) 7.528 527x

8 GPUs (Tesla M2050) 5.274 752x

So for a big grids calculations on CPU are almost unacceptable. Though CPU
still could be used for a single forward problem calculation, its usage in iterative
process of inverse problem solution entails long waiting time. Local corrections
method requires o parameter preselection which could be performed only empir-
ically, so the number of required iterations (usually 20-30) is multiplied by the
amount of experiments. This makes CPU usage for inverse problem calculation
highly problematic.

Conversely, even relatively cheap outdated consumer GPU nVidia GTX580
has acceptable time of calculation. And modern consumer devices like nVidia
GTX780 Ti can compete even with previous generation of specialized CUDA

56 Alexander Tsidaev

calculators (Tesla). The one who has no access to supercomputer can easily
build high-performance computer himself using these widely available devices.

As it is seen from Table 1, the dependence between number of GPUs and
calculation time is almost linear for 1, 2 and 4 Tesla cards. Regularity break on 8
GPUs is related to the increased overhead of host operations. For a bigger grids
the linear nature of dependence returns. For example, for a grid of size 1335x1404
the calculation times on 4 and 8 GPUs are 20m12s and 9m47s respectively. This
linear dependence confirms very good scalability of CUDA calculations: with
twofold GPU count increase the duration of calculation is reduced in 2 times
too.

5 Conclusion

Gravity modeling is very important geophysical task. In this paper the algo-
rithms for forward and inverse problems parallelization were offered. Obtained
results show that GPU calculations are very effective way to lower the calcu-
lation time. Even widespread graphic cards, which initially were intended for a
videogame use, can be utilized for a high-performance calculations. Simpleness
of CUDA make this technology available for a mass use while scalability allows
one to increase performance easily.

The research was supported by the Russian Science Foundation (project 14-
27-00059).

References

1. Blokh, Yu.L.: Interpretation of gravity and magnetic anomalies (In Russian),
http://sigma3d.com/pdf/books/blokh-interp.pdf (2009)

2. Martyshko, P.S., Ladovskiy, I.V., Tsidaev, A.G.: Constructional of Regional Geo-
physical Models Based on the Joint Interpretation of Gravity and Seismic Data.
Izvestiya, Physics of the Solid Earth, 2010, Vol. 46, No. 11, 931-942 (2010)

3. Strakhov, V.N.: On the parameterization problem in gravity inversion (In Russian).
Fizika Zemli, No. 6, 39-50 (1978)

4. Wilt, N.: CUDA handbook: A comprehensive guide to GPU programming. Addison-
Wesley Professional, Boston (2013)

5. Akimova, E.N.; Vasin, V.V., Misilov, V.E.: Algorithms for solving inverse gravime-
try problems of finding the interface between media on multiprocessing computer
systems (In Russian). Vestnik UGATU, vol. 18, no. 2 (63), 208217 (2014)

6. Prutkin, I.L.: The solution of three-dimensional inverse gravimetric problem in the
class of contact surfaces by the method of local corrections. Izvestiya. Phys. Solid
Earth 22 (1), 49-55 (1986)

7. Prutkin, I., Saleh, A.: Gravity and magnetic data inversion for 3D topography of the
Moho discontinuity in the northern Red Sea area, Egypt. Journal of Geodynamics
47 (5), 237-245 (2009)

