
Imperfect Querying Through Womb Grammars Plus Ontologies

Veronica Dahl
Universitat Ulm and

Simon Fraser University
Germany and Canada
veronica@cs.sfu.ca

Sergio Tessaris
Free University of Bozen–Bolzano

Italy
stessaris@inf.unibz.it

Thom Fruehwirth
Universitat Ulm

Germany
thom.fruehwirth@uni-ulm.de

Abstract

Womb grammars, or WGs, are a failure-driven constraint-
based parsing mechanism specifically developed for cross-
language grammar engineering, whose main parsing opera-
tion consists of looking for failed constraints between pairs
of daughters of a phrasal category. For instance, rather than
rejecting those noun phrases where an adjective daughter pre-
cedes the noun daughter (a natural mistake for say, an Italian
querying in English), a WG checks whether that English or-
dering requirement fails, and produces a failure indicator if
so. Thus, rather than acting solely as filters impeding incor-
rect sentences from being parsed, the constraints described
for a WG can be relaxed to admit mistakes that are personal-
ized to a certain type of user.
Syntactic constraints have been the most studied for WGs,
since their first aim was to “repair” a known language’s gram-
mar until it reflected that of another language, by modifying
constraints that failed with respect to input in the other lan-
guage. However any other kind of information can also be
consulted.
In this article we extend WG parsing to incorporate semantic
information in view of imperfect querying, and we show how
the approach lends itself in particular to ontology-driven en-
hancements. We assume familiarity with Prolog and in par-
ticular, CHR.

Introduction
Constraint Satisfaction has yielded powerful results in many
AI areas, including human language processing. Systems
that handle multi sets of constraints (as CHR (Frühwirth
1998) and CHRG (Christiansen 2005)) have proved espe-
cially suitable for efficiently automating bottom-up sentence
analysis through interpreting grammar specifications as di-
rectly executable.

The constraint-based approach to parsing typically ex-
presses a language’s grammar as a set of linguistic con-
straints whose satisfaction within a given sentence sanctions
it as correct (or not) in the language described by the gram-
mar, and associates it with some desired representation (e.g.
syntactic, semantic, pragmatic).

Among the linguistic theories that lend themselves the
most to constraint-based implementation are those that split

Copyright c© 2015 for this paper by its authors. Copying permitted
for private and academic purposes.

the information previously packed into one rewriting rule
into several constraints or properties. These constraint
based or property-based theories, such as Property Gram-
mars (PG) (Blache 2005) evolved from IDLP, which unfolds
a rewrite rule into the two constraints of immediate dom-
inance (expressing which categories are allowable daugh-
ters of a phrasal category) and linear precedence (expressing
which of the daughters must precede which others). They
deal mostly with syntax, whereas for query answering we
obviously need to address meaning representation too.

For example in the PG framework, English noun phrases
can be described through a few constraints such as prece-
dence (a determiner must precede a noun, an adjective must
precede a noun), uniqueness (there must be at most one de-
terminer), exclusion (an adjective phrase must not coexist
with a superlative), obligation (a noun phrase must contain
the head noun), and so on. Instead of resulting in either
a parse tree or in failure as traditional parsing schemes do,
such frameworks characterize a sentence through the list of
the constraints a phrase satisfies and the list of constraints it
violates, so that even incorrect or incomplete phrases will
be parsed. Moreover, it is possible to relax some of the
constraints by declaring relaxation conditions in modular
fashion. A recent adaptation of this framework into gram-
mar transformation – Womb Grammars (Dahl and Miralles
2012) – automates as well the induction of a language’s syn-
tax from that of another.

In such theories, the modularity obtained by splitting
grammatical information apart into constraints leads natu-
rally to more robust parsers, since it allows us to clearly
identify from the parser’s output which constraints are sat-
isfied and which fail, which allows us to accept even in-
complete or incorrect sentences, instead of simply failing to
parse them. We can also produce some indication of the sen-
tence’s degree of acceptability by analyzing the failed prop-
erties.

While the property-based family of grammars deals
mostly with syntax, one of its properties -dependency- has
been designed to carry some semantic information. How-
ever, this information is restricted to stating how a category’s
features (such as gender and number) affect the features of
another category, so it is patently insufficient to build mean-
ing representations.

In this article we extend WGs to incorporate semantic in-

formation in view of imperfect querying, and we show how
this approach lends itself in particular to ontology-driven
enhancements, by dynamically exploiting the failure-driven
parsing methodology of WGs together with ontological in-
formation that allows us to perfect the input.

Motivation
In the PG formalism per se (Blache 2005), from which WG
evolved, no parse tree is considered necessary (although
at least one implementation offers them in view of user-
friendliness (Dahl and Blache 2004)). Instead, sentences are
characterized as a list of satisfied constraints (or properties)
and a list of unsatisfied ones.

WG, in contrast, associate a parse tree to every success-
fully parsed sentence (notice however that parsing success
no longer implies correctness).

The parse tree is incrementally built bottom-up, from the
partial parse trees of its sub phrases. These remain available
even when it’s impossible to parse all the way up to a sen-
tence node. In that case, the partial parse trees are output,
together with a list of failed syntactic properties.

The satisfied properties are left implicit as a complement
of the unsatisfied ones, and the syntactic tree (or trees) ob-
tained can then serve for modularly building semantics that
might in turn, concomitantly with the failed properties and
ontological information, aid in perfecting the input to the
point where the analysis can further proceed. This observa-
tion motivates the present work.

For example, an Italian person querying in English might
mean to ask “How many dessert dishes are there in the
menu?”, but actually enter “How many dish desserts are
there in the menu?”. Since “dish” can legitimately act as
an adjective, as in “a dish washer”, in the absence of se-
mantic constraints the sentence entered could be taken as
a request to count the number of desserts of type “dish”.
Therefore, just relaxing the linear precedence English con-
straint between noun and adjective in order to cater to Italian
users would not help detect the incorrect ordering- it would
only result in a wrong parse. However by consulting ontolo-
gies, we can detect that “dessert” is a more likely qualifier of
“dish” than the other way around, use the failed constraint
to correct the number agreement feature in both words, and
identify “dessert” as the adjective for the noun “dishes”.

Note that for a grammar whose constraints are fully de-
scribed, the satisfied syntactic properties of a given sen-
tence’s parse will be a complement of those failed, and will
thus be deducible from them whenever needed. Therefore,
by checking only for failure we lose no generality, while ob-
taining considerable gains in efficiency.

Background
Property Grammars
The PG formalism presently comprises the following seven
categories (we adopt the handy notation of (Duchier, Dao,
and Parmentier 2013) for readability, and the same exam-
ple):
Constituency A : S, children must have categories in the

set S

Obligation A : 4B, at least one B child

Uniqueness A : B !, at most one B child

Precedence A : B ≺ C, B children precede C children

Requirement A : B ⇒ C, if B is a child, then also C is a
child

Exclusion A : B 6⇔ C, B and C children are mutually ex-
clusive

Dependency A : B ∼ C, the features of C1 and C2 are the
same

Example 1 For example, if we denote determiners by D,
nouns by N, personal nouns by PN, verbs by V, noun phrases
by NP, verb phrases by VP and sentences by Se, the context
free rules NP→ D N and NP→ N , which determine what
a noun phrase is, can be translated into the following equiv-
alent constraints: NP : {D, N},NP : D !,NP : 4N,NP :
N !,NP : D ≺ N,D : {},N : {}.

Incorrect sentences can be “accepted” through declaring
some constraints as relaxable. For instance, while from the
context-free grammar rules shown we wouldn’t be able to
parse “the the book” (a common mistake from cutting and
pasting in word processors), in the constraint-based formu-
lation we can if we relax the uniqueness of determiner con-
straint.

Relaxation can be made conditional (e. g. a head noun’s
requirement for a determiner can be made relaxable in case
the head noun is generic and in plural form, as in “Lions
sleep tonight”). The failure of relaxable constraints is sig-
nalled in the output, but does not block the entire sentence’s
analysis. Implementations not including constraint relax-
ation capabilities implicitly consider all properties as relax-
able.

Incomplete sentences can be parsed to whatever degree is
possible, e.g. input such as “The lion shrewdly” might yield
a correct analysis of the noun phrase and the adverb but iden-
tify no verb phrase- and hence no sentence-, or alternatively,
the input might be parsed into an incomplete sentence, if a
sentence’s requirement for a verb phrase is relaxed.

Womb Grammars
Womb grammars include the set of properties shown above.
They can not only parse sentences from a given gram-
mar, as PG can, but can also induce a target language’s
grammar from another language’s known grammar. The
latter functionality shall not concern us here. Interested
readers can refer to (Dahl and Miralles 2012; Dahl, Mi-
ralles, and Becerra 2012; Becerra, Dahl, and Miralles 2013;
Becerra, Dahl, and Jiménez-López 2014).

Previous parsing mechanisms for property-based gram-
mars – as well as for many other constraint-based research
areas – focus on constraint satisfaction. In the remainder of
this paper, we shall show how our parsing mechanism for
WGs, through focusing on constraint failure instead, allows
us a useful and elegant extension into semantic properties
as well as a clean while dynamic interaction between syn-
tax and semantics, with particularly fruitful ramifications in
interaction with ontologies.

CHRG
Our implementation is done in terms of CHR grammar, or
CHRG (Christiansen 2005). CHRGs are a grammatical in-
terface to CHR, providing it what DCGs provide to Prolog-
namely, they invisibly handle input and output strings for
the user. In addition, they include constructs to access those
strings dynamically, and the possibility of reasoning in non-
classical ways, with abduction or with resource-based as-
sumptions.

For the purposes of this paper, we only use two types of
CHRG rules, which parallel the CHR rules of propagation
and simplification, and are respectively defined as follows:

A propagation grammar rule is of the form

α -\ β /- γ ::> G | δ.

The part of the rule preceding the arrow ::> is called the
head, G the guard, and δ the body; α, β, γ are sequences of
grammar symbols and constraints so that β contains at least
one grammar symbol, and δ contains exactly one grammar
symbol which is a nonterminal (and perhaps constraints);
α (γ) is called left (right) context and β the core of the
head; G is a conjunction of built-in constraints as in CHR
and no variable in G can occur in δ. If left or right context
is empty, the corresponding marker is left out and if G is
empty (interpreted as true), the vertical bar is left out. The
convention from DCG is adopted that Prolog calls (i.e., non-
grammatical stuff) in head and body of a rule are enclosed
by curly brackets. Gaps and parallel match are not allowed
in rule bodies.

A simplification grammar rule is similar to a propagation
grammar rule except that the arrow is replaced by <:>.

Whereas propagation rules add δ′ to the constraint store
(where δ′ denotes δ affected by any substitutions needed for
the rule’s application), simplification rules replace β′ by δ′,
so that β′ is removed from the constraint store.

Failure-Driven Parsing
Typically, constraint based programming strives to solve
constraints, i.e, to satisfy them. In our problem domain how-
ever, the aim is to reach an internal representation of a query
even if imperfect.

For perfect queries, if we can assume that the satisfied
constraints will be the complement of those that fail (a rea-
sonable assumption, which we make), we can get away with
checking that no constraint fails.

For imperfect queries, clearly we cannot allow all con-
straints to fail at once without significant trouble -or even
impossibility- in arriving at any useful meaning represen-
tation of the query. However we can capitalize on know-
ing who will query the system, and admit one type of failed
constraint accordingly. For the example in our abstract, re-
laxing precedence between noun and adjective will cater to
romance language speakers.

In rigour, not all constraints are checked only for failure.
The constituency constraint is checked for satisfaction. The
reason for this is that our parsing is driven by projection (e.g.
making a noun phrase out of a noun, a verb phrase out of
a verb, etc.) plus category expansion, which will expand

a phrase to include any adjacent constituents that are legal
for the type of phrase and that satisfy all non-relaxable con-
straints between them. Since the expansion rule is guided by
constituency, senseless expansions do not occur, e.g. NP can
be expanded to include an adjacent D (to the left or right!)
but not a V. A consequence of this approach is that the con-
stituency constraint is not relaxable.

In order to check for failed constraints efficiently, lexical
categories are parsed into a representation that includes their
lexical type, word boundaries within the sentence, their list
of syntactic attributes (gender, number) and the portion of
parse tree that they will contribute to the entire parse. Con-
cretely, our parser expands instantiated categories, which are
CHRG grammar symbols of the form

iCat(Category, Attributes, Tree)

These are compiled into CHR constraints with the word
boundaries having been made explicit:

iCat(Start, End, Category, Attributes, Tree)

Within a CHRG rule, we can spy whenever needed on
the dynamic values of the Start and End points, simply by
adding them explicitly after the grammar symbol, in the no-
tation :(Start,End). For instance:

iCat(Category, Attributes, Tree):(Start,End)

Example 2 (Instantiated categories) Take the noun
phrase “an apple”, implicitly located (as all phrases input
to the analyzer) as from point 0. Parsing it results in the
following instantiated categories (shown in the implicit
CHR notation):

iCat(0, 1, det, [sing,neutral], det(an))
iCat(1, 2, n, [sing,neutral], n(apple))
iCat(0, 2, np, [sing,neutral],
np(iCat(0, 1, det, [sing,neutral], det(an)),
iCat(1, 2, n, [sing,neutral], n(apple))))

Notice that the NP inherits the attributes of the underly-
ing N. This is useful for checking dependency constraints,
which require attributes to match. Later we shall see how to
incorporate semantics as well.

Checking for Constraint Violation
Because properties are defined on pairs of daughters of a
given phrasal category, they can be checked in very modular
fashion. Their relationships with other parts of the sentence,
including with further ancestors than the phrase itself, are
verified in the same way, phrase by phrase. So each phrase
in a sentence to be analyzed is sanctioned bottom-up from its
direct daughters, by checking their properties. This allows
us to construct semantic representations in equally modular
fashion, as we will see in the next section. Properties other
than constituency, as we saw, are checked for failure, and
their failure is signalled by adding a constraint which carries
the information that they have failed.

We next show, through the examples of uniqueness and
obligation, that different constraint violation checking may
need to take place at different stages of analysis.

Example 3 (Uniqueness) Violations of uniqueness con-
straints are checked by a CHRG rule that finds two adjacent
words of same category C within the bounds of a phrase of
category Cat being parsed, where C has been constrained
to appear only once within that phrase. Should such adja-
cent words be found, the information that uniqueness of a
category C under Cat has been violated in the range these
categories cover is added as a (fact represented as a CHR)
constraint, and the parse tree for the phrase can either delete
one occurrence if the repeated category is the same one (as
in “the the book”), or include both if different, so that fur-
ther considerations can be made before choosing one over
the other. In slightly simplified form, our CHRG rule that
checks for the violation of uniqueness Cat : C !. looks as
follows:

iCat(C, Attr1, Tree1):(N1, N2), ...,
iCat(C, Attr2, Tree2):(N3, N4),
{iCat(N5, N6, Cat, _, Tree)},
{tpl(uniqueness(Cat, C))}

% tpl/1 describes uniqueness properties
::>

% The C’s are within the bounds of Cat:
N5 =< N1, N4 =< N6,

% And they are its direct daughters:
Tree=..[Cat|T],
member(iCat(N1,N2,C,Attr1,Tree1),T),
member(iCat(N3,N4,C,Attr2,Tree2),T)

| failed(uniqueness(Cat,C)).

The first line in the above code finds a category C be-
tween word boundaries N1 and N2, with attributes Attr1
and parse tree Tree1. The three dots indicate a skipped sub-
string after N2, before another instance of the same cate-
gory C is found between the word boundaries N3 and N4.
The Prolog calls (between curly brackets) and the guard
find a category Cat that dominates both instances of C, and
a uniqueness property that is required between a phrase
Cat and its immediate daughter C (i.e., a requirement that
C appear no more than once as immediate daughter of a
phrase of category Cat). Once all this is checked, a gram-
mar symbol (failed/1) is thrown into the constraint store,
that states that uniqueness of C within Cat is falsified be-
tween word boundaries N1 and N4 (since grammar rules are
compiled into CHR rules, what will appear in the constraint
store is the equivalent CHR constraint (failed/3), namely
failed(N1,N4,uniqueness(Cat,C)).

This rule can fire even if a phrasal category hasn’t been
fully expanded, because adding more components to an
iCat is not going to modify uniqueness having been vio-
lated.

Example 4 (Obligation) A constraint such as obligation,
in contrast, is designed to only fire after the phrasal cate-
gory has been fully expanded, since adding one more com-
ponent into the phrase can result in its becoming satisfied
(in the case in which the component added is the one which
is obligatory). We now show the CHRG rule that checks for
failed obligation:

iCat(Cat, Attr, Tree),
% Found Cat

{tpl(obligation(Cat, C))}
% Cat should have C

::> Tree=..[Cat|T],
% Get children

not(member(iCat(_,_,C,_,_), T))
% There isn’t a child C

| failed(obligation(Cat, C)).
% Obligation is violated

The obligation rule checks a given category for its direct
daughters. Since iCats are retracted when they fail, this
check only fires after the iCat has been fully expanded.

Incorporating Semantics
Since our pieces of parse tree may end up disconnected (e.g.
if noise words that cannot be parsed intervene, impeding us
from reaching a “sentence” node), it would be useful to have
partial semantic representations which can be further com-
pleted if possible, and when not possible, can at least con-
tribute partial meanings.

For this reason we have chosen a compositional seman-
tics, in which each constituent is given a representation
built from applying an expression to another. We use the
well-known lambda calculus for representing and combin-
ing meaning.

For instance, we may wish to associate the Montague
based meaning representation no(X,bird(X),sings(X)) to the
sentence “No bird sings”, given the following word repre-
sentations (shown in functional notation, and using String’
to denote the semantic representation of String):

no’ = λP1.λ(P2,no(X,@(P1, X),@(P2, X)))

bird’ = λX.bird(X)

sings’ = λX.sings(X)

The sentence’s meaning can be build compositionally,
by applying the meaning of the determiner “no” over the
meaning of the noun “bird”, which results in the following
lambda-expression for “no bird”:

(no bird)’ = λ P2.no(X,bird(X),@(P2,X))

This lambda-expression is then applied to that of the verb
phrase, which yields:

(no bird sings)’ = no(X,bird(X),sings(X))

Overall System Architecture Our system comprises
three main components:
• WG
• ontological
• semantic

These components cooperate with each other as follows:
Faced to an input sentence, the WG component operates

bottom-up from the words’ syntactic representations, build-
ing a parse tree plus a list of failed properties for each phrase
it can recognize as such.

For instance, for the sentence ”Lions sleep” (more on this
example later), it will create the following noun phrase’s
parse tree:

noun_phrase(noun(lions))

as well as the list of failed properties

Failed= [exigency(noun,determiner),0,1)]

(stating that the property of exigency between a head noun
and its required determiner fails in the noun phrase recog-
nized between points 0 and 1 of the input sentence).

The failed exigency property will trigger a semantic com-
pletion rule which calls the ontological component in order
to verify whether ”lions” is a generic term, and given that it
is, will complete the analysis by making the implicit mean-
ing ”every” explicit in the parse tree:

noun_phrase(det(every),noun(lions)))

Once a phrase has been completed, the semantic compo-
nent is called. This component combines the meaning rep-
resentations of the noun phrase’s components:

every’ = λP1.λ(P2,every(X,@(P1, X),@(P2, X)))

lion’ = λX.lion(X)

by applying that of ”every” over that of ”lion”, which re-
sults in

λ P2.every(X,lion(X),@(P2,X))

Similarly, the WG component will also arrive at a syntac-
tic tree plus a list of failed properties representation for the
verb phrase, namely:

verb_phrase(verb(sleeps))
Failed={}

Once these two phrases (noun phrase and verb phrase)
have been parsed, the semantic component is called to apply
the representation of the noun phrase over that of the verb
phrase. Note that since the verb phrase contains only an
intransitive verb, the verb phrase’s semantic representation
coincides with that of the verb itself:

λX.sleeps(X)

The application of

λ P2.every(X,lion(X),@(P2,X))

over

λX.sleeps(X)

yields the desired representation

every(X,lion(X),sleeps(X))

Also the WG parser can call the ontological component
by expressing the call in the guard of any of its rules. Like-
wise, the semantic component can, other than controlling
the order of application of semantic representations over one
another, also call explicitly for ontological information that
might allow it to make better decisions at any point.

Graphically, we can depict this architecture as follows:

Input sentence

Womb Grammar
Component

For each phrase:
parse tree
+ Failed Properties list

Ontological
Component

Semantic
Component

Input sentence’s Meaning Representation
+ Revised Parse Tree
+ List of (any remaining) Failed Properties

The degree of interaction inherent in our architecture
serves many purposes, allowing us e.g. to discard an ex-
tra determiner if two wrongly made it to the input sentence,
to reorder two constituents that appear in non-allowable or-
derings, to reconstruct implicit meanings, to connect partial
subtrees together using ontological consultation in order to
arrive at a parse for the complete sentence (this is particu-
larly useful in the case of noisy input intervening within the
input sentence).

In short, each phrase that the WG parser outputs will enter
a stage of semantic composition, and each phrase thus com-
pleted will be combined, if possible, with other thus com-
pleted phrases, into a higher level phrase that will in turn
check semantic composition rules for combining them, with
ontologies being available for consultation at any stage of
the syntactic parsing or the semantic analysis process.

Implementation Considerations In terms of implemen-
tation, extending WGs to incorporating semantics as de-
scribed here requires to now have 6-ary instantiated cate-
gories whose last argument is the partial semantics associ-
ated with that category:
iCat(Start, End, Category, Attributes,

Tree,LambdaExpression).
Since we are using Prolog, we must transform the above

functional representations into relational ones.
Since CHRG does not support true lambda expressions,

we represent λX.P by the first-order term X\P .
The calls to our (relational equivalent of) “@” use the fol-

lowing Prolog implementation of beta-reduction:

at(X\P,X,P).

To add the semantic component on each category we can
propagate our 5-ary categories into the new 6-ary ones, e.g.:

iCat(det, [sing,neutral], det(every))
::>

at(P1,X,Q1), at(P2,X,Q2) | iCat(det,
[sing,neutral], det(every),
P1\P2\every(X,Q1, Q2)).

This can in fact be automated by a more general rule
which consults modular definitions of semantics for each
word, so it becomes easy to experiment with different com-
positional representations.

Next we need to combine the meanings at appropriate
points in our parsing process. We postulate that the appro-
priate point is every time a phrase is completed (i.e., cannot
be further expanded). For our example ”no bird sings”, once
“no bird” has been analyzed into a noun phrase, this noun
phrase cannot be further expanded, since “sings” is not al-
lowable as a noun phrase’s direct daughter. At this point
the parser looks at the parse tree, at any failed properties
associated with it, and consults any ontological information
needed to take into account the failed properties, in order to
construct the meaning representation of the noun phrase.

A distinction between lambda-calculus variables and
query representation variables needs to be made, since a
query’s representation will in general include Prolog rather
than lambda variables – i.e., variables that are to remain
in the final result, being necessary for evaluating the an-
swer to a query. E.g. the variable X in the formula
no(X,bird(X),sings(X)) is not a variable under lambda-
abstraction but rather, a part of the sentence’s meaning rep-
resentation, which acts as a placeholder for the answers.

Of course, we could have chosen any other kind of mean-
ing representation while using semantic compositionality to-
gether with our techniques for managing failed properties in
combination with ontological information. The exemplifica-
tion in terms of lambda-calculus presented above is merely
a proof of concept.

Dynamic Interactions with Failed Properties
Types of Failed Properties Failed properties are placed in
the constraint store during the parse of a sentence. There are
two kinds of failed properties:

Strongly failed: those that caused an until then potential
analysis to fail, and block the said analysis. An example
would be the attempt to make “adam eats” a verb phrase;
this attempt is blocked because the constraint that a verb
must precede its np in a verb phrase does not hold, so the
hypothesis that “adam eats” could be a verb phrase is dis-
carded.

Interestingly Failed: those that hold of some constituent
that nevertheless does become a part of the result. An exam-
ple would be the failed but relaxable requirement for a deter-
miner in the subject noun phrase of “Medicines are toxic”.

Only the interestingly failed constraints become a part of
the sentence’s characterization.

Meaning Extraction through Constraint Relaxation and
Failed Constraints Property relaxation can work together
with failed constraints for various purposes. For instance,
a noun’s syntactic requirement for a determiner must be re-
laxed on the syntactico-semantic condition that the noun is
in plural form and represents a generic concept. This will
be accepted and produce an analysis of the noun into a noun

phrase. In particular, the constraint equivalent to the gram-
mar symbol:

failed(obligation(np,n,det)).

namely:

failed(N1,N2,obligation(np,n,det)).

will appear in the constraint store.
This (interestingly) failed constraint can be used by the

semantic part of our analyzer to correctly extract the mean-
ing of the noun phrase, through reconstructing the missing
determiner’s meaning (e.g. as ”all” or as “most”).

The following CHR rule achieves this, through consulting
semantic, syntactic and ontological information. Notice that
it is applicable only if the noun can be determined to be a
generic one. The call to generic(PluralNoun) in the rule’s
guard serves this purpose, by consulting appropriate domain
ontologies.

failed(N1,N2,obligation(np,n,det)),
iCat(N1,N2,np, [plural,_],

np(n(PluralNoun)),_Sem),
==>

generic(PluralNoun)
| iCat(N1, N1, det,

[plural,neutral],
det(every),
λP1.λP2.every(X,@(P1, X),@(P2, X))).

The semantic argument of iCat above is shown in func-
tional representation for readability (as said, we actually use
relational equivalents in our code).

Notice that the non-overtness of the determiner “every” is
indicated by its word boundaries being the same: it stretches
between point N1 and N1 itself. This easy way of recogniz-
ing non-overtness can be exploited further if necessary dur-
ing other aspects of a sentence’s analysis- e.g. relativization,
where the antecedent is non-overt.

Since all noun phrase daughters are now explicit for this
noun phrase, we can now apply the meaning of “every” over
the meaning of “lions” (which will have been propagated
from the noun “lions”, i.e. NounSem=lions,λX.lion(X))
and we obtain (modulo notation):

λ P2.every(X,lion(X),@(P2,X))

Of course, we could have chosen to materialize the im-
plicit determiner as any other one, e.g as “most” instead of
“every”. Ontological interactions with a specific semantic
domain’s ontologies can help determine which is best. For
instance, while for “Lions are quadrupeds” the correct deter-
miner is indeed “every’, for “Medicines are toxic”, “most”
might be more appropriate.

Lexical Meaning Extraction through Ontologies and
Failed Properties Unknown words can be parsed through
Womb Grammar by anonymizing their category and fea-
tures. These will become efficiently instantiated through
constraint satisfaction, taking into account all the syntac-
tic and semantic properties that must be satisfied by the un-
known word’s interaction with its context.

The clues they can provide regarding syntactic category
can serve to guide a subsequent semantic analysis, or to by-
pass the need for a complete semantic analysis by the con-
comitant use of ontologies relevant to domain-specific uses
of our parser.

For instance, “the resistetente virus” includes an ill-typed
word which a human would immediately suspect stands for
“resistant”. A computer can guess at least its syntactic cate-
gory through explicitly checking which syntactic constraints
fail because of “resistente” not having parsed: given that ad-
jectives must precede nouns, that a noun phrase can have
only one head noun, and that determiners are also unique
within a noun phrase, the funny word can only be an adjec-
tive. The meaning, and perhaps the precise form of the cor-
rected word, can sometimes be determined in consultation
with a domain-relevant ontology, in this case of medicine or
biology, by marking the word as unknown and letting the se-
mantic construction module consult such ontologies in inter-
action with the meanings of the known words of the phrase
they belong to. In our example for instance, the similarity
with the adjective “resistant” which ontological consultation
would semantically link to “virus” may result in proposing
it as a possible correction.

Similarly, extraneous words that repeat might allow a
domain-dependent ontology to help determine their mean-
ing. For instance, from “his humongous fever” and “the hu-
mongous white cell count” by consulting the ontology be-
sides the constraints, we can not only determine that “hu-
mongous” is an adjective, but also that it probably refers to
some quality similar to “high”. It would be most interesting
to carefully study under which conditions such ontological
inferences would be warranted.

In general, we are not necessarily interested in capturing
the exact meaning of each unrecognized word; but rather
in inferring its relation with known words. The problem
can be cast into the (automatic) extraction of a portion of
the hypernym relation involving the extraneous word us-
ing the actual document or additional sources as corpora
(see (Clark et al. 2012)). Starting from existing lexical on-
tologies (e.g. EuroWordNet (Vossen 2004)) different tech-
niques can be used to expand the ontological knowledge
about an unknown word (see e.g. (Gupta and Oates 2007;
Snow, Jurafsky, and Ng 2006)). Approaches currently de-
scribed in the literature can be enhanced by means of the
clues that Womb Grammar provides upon failure. E.g., one
of the most successful techniques involve the search on cor-
pora (or the web) for specific textual patterns indicating rela-
tionships between keywords (“a borogove is”) and the fact
that the grammar expects a word of a specific category can
be used to narrow down the textual patterns to be used to
scan the corpus.

Exploiting failed constraints to complete ontologies It
is worth noting that ontological information can not only be
consulted, but in some cases also potentially augmented by
a WG analysis of trustworthy text. E.g. in the absence of
lexical information about the word “Absettarov”, the parse
of a query such as “What illness does the Absettarov virus
cause?” should not only classify Absettarov as a proper

name (on the grounds of its being capitalized, and of the
grammar accepting proper names as adjectives) but should
also include Absettarov as a virus (with some indication
that this is only postulated, and perhaps some degree of cer-
tainty) in the domain-dependent taxonomy the parser is us-
ing.

Flexible word order through Constraint relaxation and
failure analysis Notice that totally permissive word order
is very easy to achieve within our framework. This is in-
teresting because discontinuous constituents such as noun
phrases are common in some languages and even even in
Latin or Greek very common in verse (and not unusual even
in certain prose genres, e.g. Plato’s late work, such as the
Laws). A contrived example for Latin would be “Puella
bona puerum parvum amat” (Good girl loves small boy),
where all 5! word permutations are possible, and we cer-
tainly do not want to write a separate rule for each of the
possible orderings.

In our WG framework, when all permutations are possi-
ble, all we have to do is not to include any precedence rule
for them! The case in which the contents of constituents
may be scrambled up with elements from other constituents
can be dealt with by specifying ordering only between those
pairs of constituents which must precede each other.

However in our present work we want to describe proper
orderings in the host language, say English, while being sen-
sitive to alternative orderings that will eventually be pro-
duced by native speakers of another language, say Italian.
We deal with this case by stating the English ordering and
declaring it as relaxable. This will result in accepting for
instance our Italian speaker’s query “What illnesses deadly
does the Absettarov virus cause?” Imperturbable, our anal-
yser will produce the correct parse tree for the incorrect sen-
tence, while leaving a marker of failed linear precedence be-
tween noun and adjective in the form of a constraint. Thus
the semantic representation, which is dependent on the parse
tree, can be found anyway.

Other uses of semantico-syntactic constraints
While interestingly failed constraints have an obvious use
for modularly handling exceptions as just exemplified, we
can apply the same methodology we described for them
above, for refining analyses of structures even if they do not
exhibit any failed constraints. For instance, the correct sen-
tences: ”Adam gave an apple to Eve” and “Adam gave Eve
an apple” differ only in the ordering of the verb’s comple-
ments, and in the fact that in the second sentence, such or-
dering makes the preposition implicit. We can reconstruct it
through a constraint that identifies “Eve” as the preposition
phrase given that it is animate, while the other candidate (“an
apple”) is inanimate.

Possible Applications and Extensions
We have proposed an analysis of individual sentences which
takes semantic and syntactic constraints into account and ob-
tains a parse tree or trees, a list of failed properties and a
semantic representation as a result. The semantic represen-
tation is full blown unless it is not possible (e.g. due to the

presence of noise) to produce a complete analysis, and we
must be content with partial subtrees which never connect
into a full tree for the entire sentence.

An interesting specialization of our work might be to ex-
ploit the fact that ontologies can be consulted freely, whether
from the semantic or the syntactic component, and instead of
aiming at a full-blown representation, aim at complementing
syntax in more minimalistic ways, e.g. by obtaining just a
semantically annotated parse tree which might be enough
for some applications, or even be as much as we can expect
given the domain of application chosen.

One important possible application is that of semantically
annotating knowledge bases, e.g. those in the semantic web,
with ontological information or little more. Typically such
applications do not resort to NLU techniques per se but to
hand-produced or only semi-automated approaches.

The construction of knowledge from text is crucial to web
mining, and WG parsing might allow us to complement the
conventional approaches by adding enough semantic infor-
mation to better guide the web search. For instance, sub-
queries that can be gleaned from a query can be analysed
and either evaluated (e.g. ”last year” could concretely eval-
uate to 2014) or independently submitted to a standard Web
search engine, such as Google, and the results can then be
combined to produce an answer in many cases more accurate
than was possible with previous methods. This may allow us
for instance to correctly answer queries containing conjunc-
tions and disjunctions that natural language based systems
surprisingly fail to understand, as pointed out in (Gottlob
2009).

Discussion
The idea of extending Womb Grammars with ontologies was
first proposed in (Adebara, Dahl, and Tessaris 2015), where
it was designed specifically for completing mixed language
grammars, and dealt mainly with syntax. The extension we
have presented here is tailored to imperfect querying and
in particular incorporates a semantic component, which the
previous work does not. We have shown how this approach
is especially suitable for ontology-driven enhancements. To
the best of our knowledge, this is the first time that the pars-
ing power of constraint failure is exploited to the extent that
we do in our work.

The resulting search space reduction is significant because
deep parsing with the types of constraint grammars we ad-
dress is theoretically exponential in the number of categories
of the grammar and the size of the sentence to parse (van
Rullen 2005).

Other than achieving a considerable search space reduc-
tion by only having to evaluate constraints for failure, the
use of constraint failure in conjunction with semantics and
ontologies allows us to parse imperfect queries in repairing
ways, so that they can be effectively answered.

As well, this approach promotes easy interaction between
different levels of analysis, opening possibilities for other
levels of analysis than just syntax and semantics (e.g. prag-
matics) to also interact.

The practice of building a parse tree as a side effect of
parsing means that interestingly, also ill-formed sentences

can generate a parse tree, which can make the source of fail-
ure visually clear.

Clearly, while any of a grammar’s constraints’ failure can
be tolerated by our approach (save obligation of a head of
phrase, because our parser expands phrases starting from
the head), it would not be wise to relax all constraints at
the same time: totally erroneous input would be far too
intractable to parse. Our compromise solution is to admit
those imperfections typical for a given user (e.g. replicating
in English the word order due in Italian), which offers a use-
ful enough degree of tolerance without undue extra stress on
the parser.

Related Work
Other than the background related work already mentioned
in this paper, the previous work that most resembles ours
is CDG (Foth, Daum, and Menzel 2005), which also re-
places well-formedness rules by declarative constraints that
integrate different sources of linguistic knowledge, and in-
cludes a related mechanism to that of relaxable constraints
(defeasible constraints) in order to accept incomplete or in-
correct input. Defeasible constraints are more informative
than constraint relaxation because they are weighted: they
handle constraints of specified scores.

The observed constraint violations in (Foth, Daum, and
Menzel 2005) serve to diagnose the input but serve no ac-
tive role in coming up with appropriate semantics. In our
approach, we exploit the combination of these different
sources in order to actively determine both syntactic and se-
mantic aspects of the analysis.

Another difference is that in CDG, structure buildup is
incrementally achieved by pruning out and adding substruc-
tures as a consequence of failed properties. In contrast, we
start with minimalistic trees by selecting appropriate subsets
of words (just a phrase node and its immediate daughters) as
basis for constraint application, and express violated proper-
ties explicitly rather than deleting their manifestation in the
structure.

Both the CDG approach and our own differ considerably
from constraint-based unification grammars such as HPSG,
because neither of them include explicit generative rules
such as

s→ np, vp.

As discussed, phenomena like free word order is therefore
easier to implement, because linear precedence is clearly
separated from all other constraints.

With this work we hope to stimulate further research into
the uses of ontologies in constraint-based parsing.

Acknowledgments. This paper was supported by NSERC
Discovery grant 31611024, and developed during a visit to
University of Ulm.

References
Adebara, I.; Dahl, V.; and Tessaris, S. 2015. Completing
mixed language grammars through womb grammars plus
ontologies. In Henning Christiansen, M. D. J. L., and

Loukanova, R., eds., Proceedings of the International Work-
shop on Partiality, Underspecification and Natural Lan-
guage Processing, 32–40.
Becerra, L.; Dahl, V.; and Jiménez-López, M. D. 2014.
Womb grammars as a bio-inspired model for grammar
induction. In Trends in Practical Applications of Het-
erogeneous Multi-Agent Systems. The PAAMS Collection.
Springer International Publishing. 79–86.
Becerra, L.; Dahl, V.; and Miralles, E. 2013. On second
language tutoring through womb grammars. IWANN 2013,
June 12-14, Tenerife, Spain.
Blache, P. 2005. Property grammars: A fully constraint-
based theory. In Proceedings of the First International Con-
ference on Constraint Solving and Language Processing,
CSLP’04, 1–16. Berlin, Heidelberg: Springer-Verlag.
Christiansen, H. 2005. CHR grammars. TPLP 5(4-5):467–
501.
Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour,
D.; Dignum, S.; Beresi, U. C.; Fasli, M.; and De Roeck, A.
2012. Automatically structuring domain knowledge from
text: An overview of current research. Information Process-
ing & Management 48(3):552–568.
Dahl, V., and Blache, P. 2004. Directly executable con-
straint based grammars. Proc. Journees Francophones de
Programmation en Logique avec Contraintes.
Dahl, V., and Miralles, J. E. 2012. Womb grammars: Con-
straint solving for grammar induction. In Sneyers, J., and
Frühwirth, T., eds., Proceedings of the 9th Workshop on
Constraint Handling Rules, volume Technical Report CW
624, 32–40.
Dahl, V.; Miralles, E.; and Becerra, L. 2012. On language
acquisition through womb grammars. In 7th International
Workshop on Constraint Solving and Language Processing,
99–105.
Duchier, D.; Dao, T.-B.-H.; and Parmentier, Y. 2013.
Model-Theory and Implementation of Property Grammars
with Features. Journal of Logic and Computation 19.
Foth, K.; Daum, M.; and Menzel, W. 2005. Parsing unre-
stricted german text with defeasible constraints. In Chris-
tiansen, H.; Skadhauge, P.; and Villadsen, J., eds., Con-
straint Solving and Language Processing, volume 3438 of
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg. 140–157.
Frühwirth, T. W. 1998. Theory and practice of constraint
handling rules. J. Log. Program. 37(1-3):95–138.
Gottlob, G. 2009. Computer science as the continuation
of logic by other means. Keynote at European Computing
Summit Sciences 2009, Paris.
Gupta, A., and Oates, T. 2007. Using Ontologies and the
Web to Learn Lexical Semantics. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, IJ-
CAI’07, 1618–1623. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Snow, R.; Jurafsky, D.; and Ng, A. Y. 2006. Semantic taxon-
omy induction from heterogenous evidence. In Proceedings

of the 21st International Conference on Computational Lin-
guistics and the 44th Annual Meeting of the Association for
Computational Linguistics, ACL-44, 801–808. Stroudsburg,
PA, USA: Association for Computational Linguistics.
van Rullen, T. 2005. Vers une analyse syntaxique a granu-
larite variable. Ph.D. thesis, Université de Provence (2005).
Vossen, P. 2004. Eurowordnet: a multilingual database of
autonomous and language-specific wordnets connected via
an inter-lingualindex. International Journal of Lexicography
17(2):161–173.

