
A UML Profile for Functional Modeling Applied to
the Molecular Function Ontology

Patryk Burek 1∗, Frank Loebe 2 and Heinrich Herre 1

1Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig,
Haertelstrasse 16-18, 04107 Leipzig, Germany

2Computer Science Institute, University of Leipzig,
Augustusplatz 10, 04109 Leipzig, Germany

ABSTRACT
Gene Ontology (GO) is the largest, and steadily growing, resource

for cataloging gene products. Naturally, its growth raises issues re-
garding its structure. Modeling and refactoring big ontologies such
as GO is far from being simple. It seems that human-friendly graph-
ical modeling languages, such as the Unified Modeling Language
(UML) could be helpful for that task. In the current paper we inves-
tigate if UML can be utilized for making the structural organization of
the Molecular Function Ontology (MFO), a sub-ontology of GO, more
explicit. In addition, we examine if and how using UML can support
the refactoring of MFO. We utilize UML and its extension mechanism
for the definition of a UML dialect, which is suited for modeling func-
tions and is called Function Modeling Language (FuML). Next, we
use FuML for capturing the structure of molecular functions. Finally,
we propose and demonstrate some refactoring options for MFO.

1 INTRODUCTION
The Molecular Function Ontology (MFO) is a sub-ontology of the
Gene Ontology (GO) – the largest, and steadily growing, resource
for cataloging gene products. In 2000 GO contained less than 5,000
terms, in 2003 – 13,000 (Gene Ontology Consortium, 2004), in 2010
it exceeded 30,000 (du Plessis et al., 2011), whereas at the beginning
of 2015 its size is above 42,000 terms. The growth of the ontology
leads to a suboptimal structure (du Plessis et al., 2011), which moti-
vates refactoring initiatives such as (Guardia et al., 2012; Alterovitz
et al., 2010), besides the work of the GO Consortium itself that con-
stantly improves and evolves GO. It turns out that modeling and
refactoring big ontologies such as GO is a difficult task, the realiza-
tion of which can be supported by a human-friendly representation
format. The serialization formats used for machine processing of
the ontologies, such as the OBO flat file format (Horrocks, 2007) or
the Web Ontology Language (OWL) (W3C OWL Working Group,
2009), are not the easiest for a human user. This motivates the
adoption of human-friendly graphical notations like those used in
software engineering for the task of ontology representation (Kogut
et al., 2002; Belghiat and Bourahla, 2012) for certain purposes.

The de facto standard for graphical conceptual modeling of
software systems is the Unified Modeling Language (UML) (Rum-
baugh et al., 2005), currently developed and maintained by the
Object Management Group (OMG) (Object Management Group,
2014). UML has a big potential for various applications that go
beyond software engineering, among them for modeling biological

∗To whom correspondence should be addressed: patryk.burek@imise.uni-
leipzig.de

knowledge and biological ontologies (Shegogue and Zheng, 2005;
Guardia et al., 2012).

UML is well-suited for modeling biological systems, not at least
due to the rich infrastructure and the available tools. In particular,
the UML built-in extension mechanisms such as stereotypes and
profiles permit the easy construction of domain- or task-specific
UML dialects, e.g the OBO relations profile (Guardia et al., 2012).
Numerous tools for UML modeling are available on the market and
can be used out of the box for visualizing biological ontologies as a
whole or in part.

In the present paper we investigate if UML can be utilized for
making the structure of MFO more explicit and if it can support
the refactoring of MFO. We use UML and its extension mechanism
for the definition of a UML dialect, called Function Modeling Lan-
guage (FuML), which is suited for function modeling. Next, we use
FuML for modeling the structure of molecular functions. Finally,
we propose and demonstrate some refactoring options for MFO.

2 METHODS
2.1 Molecular Function Ontology
Like all GO terms, functions in MFO are specified by id, name,
natural language definition and an optional list of synonyms. For
instance, the function of catalyzing carbohydrate transmembrane
transport is specified by id: GO:0015144; name: carbohydrate
transmembrane transporter activity; definition: catalysis of the
transfer of carbohydrate from one side of the membrane to the other;
synonym: sugar transporter. Additionally, for each function its re-
lations with other concepts can be captured. The semantics of the
relations that are used for this purpose is provided by serialization
languages such as the OBO flat file format or OWL, and/or by the
OBO relations ontology (RO) (Smith et al., 2005). In particular,
functions in MFO are organized into a hierarchy by means of the
is_a link from RO; furthermore, they are linked with processes by
the part_of relationship from RO; and in some cases they have rela-
tions with concepts of other ontologies such as ChEBI (Degtyarenko
et al., 2008). For instance, GO:0015144 is linked, by means of the
RO is_a relation, to its parent functions GO:1901476 carbohydrate
transporter activity and GO:0022891 substrate-specific transmem-
brane transporter activity, by means of the RO part_of relation to
the process GO:0034219: carbohydrate transmembrane transport,
and by means of the RO transports_or_maintains_localization_of to
CHEBI:16646: carbohydrate.

From the above we see that the semantics of functions in MFO is
provided to a large extent by informal natural language expressions
and partially by relations with other concepts.

1Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes



Burek et al.

2.2 Intensional Subsumption
We propose defining the notion of function subsumption, which is a
backbone of MFO, upon an intensional interpretation of the is_a re-
lation. Typically, in the field of ontology engineering the extensional
aspect of the is_a relation is stressed; in OWL, for instance, A is a
subclass of B if every instance of A is an instance of B. The same
interpretation is used in RO, where is_a is defined by the reference
to the sets of all instances (extensions) of the concepts. According
to this understanding the is_a relation is often called extensional
subsumption, in contrast to its intensional counterpart(s), where we
focus on structural subsumption (Woods, 1991). Instead of refer-
ring to instances, this type of subsumption is defined based on the
structure of concepts. The latter can be understood as a composi-
tion of conceptual parts by means of various composing relations.
For illustration within GO itself, GO:0005215: transporter activity
is justified to intensionally subsume GO:0022857: transmembrane
transporter activity, because, following (Woods, 1991), both are
activities and they are (partially) defined by part-of relations, to
GO:0006810: transport and to GO:0055085: transmembrane trans-
port, resp., and the latter is subsumed by the former. Overall, the
main assumption is that concepts are complex structures which
can be organized into a subsumption hierarchy. The reading of in-
tensional subsumption is similar to inheritance in object-oriented
languages, where one class inherits its structure from another. That
enables the structuring of classes into hierarchies.

2.3 UML Profiles and FuML
UML is a graphical modeling language founded on the explicit dis-
tinction between the static and the dynamic views of a system; it
introduces thirteen diagram types, grouped into two sets: structural
modeling diagrams and behavioral modeling diagrams. UML lacks
constructs dedicated to function modeling as such, but it provides
several build-in mechanisms that allow for an easy extension of the
language. Among them are profiles.

A profile is a light-weight UML mechanism, typically used for
extending the language for particular platforms, domains or tasks. It
specifies a set of extensions of the UML standard metamodel which
include, among others, stereotypes. With stereotypes it is possible
to extend the standard UML vocabulary with new model elements.
A stereotype can be graphically represented by a dedicated icon,
though in the most straightforward form it is represented by a stereo-
type name, surrounded by guillemets and placed above the name of
the stereotyped UML element, cf. «Function» in Figure 1.

We used the profile mechanism for developing a UML extension,
called Function Modeling Language (FuML), aimed at support-
ing the modeling of functions, function ascription, and function
decomposition. FuML defines 15 stereotypes for representing func-
tions and function structure, 8 stereotypes for modeling function
decomposition, subsumption and function dependencies. The full
specification of FuML stereotypes is provided in (Burek and Herre,
2014). In the remaining part of the current paper we analyze how far
FuML can be used for modeling and refactoring MFO.

3 ANALYSIS
3.1 Modeling Molecular Functions with FuML
3.1.1 Functions FuML enables graphical modeling of functions
in a compact and in an extended form. The compact form is particu-
larly suited for big models containing many functions, whereas the

extended form is designed for visualizing the dependencies within
the structure of a single function or between several functions.

Figure 1. A FuML model of a molecular function, displayed in the
compact notation at the top and in the extended form at the bottom.

Figure 1 presents an exemplary FuML model, depicting the struc-
ture of the function GO:0015144: carbohydrate transmembrane
transporter activity. The upper part of the figure presents the com-
pact notation, whereas the extended notation is shown in the lower
part. The stereotypes utilized in the figure are discussed in the
remainder of the current section.

A function in FuML is interpreted as a role that an entity plays
in the context of some goal achievement, such as e.g. a teleolog-
ical process. This account of functions is similar to (Karp, 2000),
where a biological function of a molecule is described as the role
that the molecule plays in a biological process. In this sense, the
function GO:0015144: carbohydrate transmembrane transporter
activity, defined in GO as “catalysis of the transfer of carbohydrate
from one side of the membrane to the other”, depicts the catalyst
role in the teleological process of transferring carbohydrate from
one side of the membrane to the other. In terms of the structure we
can therefore say that a function specification contains as its part
a specification of a goal achievement, understood as a teleological
entity which is specified in terms of a transformation from an input
situation to an output situation. As presented in Figure 1, a func-
tion is depicted by a UML classifier with a stereotype «Function».
It connects to its goal achievement by an association with a stereo-
type «has-goal-achievement» in the extended notation, whereas the
compact notation utilizes the attribute goal_achievement.

3.1.2 Goal Achievements In FuML, a goal achievement (GA) x
is defined as a category the instances of which are transitions from
certain input situations to output situations. Input and output are
defined as follows:
• The input category y of the goal achievement x is a situation

category such that every instance of x is a transition starting
from a situation instantiating y.

2 Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes



A UML Profile for Functional Modeling Applied to the Molecular Function Ontology

• The output y of a goal achievement x is a situation category
specifying the situations in which instances of x result by tran-
sition. Every instance of x is a transition resulting in a situation
instantiating y.

For example, the goal achievement carbohydrate transmembrane
transport establishes the input category, the instances of which are
situations of carbohydrate being on the one side of the membrane,
and the output category, the instances of which are situations of car-
bohydrate being on the other side of the membrane. This means that
every instance of carbohydrate transmembrane transport exhibits a
transition from an instance of the input category to an instance of
the output category, i.e. from individual situations of carbohydrate
located on one side of the membrane, to individual situations of
carbohydrate located on the other side of the membrane.

As shown in Figure 1, an input is indicated in the extended nota-
tion by the association with stereotype «has-input», and by the input
attribute of a function in the compact notation. The representation
of outputs is analogous.

Typically, a transformation from an input to an output situation is
a process, and then the GA can be understood as a process category.
In the running example, the GA is a teleological process category,
namely of carbohydrate transfer from one side of the membrane to
the other. This process exhibits the causal transition from the sit-
uation of carbohydrate being on one side of the membrane to the
situation where carbohydrate is on the other side of the membrane.

3.1.3 Mode of Goal Achievement In some cases the specification
of a function is not reduced to a mere input-output pair, but it defines
constraints on the method of function realization. For example, the
molecular functions GO:0015399: primary active transmembrane
transporter activity and GO:0015291: secondary active transmem-
brane transporter activity share the same input: solute is on one side
of the membrane, and the same output: solute is on the other side of
the membrane. Therefore, the pure input-output views of the func-
tions are equal. However, they are distinct due to the way in which
they achieve the goal. The former function is realized by means of
some primary energy source, for instance, a chemical, electrical or
solar source, whereas the latter relies on a uniporter, symporter or
antiporter protein. Thus we see that the functions provide the same
answer to the question on what is to be achieved, however they pro-
vide different answers on how that is realized. In order to represent
this distinction, in FuML we introduce another component of func-
tion structure, called Mode of Goal Achievement. The mode x of
the goal achievement y specifies the way in which y transforms the
input to the output situation. For GO:0015399 the mode is: some
primary energy source, for instance chemical, electrical or solar
source, and for GO:0015291 it is: uniporter, symporter or antiporter
protein. The mode is a constraint on the function realization, which
does not affect the input or the output. For example, if one adds
to the function of transmembrane transport the constraint that the
transport should be realized by the uniporter protein then the input
and the output remain unchanged. However, the function as such
changes in that not every transportation process realizes it, but only
those that are driven by a uniporter protein.

3.1.4 Participants Often goal achievements are expressed by ac-
tion sentences of natural language and thus the results of linguistic
analysis of action sentences can be applied to the analysis of the
structure of goal achievements. In linguistics, the role that a noun

phrase plays with respect to the action or state described by the verb
of a sentence is called a thematic role (Harley, 2010). The specifi-
cations of molecular functions in MFO often contain two thematic
roles – a patient (called an operand in FuML) and an actor (called a
doer in FuML). An operand indicates the entity undergoing the ef-
fect of the action. We say that an operand y of the goal achievement
x specifies a category y such that instances of x operate on instances
of y. GO:0015144 operates on (transports) carbohydrate.

A doer is not as common in MFO as an operand. For example,
in the discussed carbohydrate transmembrane transport function no
doer is indicated. Typically, a doer is a part of the GA in cases
where the mode of realization is provided. For instance, the func-
tions GO:0015292 uniporter activity and GO:0015293 symporter
activity both specify the mode of realization and each indicates its
doer, namely the respective protein.

4 PATTERNS OF FUNCTION SUBSUMPTION
Behind functional subsumption actually various distinct relations
are implicitly hidden (Burek et al., 2009). FuML introduces several
distinct patterns for function subsumption (Burek and Herre, 2014).
In the following section we discuss the application of three of those
patterns for the modeling of MFO.

In FuML the notion of function subsumption is founded on the
subsumption of goal achievements. We say that the function x is
subsumed by the function y if the goal achievement of x is sub-
sumed by the goal achievement of y. Since goal achievements are
quite complex entities, it is not trivial to answer the question of what
it means that one goal achievement subsumes another. Here, how-
ever, the analysis of GA structure is helpful, which pertains to the
intensional aspects of the corresponding GA category, as discussed
in previous sections. Based on this approach one can detect various
patterns of function subsumption.

4.1 Operand Specialization
Since function specifications often contain operands, it is very
common to construct a hierarchy of functions on the basis of
the taxonomic hierarchy of their operands. In fact, this pattern
is applied frequently in MFO. Consider, for instance, the func-
tions GO:0015075: ion transmembrane transporter activity and
GO:0008324: cation transmembrane transporter activity, linked by
the is_a relation in GO. The relation between those two functions
is based on the relation of their operands, as cation is subsumed by
ion. In FuML function subsumption by operand specialization is de-
picted with a dependency link with stereotype «operand-spec». The
supplier of the link is the subsumed function and the client is the
subsumer.

4.2 Mode Addition
Another pattern of function subsumption, frequently met in
MFO, is based on modes of goal achievement. Consider two
functions, GO:0022857: transmembrane transporter activity and
GO:0022804: active transmembrane transporter activity. Both
share the same operand, namely substance, as well as the same
input-output pair – operand is on one side of the membrane and
operand is on the other side of the membrane. In this sense those
functions are equal. However, they differ in that the former does
not define any mode of realization, whereas the latter has the fol-
lowing mode defined: the transporter binding the solute undergoes
a series of conformational changes. Therefore, one can say that

3Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes



Burek et al.

GO:0022804 specializes GO:0022857 by addition of a mode. We
say that function x is subsumed by the function y by mode addi-
tion if x is subsumed by y and x has some mode, whereas y has no
mode assigned. Function subsumption by mode addition is depicted
in FuML by means of a dependency link with stereotype «mode-
added». The subsumed function is the supplier of the link and the
subsuming function is a client.

4.3 Mode Specialization
Subsumption of functions can be based on the mode of realization
also in cases where a parent function has already a mode assigned.
Consider, for instance, the function GO:0022804: active trans-
membrane transporter activity having the mode: transporter binds
the solute and undergoes a series of conformational changes and
the function GO:0015291: secondary active transmembrane trans-
porter activity with the mode: transporter binds the solute and un-
dergoes a series of conformational changes driven by chemiosmotic
energy sources, including uniport, symport or antiport. The lat-
ter clearly characterizes particular modes of active transmembrane
transport. Consequently, it seems intuitive to say that GO:0015291
specializes GO:0022804 (as is the case in GO). We call this type of
function subsumption the subsumption by mode specialization and
define it as follows: The function x is subsumed by the function
y by mode specialization if x is subsumed by y and mode r of x
specializes mode s of y. In FuML function subsumption by mode
specialization is depicted with a dependency link with stereotype
«mode-spec». The subsumed function is the supplier of the link and
the specialized function is a client.

5 APPLICATION
The application of FuML to GO pursues two objectives. The first
objective is the usage of FuML for establishing a semantic basis
for molecular functions that supports the representation of func-
tions in an organized way beyond the textual description. Moreover,
the discussed patterns represent basic knowledge on the inter-
relations between biological processes and molecular functions.
The part_of relation between biological processes and molecular
functions can be mapped to the has-goal-achievement association
between functions and goal achievements.

The second and the main objective of applying FuML to MFO is
to explicitly document design choices and the subsumption patterns
utilized implicitly in MFO. Figure 2 presents such a documentation
for a fragment of MFO in terms of FuML. The patterns are indicated
by stereotypes of FuML, which enables an easy-to-grasp visual-
ization of the structure of MFO as well as the underlying design
choices. One benefit of this approach is that the explicit specification
of the design choices makes the ontology much more intelligible for
a human user.

Furthermore, the application of FuML reveals potential of refac-
toring and revision of GO. For instance, the application of FuML in
modeling the functions GO:0022857: transmembrane transporter
activity and GO:0022891: substrate-specific transmembrane trans-
porter activity reveals that both share similar goal achievements:
transfer of an operand from one side of a membrane to the other,
with input: operand is on one side of the membrane, and output:
operand is on the other side of the membrane. Consequently and
following FuML, a potential difference between GO:0022857 and
GO:0022891 can be searched in their operands. For GO:0022857

that is a substance, whereas for GO:0022891 it is a specific sub-
stance or group of substances. Therefore, the first refactoring option
would be to explicitly document the pattern of subsumption be-
tween GO:0022857 and GO:0022891 as operand specialization.
The alternative refactoring option is driven by the further anal-
ysis of operands of those functions, in particular by clarifying
what the difference between “a substance” and “a specific sub-
stance or group of substances” is. The answer could be found in
GO:0022892 substrate-specific transporter activity, a parent func-
tion of GO:0022891. An operand of GO:0022892 is exemplified by
macromolecules, small molecules or ions. In that case, however,
it seems that functions like GO:0090482: vitamin transmembrane
transporter activity and GO:0015238: drug transmembrane trans-
porter activity should also be considered as substance specific
transmembrane transport and specialize GO:0022891 by operand
specialization, which is currently not the case, however.

Finally, the third possible refactoring option could be based on
the assumption that the distinction between those two operands is
only superficial and GO:0022891 is merely used for the organi-
zation of the function taxonomy, i.e., for grouping all functions
that are distinguished by operands such as ion, alcohol, and water.
According to this view, GO:0022891 would in fact be a duplica-
tion of GO:0022857, introduced into MFO only for the purpose of
structuring it, but not as a specification of particular biological func-
tions. As illustrated in Figure 2, FuML enables the replacement of
GO:0022891 with an explicit specification of the design choices by
stereotyped links.

Figure 2. An MFO segment modeled with FuML.

The decision on the refactoring option, as in any modeling enter-
prise, is the responsibility of the modeler(s), GO developers in this
case. Yet, the above analysis demonstrates how graphical languages,

4 Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes



A UML Profile for Functional Modeling Applied to the Molecular Function Ontology

such as FuML, similarly as in software and systems engineering, can
drive and support that task for biological ontologies such as MFO.

6 RELATED WORK
The ideas underlying the structure of functions, introduced in
FuML, are the result of an analysis of the current state of the art of
function modeling in software, systems and ontological engineer-
ing. For instance, the interpretation of a function in terms of a role
is common not only in biological systems (Karp, 2000), but also
in functional modeling in mechanical engineering (Kitamura et al.,
2006; Lind, 1994; Chandrasekaran and Josephson, 2000).

The notion of goal achievement grasps the teleological character
of a function, its orientation on some goal. This aspect is stressed in
many approaches to function representation, e.g. (Sasajima et al.,
1995; Iwasaki et al., 1995; Gero, 1990). In particular, defining
a function in terms of input-output pairs is present in modeling
technical artifacts (Borgo et al., 2011; Goel et al., 2009).

The mode of realization, also called the way-of-function-
achievement, specifying the constraints on the method of function
realization is present in (Kitamura et al., 2002), among others.

To the best of our knowledge, the presented patterns of function
decomposition are not collected and integrated into any other single
modeling framework, though the techniques themselves are com-
monly used, especially in software and systems engineering, e.g. see
the function-means-context link in (Bracewell and Wallace, 2001) or
the decomposition with zig-zaging in (Nam, 2001).

7 CONCLUSION
In the current paper we present and discuss applications of UML and
patterns for function subsumption to the modeling and refactoring
of biological ontologies. In particular, we developed a UML profile
for functional modeling, called the Function Modeling Language
(FuML) (Burek and Herre, 2014), and apply it to the modeling and
refactoring of a segment of the Molecular Function Ontology.

The application of FuML enables the systematic, graphical repre-
sentation of information that is currently available in MFO mainly
in the form of textual descriptions. We demonstrate that behind
the extensional is_a relation, which is used for the construction of
MFO, several different patterns of intensional subsumption can be
determined. Modeling MFO via FuML helps in identifying these
patterns and, moreover, provides the means for representing them
directly in the hierarchy of molecular functions. We argue that this
can help making the ontology structure more comprehensible for
human users and supports communication. The claim is illustrated
by an analysis and a model of an MFO fragment with FuML, from
which we derive several refactoring options.

Besides proposing FuML and the particular refactoring options
in this paper, for future work we consider first the continued analy-
sis of MFO. Extending this to a larger scale may require establishing
software support, e.g., for identifying subsumption pattern instances
within MFO (semi-)automatically. Moreover, FuML and its meth-
ods may also be transferred to or yield new methods for common
languages of biomedical ontologies, nowadays including OWL.

REFERENCES
Alterovitz, G., Xiang, M., Hill, D. P., Lomax, J., Liu, J., Cherkassky, M., Dreyfuss,

J., Mungall, C., Harris, M. A., Dolan, M. E., et al. (2010). Ontology engineering.
Nature biotechnology, 28(2), 128–130.

Belghiat, A. and Bourahla, M. (2012). Automatic generation of OWL ontologies
from UML class diagrams based on meta-modelling and graph grammars. World
Academy of Science, Engineering and Technology, 6(8), 380–385.

Borgo, S., Carrara, M., Garbacz, P., and Vermaas, P. E. (2011). A formalization of
functions as operations on flows. Journal of Computing and Information Science in
Engineering, 11(3), 031007.

Bracewell, R. H. and Wallace, K. M. (2001). Designing a representation to sup-
port function-means based synthesis of mechanical design solutions. In S. Culley,
A. Duffy, C. McMahon, and K. Wallace, editors, Proceedings of ICED01, Glasgow,
Scotland, UK, Aug 21-23, pages 275–282.

Burek, P. and Herre, H. (2014). FuML Specification v1.0. Onto-med report, University
of Leipzig.

Burek, P., Herre, H., and Loebe, F. (2009). Ontological analysis of functional
decomposition. In H. Fujita and V. Mařík, editors, Proceedings of the 8th Interna-
tional Conference on Software Methodologies, Tools and Techniques, SoMeT 2009,
Prague, Czech Republic, Sep 23-25, pages 428–439, Amsterdam. IOS Press.

Chandrasekaran, B. and Josephson, J. R. (2000). Function in device representation.
Engineering with computers, 16(3-4), 162–177.

Degtyarenko, K., De Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A.,
Alcántara, R., Darsow, M., Guedj, M., and Ashburner, M. (2008). ChEBI: a database
and ontology for chemical entities of biological interest. Nucleic acids research,
36(Suppl 1), D344–D350.

du Plessis, L., Škunca, N., and Dessimoz, C. (2011). The what, where, how and why of
gene ontology — a primer for bioinformaticians. Briefings in Bioinformatics, 12(6),
723–735.

Gene Ontology Consortium (2004). The Gene Ontology (GO) database and informatics
resource. Nucleic acids research, 32(Suppl 1), D258–D261.

Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design.
AI Magazine, 11(4), 26–36.

Goel, A. K., Rugaber, S., and Vattam, S. (2009). Structure, behavior, and function
of complex systems: The structure, behavior, and function modeling language. Ar-
tificial Intelligence for Engineering Design, Analysis and Manufacturing, 23(01),
23–35.

Guardia, G. D., Vêncio, R. Z., and de Farias, C. R. (2012). A UML profile for the OBO
relation ontology. BMC Genomics, 13(Suppl 5), S3.

Harley, H. (2010). Thematic roles. The Cambridge Encyclopedia of the Language
Sciences, pages 861–862.

Horrocks, I. (2007). OBO flat file format syntax and semantics and mapping to OWL
Web Ontology Language. Technical report, University of Manchester.

Iwasaki, Y., Vescovi, M., Fikes, R., and Chandrasekaran, B. (1995). Causal func-
tional representation language with behavior-based semantics. Applied Artificial
Intelligence: An International Journal, 9(1), 5–31.

Karp, P. D. (2000). An ontology for biological function based on molecular interactions.
Bioinformatics, 16(3), 269–285.

Kitamura, Y., Sano, T., Namba, K., and Mizoguchi, R. (2002). A functional con-
cept ontology and its application to automatic identification of functional structures.
Advanced Engineering Informatics, 16(2), 145–163.

Kitamura, Y., Koji, Y., and Mizoguchi, R. (2006). An ontological model of device
function: industrial deployment and lessons learned. Applied Ontology, 1(3), 237–
262.

Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Kokar, M., and Smith,
J. (2002). UML for ontology development. The Knowledge Engineering Review,
17(1), 61–64.

Lind, M. (1994). Modeling goals and functions of complex industrial plants. Applied
Artificial Intelligence: An International Journal, 8(2), 259–283.

Nam, P. S. (2001). Axiomatic design: Advances and applications. Oxford University
Press, New York.

Object Management Group (2014). http://www.omg.org/.
Rumbaugh, J., Jacobson, I., and Booch, G. (2005). The Unified Modeling Language

Reference Manual. Addison Wesley, Reading, Massachusetts, 2. edition.
Sasajima, M., Kitamura, Y., Ikeda, M., and Mizoguchi, R. (1995). FBRL: A function

and behavior representation language. In Proc. of IJCAI 1995, pages 1830–1836.
Shegogue, D. and Zheng, W. J. (2005). Integration of the Gene Ontology into an object-

oriented architecture. BMC Bioinformatics, 6(1), 113.
Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall,

C., Neuhaus, F., Rector, A. L., and Rosse, C. (2005). Relations in biomedical
ontologies. Genome biology, 6(5), R46.

W3C OWL Working Group (2009). OWL 2 Web Ontology Language Document
Overview. Technical report, World Wide Web Consortium.

Woods, W. A. (1991). Understanding subsumption and taxonomy: A framework for
progress. In Principles of Semantic Networks, pages 45–94. Morgan Kaufmann.

5Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes


