=Paper= {{Paper |id=Vol-1518/preface |storemode=property |title=None |pdfUrl=https://ceur-ws.org/Vol-1518/preface.pdf |volume=Vol-1518 }} ==None== https://ceur-ws.org/Vol-1518/preface.pdf
                                                st
         VISLA15:	
  1 	
  international	
  workshop	
  on	
  
          Visual	
  Aspects	
  of	
  Learning	
  Analytics	
  
                                                                    	
  
     organized	
  at	
  the	
  5th	
  international	
  Learning	
  Analytics	
  and	
  Knowledge	
  conference	
  (LAK15)	
  
                                                                                 	
  
                                                                                 	
  
The	
  use	
  of	
  visualization	
  techniques	
  for	
  learning	
  is	
  not	
  new.	
  For	
  instance,	
  visualizations	
  have	
  
been	
   used	
   in	
   maps	
   and	
   drawings	
   for	
   thousands	
   of	
   years.	
   In	
   a	
   learning	
   analytics	
   context,	
   the	
  
application	
  of	
  information	
  visualization	
  techniques	
  can	
  help	
  both	
  teachers	
  and	
  learners	
  to	
  
explore	
   and	
   understand	
   relevant	
   user	
   traces	
   that	
   are	
   collected	
   in	
   various	
   (online)	
  
environments	
   and	
   to	
   improve	
   (human)	
   learning.	
   The	
   goal	
   of	
   our	
   workshop	
   is	
   to	
   build	
   a	
  
strong	
   research	
   capacity	
   around	
   visual	
   approaches	
   to	
   learning	
   analytics.	
   The	
   longer	
   term	
  
goal	
   is	
   to	
   improve	
   the	
   quality	
   of	
   learning	
   analytics	
   research	
   that	
   relies	
   on	
   information	
  
visualization	
  techniques.	
  
	
  
Each	
  contribution	
  to	
  the	
  workshop	
  explicitly	
  addressed	
  the	
  following	
  items:	
  
     1. What	
   kind	
   of	
   data	
   is	
   being	
   visualized?	
  	
   What	
   tools	
   were	
   used	
   to	
   clean	
   up	
   the	
   data	
   (if	
  
            any)?	
  	
  
     2. For	
   whom	
   are	
   the	
   visualizations	
   intended	
   (learner,	
   teacher,	
   manager,	
   researcher,	
  
            other)?	
  
     3. How	
   is	
   data	
   visualized?	
   Which	
   interaction	
   techniques	
   are	
   applied?	
   	
   What	
  tools,	
  
            libraries,	
   data	
   formats,	
   etc.	
   are	
   used	
   for	
   the	
   technical	
   implementations?	
  
            What	
  workflow	
  and	
  recipe	
  was	
  used	
  to	
  develop	
  the	
  visualization?	
  
     4. Why	
  are	
  the	
  chosen	
  visual	
  approaches	
  applied	
  (i.e.	
  rationale	
  behind	
  the	
  application	
  
            of	
  a	
  visualization)?	
  
     5. How	
  has	
  the	
  approach	
  been	
  evaluated	
  or	
  how	
  could	
  it	
  be	
  evaluated?	
  
     6. What	
  were	
  the	
  encountered	
  problems	
  and	
  pitfalls	
  during	
  the	
  visualization	
  process?	
  
	
  
The	
   workshop	
   is	
   intended	
   for	
   anyone	
   who	
   is	
   using,	
   or	
   is	
   interested	
   in	
   visualization	
  
techniques	
   to	
   support	
   learning	
   analytics.	
   The	
   goal	
   of	
   our	
   workshop	
   is	
   to	
   build	
   a	
   strong	
  
research	
  capacity	
  around	
  visual	
  approaches	
  to	
  learning	
  analytics.	
  The	
  longer	
  term	
  goal	
  is	
  to	
  
improve	
   the	
   quality	
   of	
   learning	
   analytics	
   research	
   that	
   relies	
   on	
   information	
   visualization	
  
techniques.	
  
	
  
During	
   our	
   1-­‐day	
   workshop,	
   we	
   aimed	
   to	
   facilitate	
   a	
   very	
   interactive	
   and	
   engaging	
   event	
  
where	
   we	
   wanted	
   to	
   avoid	
   death	
   by	
   powerpoint	
   by	
   all	
   means	
   and	
   promote	
   discussion	
  
activities	
   over	
   presentational	
   ones.	
   In	
   the	
   first	
   half	
   of	
   the	
   workshop,	
   we	
   therefore	
   asked	
  
participants	
  to	
  shortly	
  present	
  the	
  work	
  of	
  another	
  submission	
  and	
  to	
  relate	
  it	
  back	
  to	
  their	
  
own	
  work.	
  	
  
	
  
During	
   the	
   second	
   half	
   of	
   the	
   workshop,	
   we	
   invited	
   the	
   participants	
   to	
   share	
   their	
   tools,	
  
workflows	
   and	
   recipes	
   in	
   a	
   hands-­‐on	
   discussion	
   session	
   so	
   that	
   they	
   could	
   benefit	
   from	
  
each	
   others’	
   knowledge,	
   apply	
   their	
   visual	
   approaches	
   on	
   either	
   their	
   own	
   dataset	
   or	
   on	
  
a	
  dataset	
  that	
  we	
  provided.	
  
	
  
Finally,	
   we	
   moved	
   the	
   discussion	
   to	
   the	
   final	
   topic	
   of	
   the	
   workshop,	
   which	
   is	
   the	
  
development	
  of	
  the	
  equivalent	
  of	
  the	
  VAST	
  challenge	
  for	
  learning[1],	
  which	
  was	
  linked	
  back	
  
with	
  the	
  LAK14	
  and	
  LAK15[2]	
  data	
  challenge:	
  
	
  
       “The	
  annual	
  Visual	
  Analytics	
  Science	
  and	
  Technology	
  (VAST)	
  challenge	
  provides	
  Visual	
  
     Analytics	
  researchers,	
  developers,	
  and	
  designers	
  an	
  opportunity	
  to	
  apply	
  their	
  best	
  tools	
  and	
  
       techniques	
  against	
  invented	
  problems	
  that	
  include	
  a	
  realistic	
  scenario,	
  data,	
  tasks,	
  and	
  
 questions	
  to	
  be	
  answered.	
  Submissions	
  are	
  processed	
  much	
  like	
  conference	
  papers,	
  contestants	
  
     are	
  provided	
  reviewer	
  feedback,	
  and	
  excellence	
  is	
  recognized	
  with	
  awards.	
  A	
  day-­‐long	
  VAST	
  
     Challenge	
  workshop	
  takes	
  place	
  each	
  year	
  at	
  the	
  IEEE	
  VAST	
  conference	
  to	
  share	
  results	
  and	
  
                                            recognize	
  outstanding	
  submissions.”	
  
	
  
                                                                                                                                    The	
  VISLA15	
  organizers	
  
                                                                                 Erik	
  Duval,	
  Joris	
  Klerkx,	
  Katrien	
  Verbert,	
  KU	
  Leuven,	
  Belgium	
  
                                                  Martin	
  Wolpers,	
  Fraunhofer-­‐Institute	
  for	
  Applied	
  Information	
  Technology	
  FIT,	
  Germany	
  
                                                                                                     Abelardo	
  Pardo,	
  University	
  of	
  Sydney,	
  Australia	
  
                                                                                                     Sten	
  Govaerts	
  &	
  Denis	
  Gillet,	
  EPFL,	
  Switzerland	
  
                                                                                                                              Xavier	
  Ochoa,	
  ESPOL,	
  Ecuador	
  
                                                                                                                                        Denis	
  Parra,	
  PUC,	
  Chile	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
                                                                                                                                                                        	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
[1]	
  	
  K.	
  Cook,	
  G.	
  Grinstein,	
  and	
  M.	
  Whiting.	
  The	
  vast	
  challenge:	
  history,	
  scope,	
  and	
  outcomes:	
  An	
  introduction	
  to	
  
the	
  special	
  issue.	
  Information	
  Visualization,	
  13(4):301–312,	
  2014.	
  
[2]	
  	
  H	
  .	
  Drachsler,	
  S.	
  Dietze,	
  E.	
  Herder,	
  M.	
  d’Aquin,	
  and	
  D.	
  Taibi.	
  The	
  learning	
  analytics	
  &	
  knowledge	
  (lak)	
  data	
  
challenge	
  2014.	
  In	
  Proceedings	
  of	
  the	
  Fourth	
  International	
  Conference	
  on	
  Learning	
  Analytics	
  And	
  Knowledge,	
  
LAK	
  ’14,	
  pages	
  289–290,	
  New	
  York,	
  NY,	
  USA,	
  2014.	
  ACM	
  
                                                                                                                                 	
  
                                                                                                                                 	
  
                                                                                                                                 	
  

Table	
  of	
  contents	
  
	
  
Visualizing	
  Uncertainty	
  in	
  the	
  Prediction	
  of	
  Academic	
  Risk	
  	
                                   4	
  
Xavier	
  Ochoa	
  
	
  
Using	
  Sentence	
  Compression	
  to	
  Develop	
  Visual	
  Analytics	
  for	
  Student	
  Responses	
               11	
  
to	
  Short	
  Answer	
  Questions	
  	
  
Aneesha	
  Bakharia	
  and	
  Shane	
  Dawson	
  
	
  
Getting	
  a	
  Grasp	
  on	
  Tag	
  Collections	
  by	
  Visualising	
  Tag	
  Clusters	
  Based	
  on	
  Higher-­‐   14	
  
order	
  Co-­‐occurrences	
  
Katja	
  Niemann,	
  Maren	
  Scheffel,	
  Sarah	
  León	
  Rojas,	
  Martin	
  Wolpers,	
  Hendrik	
  Drachsler	
  
and	
  Marcus	
  Specht	
  
	
  
A	
  Network	
  Based	
  Approach	
  for	
  the	
  Visualization	
  and	
  Analysis	
  of	
  Collaboratively	
          19	
  
Edited	
  Texts	
  
Tobias	
  Hecking	
  and	
  H.	
  Ulrich	
  Hoppe	
  
	
  
INSIGHT:	
  a	
  Semantic	
  Visual	
  Analytics	
  for	
  Programming	
  Discussion	
  Forums	
                        24	
  
Piyush	
  Awasthi	
  and	
  I-­‐Han	
  Hsiao	
  
	
  
Exploring	
  Inquiry-­‐Based	
  Learning	
  Analytics	
  through	
  Interactive	
  Surfaces	
                           32	
  
Sven	
  Charleer,	
  Joris	
  Klerkx	
  and	
  Erik	
  Duval	
  
	
  
Uncovering	
  Learning	
  Processes	
  Using	
  Competence-­‐based	
  Knowledge	
                                       36	
  
Structuring	
  and	
  Hasse	
  Diagrams	
  
Michael	
  Kickmeier-­‐Rust,	
  Christina	
  M.	
  Steiner	
  and	
  Dietrich	
  Albert	
  
	
  
LAK	
  Explorer	
  –	
  A	
  Fusion	
  of	
  Search	
  Tools	
                                                          41	
  
Mike	
  Sharkey,	
  Mohammed	
  Ansari	
  and	
  Andy	
  Nguyen	
  
	
  
Discovering	
  Learning	
  Antecedents	
  in	
  Learning	
  Analytics	
  Literature	
                                   45	
  
Vladimer	
  Kobayashi,	
  Stefan	
  Mol	
  and	
  Gábor	
  Kismihók