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ABSTRACT
Structured data acquisition is a common, challenging task that

is widely performed in the field of biomedicine. However, in some
biomedical fields, such as clinical functional assessment, little effort
has been done to structure functional assessment data in such a
way that it can be automatically employed in decision making (e.g.,
determining eligibility for disability benefits) based on conclusions
derived from acquired data (e.g., assessment of impaired motor
function). In order to be able to apply such automatisms, we need
data structured in a way that can be exploited by automated deduction
systems, for instance, in the Web Ontology Language (OWL); the
de facto ontology language for the Web. The rise of OWL caused
a paradigm shift in knowledge systems from frame-based to axiom-
based. Because of the axiom-based nature of OWL, it is more
difficult to acquire instance data based on OWL than it was based
on frames. In this paper we tackle the problem of generating Web
forms from OWL ontologies, and aggregating input gathered through
these forms as an ontology of “semantically-enriched” form data that
can be queried using an RDF query language, such as SPARQL.
The ontology-based structured data acquisition framework that we
have developed is presented through its specific application to the
clinical functional assessment domain, with examples of how one can
perform desirable analyses of gathered data with simple queries.

1 INTRODUCTION
Ontology-based form generation and structured data acquisition
was first pioneered almost 30 years ago. In the early 1990s,
Protégé-Frames used definitions of classes in an ontology to
generate knowledge-acquisition forms, which could be used to
acquire instances of the classes [2, 3]. With OWL as the preferred
modeling language for ontologies, class definitions are collections
of description logic (DL) axioms, and can no longer be seen
as templates for forms [9]. Unlike template-based knowledge
representations, where what can be said about a class is defined
by the slots of the class template, axiom-based representations do
not have this kind of locally scoped specification, and allow any
axiom describing the same class to be added to the ontology, as
long as the axiom does not lead to inconsistencies. Template-based
knowledge representation systems use closed-world reasoning and
have local constraints (e.g., cardinality of a slot for a particular
class) that can be validated easily, while in an axiom-based system
with the open-world assumption such local constraint checking is
much more problematic. Furthermore, in our chosen application
domain, assessment instruments have specific formats that do not
lend themselves to be seen as representing instances of domain
ontology classes. Items in the instruments have potentially complex
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descriptions of information to be collected, such as the severity of
pain with a particular quality, and at a specific anatomical location.
The challenge is to model the assessment instruments and relate the
assessed data to a domain ontology with which one can formulate
meaningful queries.

In this paper, we describe a solution for representing, acquiring
and querying assessment data that uses (1) domain ontologies and
standard terminologies to give formal descriptions of entities in our
chosen domain, (2) an information model of assessment instruments
to drive the generation of data-acquisition Web forms, and (3)
a data model for the acquired information that links the data to
the domain ontologies and standard terminologies. Such linkage
makes it possible to query and aggregate the data using the logical
representation of the domain concepts in the ontologies.

2 RELATED WORK
In addition to the comparison with Protégé-Frames’ template-based
instance acquisition method described in Section 1, we briefly
contrast our work with two other systems that are designed to use
forms for acquiring structured data: the first targets the domain of
patient assessment, which is similar to the work reported here, while
the second is a generic Web-based technology from which one can
draw examples on how to arrive at a domain-independent solution.

The clinical documentation system described in [6] uses a
template schema to allow a technology-savvy clinician to create
documentation templates that include the local structure of
subforms and potentially complex clinical descriptions consisting
of features and their values. The features and values are mapped
to a medical ontology, and the system automatically generates
ontological descriptions of the data elements based on the mappings.
Constrained by our goal to replicate existing forms, we took the
opposite approach where we start with ontological descriptions
of the data elements, specify how they are used in assessment
instruments as part of the description of instruments, and generate
Web forms for the acquisition of data. Having the freedom to design
their documentation system, Horridge et al. avoided the laborious
work of manually modeling the domain concepts.

Semantic wikis extend regular wikis with semantic technologies,
wherein each wiki article is an RDF resource, and an instance
of some resource such as a class defined in the schema,1 which
can be asserted to have relations with other RDF resources. These
relations are defined by the authors of wiki articles, which could
be a challenging task to perform without previous knowledge of the
domain or the modeling. In a survey of semantic wikis featuring
OWL reasoning and SPARQL2 querying facilities [4], a user

1 The typical kinds of schema accepted are OWL and RDFS.
2 http://www.w3.org/TR/rdf-sparql-query
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evaluation of a chosen semantic wiki implementation concluded that
authoring instance data in such a way is cumbersome, even with
users that were familiar with ontologies. A good solution to this
would be exploiting the relations defined in the schema to provide
“wiki article templates” whose form input fields derive from those
relations, thus making it easier to author semantic wiki articles.

3 APPLICATION DOMAIN
Clinical functional assessment provides the application motivation
for our work. Functional assessment is the evaluation of an
individual’s ability to perform body functions (e.g., flexing a joint)
and defined tasks (e.g., walking a specific distance). It is necessary
for evaluating disabilities for rehabilitation, for social security
payment, or for decisions to retain or discharge service members
who may be injured on duty. Despite its importance, it is not usually
supported by electronic health record (EHR) systems [1]. These
assessments are often documented using assessment instruments
(e.g., check-lists and validated questionnaires) such as Karnofsky
Performance Status [11]. Too frequently the data derived from using
these instruments are saved as either blobs or non-standard data
elements. While a standard such as LOINC R© (Logical Observation
Identifiers Names and Codes) defines the syntactic structures of
assessment instruments as a hierarchy of panels with questions that
have coded answers [10], it does not relate the semantic content
of the questions and answers to standard terminologies and data
models that allow meaningful querying and aggregation of acquired
data.

In our application scenario we use, as exemplars, the
U.S. Department of Veterans Affairs (VA) Disability Benefits
Questionnaires (DBQs). DBQs are used to evaluate service
members’ disabilities and to determine the benefits for which
they are eligible. We start off with these DBQs as our initial
form specifications, and design an ontology-based method for
Web form generation and structured data acquisition, subsequently
exemplifying how one would go about exploiting such data for
immediate or post facto analyses.

4 MODELING
In order to capture the semantic distinctions that are needed
in functional assessment, we developed a Clinical Functional
Assessment (CFA) ontology that models the concepts and
relationships that occur in functional assessment instruments. We
developed information models for such instruments and for data
captured in the instruments. We will show how the CFA ontology
and information models inform the generation of data-acquisition
forms and how the resulting data can be queried and aggregated.
Our goal was to develop a set of light-weight ontologies and
models with minimal ontological commitments, and postponing
alignment with possible upper-level ontologies to the future.
Existing ontologies, such as the Information Artifact Ontology
(IAO),3 do not provide a modeling of forms and questions that we
could reuse. Furthermore, what we need is an information model
that states, for example, that the structure of a “question” includes
a specific text, not an ontology that models parts of information
artifacts as ontological entities (e.g., modeling the text of a question
as an instance of “textual entity” class). Our ontologies reference the

3 https://code.google.com/p/information-artifact-ontology

International Classification of Functioning, Disability and Health
(ICF),4 developed by the World Health Organization (WHO), and
other reference terminologies such as SNOMED CT.5

Imports structure The modeling tasks of this project involve
describing different domain areas, leading us to create separate
ontology files that can be re-used independently. In our specific
application we use the full import closure as depicted in Figure 1.
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Fig. 1: Imports structure and role separation of ontologies developed
for, or included as part of our modeling solution. Form specifications
use terms from the datamodel ontology (e.g., to create question
instances) as well as from domain-specific ontologies (e.g., CFA).

The ontology marked as Instance data in Figure 1 is the
collection of data assertions from form submissions, possibly from
different forms. The ontologies represented in Form specification
are specifications of different forms; in our case, we use a single
ontology that specifies two closely-related forms. The content of
the above-mentioned ontologies is application-specific, that is, the
way the data is represented is directly derived from the way in
which forms are modeled (for different assessment instruments).
However, resulting data still conform to the generic information
models specified in the datamodel ontology. In this way, there is
a separation of the Form specification ontologies (Abox axioms)
from the Functional assessment ontologies that model the functional
assessment domain and data models (mostly Tbox axioms). In
Querying and classification we use a domain-specific ontology to
apply SWRL rules,6 and define complex OWL classes to facilitate
querying in SPARQL and in OWL.

ICF ICF is a multi-purpose classification that, together with
the International Classification of Diseases (ICD),7 is a reference
classification in the WHO Family of International Classifications
(WHO–FIC). It provides a standard language and conceptual basis
for the definition and measurement of functions and disability.
However, unlike ICD codes that represent possible disease or
injuries, coding different health and health-related states requires
that ICF codes (e.g., “d4501” - walking long distance) be used
in conjunction with component-specific qualifiers (e.g., a 0 to
4 scale to encode the range of impairment). Such a complex
coding scheme makes it difficult to transform data derived from
assessment instruments into the ICF format. Nevertheless, ICF
provides a reference conceptual basis for the definition and
measurement of functions and disability, thus justifying its usage in
descriptions of functional assessment results, despite its limitations

4 http://www.who.int/classifications/icf/en

5 http://www.ihtsdo.org/snomed-ct

6 http://www.w3.org/Submission/SWRL

7 http://www.who.int/classifications/icd/en
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as a formal ontology [7]. To reference ICF concepts in our
modeling of functional assessment descriptors, we use a version
of ICF available from the National Center of Biomedical Ontology
(NCBO) BioPortal repository [8], that is represented in OWL.

CFA The Clinical Functional Assessment (CFA) ontology models
concepts and relationships that allow us to give formal descriptions
of the findings, assessments, and measurements embodied in
clinical functional assessment instruments. The ontology is divided
into three main branches: (1) Finding: the result of an observation
or judgement, (2) Value that defines collections of possible
qualifiers and values for findings, and (3) SubjectMatterOntology
that provides internally defined domain concepts that either are not
available from standard terminologies or are references to standard
terms that need to be organized into taxonomies. The Finding
class is further subdivided into Assessment (those findings that have
non-numeric result) and Measurement (those findings that have
numeric results). We also define FunctionalFinding (a subclass of
Finding) and FunctionalAssessment (a subclass of Assessment). In
general, a functional assessment will have some assessed function
that can be related to an ICF body function or activity (possibly as
an exact match, specialization, or generalization), some assessed
attribute, such as severity, that specifies the dimension of the
function being assessed, and optionally some anatomical location
of the assessment. Both findings and functions can be modified by
qualifiers that further refine these entities. For example, a functional
assessment may be made in the context of using assistive devices,
and a function being assessed may have some temporal component
(e.g., constant or intermittent pain). ICF being an imported ontology
for CFA, all ICF categories, such as body structure, body function,
activities and participation, and environmental factors are available
for formalizing descriptions of functional assessments. For other
standard terminologies such as SNOMED CT, ICD, and LOINC,
instead of importing them as ontologies, we make references to them
through an ExternallyCodedValue that specifies the terminology
source and code. Queries that reference these codes require the
availability of terminology services that relate these codes to other
terms in the referenced terminologies.

The modeling of Finding is exemplified as follows, based on
the “Back (Thoracolumbar Spine) Conditions” DBQ that we use
as one of our exemplar assessment instruments; in the question on
the severity of constant pain caused by radiculopathy on the right
lower extremity, we define a subclass of FunctionalAssessment that
has the assessed attribute ‘severity’, the assessed function ‘icf:b2801
Pain in body part’ that is qualified by a temporal quality ‘Constant’,
and has anatomical location ‘icf:s750. structure of lower extremity’
with laterality ‘Right’. Figure 2 illustrates the modeling of this
assessment. With the modeling of the dimensions of assessment
instrument questions, we can make queries on, and aggregate data
collected through the instruments, as will be shown in Section 6.

Fig. 2: Modeling of “severity of constant pain caused by
radiculopathy in the lower right extremity”.

Datamodel The datamodel ontology is a generic, context-free
representation of a form (e.g., it models elements such as questions
and sections) and the data generated from a form (e.g., a string value
from a text area, or values from an enumerated value set). Figure 3
summarizes key aspects of our modeling: elements of a form are
asserted as subclasses of FormStructure, such as Form, Section
and Question. Each kind of FormStructure generates some kind of
Data; every form submission generates an instance of FormData,
which references (via the hasComponent property) all instances of
Data generated in the process of parsing form answers. Specific
sections such as SubjectInfoSection collect information pertaining
to a subject, and these details are aggregated in an instance of
SubjectInformation. An answer to an instance of Question gives rise
to an instance of Observation with a hasValue property assertion
to the IRI of the selected answer. An instance of Observation will
be inferred to have an outgoing hasFocus property assertion if the
Question instance it derives from encodes some kind of semantic
description of the question’s meaning via the isAbout relation. Each
instance of Question specifies a set of possible (answer) values via
a hasPossibleValue relation to a subclass of Value.
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Fig. 3: Excerpt of the datamodel ontology classes and relations.

Form The Form ontology contains the set of individuals that
are necessary to produce forms. While the technology we have
developed is completely generic, we use as exemplars the U.S.
Department of Veterans Affairs (VA) DBQs, which we modeled
in an ontology named DBQ. This ontology contains instances
of Question, Section, Form and other elements defined in the
datamodel ontology (shown in Figure 3). Not only does this
ontology rely on datamodel (for form structuring purposes), it also
relies on functional assessment classes and individuals given in the
CFA ontology, for example, values of a scale of severity of pain
that should be presented as answer options to users reporting on the
severity of constant pain in the lower extremity.

Criteria The criteria ontology contains SWRL rules to enrich the
domain representation (e.g., if a Question instance has an isAbout
relation with some instance i, then the Observation data instance
that represents the answer to that question will get a hasFocus
property filler i), as well as defined classes used to better support
querying, which we describe in more detail in Section 6.
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5 OWL-BASED DATA ACQUISITION
Our approach to data acquisition in OWL requires two components:
firstly, an OWL representation (in the form of one or more
ontologies) of the form structures (questions, sections, etc), and
descriptions of those structures’ meanings, and, secondly, the view
component that is given by an XML file specifying user-interface
aspects. So, in order to use our method, a user will have to model
questions and their descriptions in OWL, and then specify the layout
and content of the resulting form in XML.

We implemented our form generation and data acquisition tool in
Java, using the OWL API v4.0.1,8 and its source code is publicly
available on GitHub.9 The tool implementation and configuration
details are omitted here due to lack of space, but can be found in the
GitHub project wiki. The tool takes as input a user-defined XML
configuration file, generates a form, and outputs form answers in
CSV, RDF and OWL formats. The configuration file should contain
a pointer to the ontology specifying the form, as well as its imports.
The two major stages in the service are form generation and form
input handling, as described below.

(1) Form generation – Steps to produce a form:
(a) Process XML configuration, gathering form layout

information, IRIs and bindings to ontology entities
(b) Extract from the input ontology all relevant information

pertaining to each form element:
(b.1) Text to be displayed (e.g., section header, question text)
(b.2) Options and their text, where applicable
(b.3) The focus of each question

(c) Generate the appropriate HTML and JavaScript code
(2) Form input handling – Once the form is filled in and submitted:

(a) Process answer data and create appropriate individuals
(b) Produce a partonomy of the individuals created in (2.a) that

mirrors the layout structure given in the configuration
(c) Return the (structured) answers to the user in a chosen format

The user-defined XML configuration (1.a) specifies: input and
output information of the tool, bindings to ontology entities, and
layout of form elements. The key XML elements are:

input: contains an ontology child element, and optionally a child
element named imports
◦ ontology: absolute path or URL to the form specification

ontology (e.g., DBQ ontology)

◦ imports: contains ontology child elements, which have an
attribute iri, giving the IRI of the imported ontology

output: contains the following child elements
◦ file: defines, via a title attribute, the title of the form.

Optionally, a path can be specified within the file element
where the HTML form file should be serialized

◦ cssStyle: the CSS style class to be used in the output HTML
bindings: defines mappings to ontology entities, such as what data

property is used to state the text of a question, or section headings
form: defines the layout and behaviors of the form

There is a wide range of versatility when configuring forms,
such as: multiple levels of sub-questions, form element numbering,

8 http://owlapi.sourceforge.net

9 http://github.com/protegeproject/facsimile

question type (e.g., radio, checkbox, dropdown, horizontal
checkbox, etc), question-list layout (vertical or inline) and
recurrence; one can specify that a collection of questions should
be repeated any given number of times. Some more complex
options include overriding the default (alphabetic) order of
answer options, and triggering sub-questions when a specific
answer is selected. These two features are exemplified in
Figure 4: this question is configured with an attribute/value
pair: showSubquestionsForAnswer=“cfa:Yes” on the question XML
element, so that answering ‘Yes’ triggers the sub-questions of
that question. In Figure 4, under ‘Right lower extremity’, we
have a question with a list of answer options derived from
an enumerated value set, which would ordinarily be ordered
alphabetically. However, ‘None’ would then appear between
‘Moderate’ and ‘Severe’, thus interrupting a severity scale. So
we added: optionOrder=“3;*” to the question element, which
states that the would-be third option (alphabetically) should appear
first, and the remaining (the “*” wild character stands for “all
unmentioned options”) should be presented in default order.

Fig. 4: The user interface of the form generated for the DBQ
question corresponding to radiculopathy pain modeled in Figure 2.

The key output of the data acquisition tool is the OWL ontology,
as it provides us with “semantically enriched” form data that can be
used for aggregation and querying. The resulting data individuals
are structured in OWL (via hasComponent relations) similarly to
how the form is structured in the configuration, that is, if question
Q is configured as having two sub-questions, then the Observation
individual generated by Q will have two outgoing hasComponent
relations to the instances of Observation generated by the two sub-
questions of Q.

6 DATA ANALYSIS
One of the authors (Michael J. Tierney), who is a physician from
the VA Palo Alto Healthcare System, validated the generated
OWL-based versions of the DBQ forms, and filled in the “Back
(Thoracolumbar Spine) Conditions” DBQ with 5 complete sets of
sample data. The data gathered are stored in a graph database with
support for SPARQL 1.1 querying and OWL 2 reasoning.

Since our data are both structured and semantically enriched, we
are able to query the observations using SPARQL, classify them
into criteria representing powerful OWL expressions, or manipulate
them using SWRL. For example, Code Snippet 1 presents a simple
SPARQL query that returns all instances of Observation where a
patient presented signs or symptoms due to radiculopathy. It is worth
observing that this query is formulated in such a way that it is
independent of the assessment instrument, including the particular
formulation of the question, but rather uses the appropriate focus
individual from our CFA ontology.
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Code Snippet 1 SPARQL query for retrieving all observations of
radicular pain due to radiculopathy.
SELECT ?obs WHERE {
?obs a datamodel:Observation .
?obs datamodel:isDerivedFrom ?q .
?q a datamodel:Question .
?q cfa:isAbout

cfa:signs_or_symptoms_due_to_radiculopathy .
?obs cfa:hasValue cfa:Yes }

In order to query for all observations of severe pain anywhere in
the lower extremity, one could formulate an OWL DL query such as
that given in Code Snippet 2.

Code Snippet 2 OWL DL query for retrieving all observations of
severe pain anywhere in the lower extremity.
datamodel:Observation and
cfa:hasValue value cfa:severe and
cfa:hasFocus some (cfa:Assessment and

(cfa:hasAssessedFunction some
(cfa:isExactMatchOf some

’icf:b2801. Pain in body part’)) and
(cfa:hasAnatomicalLocation some

’icf:s750. Structure of lower extremity’))

In response to the query in Code Snippet 2, a DL reasoner uses
the semantic descriptions of the observation foci, which are derived
from the questions’ isAbout property, to aggregate answers for
severe pain for different parts of the lower extremity.

7 DISCUSSION
In this paper we presented a framework for OWL-based form
generation and data acquisition that gathers form answers as tab-
delimited data, RDF triples, or OWL instances, which can be
subsequently analyzed in a systematic way (as shown in our queries
in Section 6). Once the raw data is processed (by deriving the
foci of observations from the isAbout field of the questions), the
resulting data have no dependency on specific questions (except
for provenance tracking), so if the form specification is modified,
then previous form data are still comprehensible and sound (i.e.,
upon form specification changes the new data and old data remain
compatible). However, if a user requires data to be structured
in a different or more specialized format than ours, then either
the software needs modifying, or a post-processing step would
be necessary. The value of data in such a structured format in
any arbitrary domain is twofold: automating, or improving the
automation of the process of arriving at desirable conclusions
from questions in the form, and for further analysis, for instance,
via querying. In the clinical functional assessment domain, our
modeling of forms and questions is consistent with the format of
assessment instruments defined in LOINC. However, the types of
queries we formulated for functional assessment data are unfeasible
using LOINC, since LOINC provides no semantics behind what an
answer to a specific question means.

We presented our modeling of functional assessments and
assessment instruments, and demonstrated (1) how to generate
forms and acquire data based on these OWL ontologies and data
models, and (2) how to make use of the data using queries on
individual subjects and queries that aggregate population data.

The modeling contributions include (1) CFA: a clinical functional
assessment domain ontology that allows defining questions being
asked in an assessment instrument in terms of a rich ontology that
integrates standard terminologies such as ICF and SNOMED CT,
and which provides the means for making detailed or aggregate
queries on acquired data, and (2) datamodel: an information model
that allows the specification of generic assessment forms and the
format of structured data acquired through the instruments.

We have designed our output model to support the acquisition
of structured data through Web forms, and for the potential to
integrate the data inside EHRs. It is straightforward to transform
the data we capture as instances of Observation, Certification,
EvaluatorInformation, and SubjectInformation into, for example,
Health Level Seven (HL7) Reference Information Model (RIM)
standard compliant data [5]. Finally, we have shown that the
problem of structured data acquisition can be suitably tackled
using OWL; our solution, though applied to the clinical functional
assessment domain for the context of this paper, is entirely generic,
and can easily be applied to an arbitrary domain.
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