
1

Similarity in Semantic Graphs: Combining
Structural, Literal, and Ontology-based

Measures
Lindsey Vanderlyn , Carl Andersen, Plamen Petrov

Raytheon BBN Technologies, Arlington, VA, USA
{lvanderl, canderse, ppetrov}@bbn.com

Abstract—Semantic graphs provide a valuable way to
represent data while preserving real world meaning. As
these graphs become more popular for storing large
quantities of data, it is important to have methods of
determining similarity between nodes in the graph. This
paper extends previous structural similarity algorithms by
taking advantage of meaning contained in a graph’s literals
and the graph’s ontology and allowing users to control
how much each type of similarity effects overall scores.
Preliminary tests indicate that including these sources of
similarity increases scores in way that is better aligned with
human intuition.

Keywords: Semantic Graphs, Graph Similarity, Se-
mantic Similarity, Structural Similarity, Ontological Sim-
ilarity, Literal Similarity, Intelligence Problem Decom-
position, Random Walks

I. INTRODUCTION

One of the challenges faced with increasingly large
data sets is analyzing the information. In particular,
finding similar pieces of data from within a larger data
set can prove difficult. This problem is especially present
when analyzing semantic graphs, which preserve the
meaning and context of data by representing objects in
terms of their relationships. Raytheon BBN Technologies
(BBN) has been expanding previous research to fully
utilize information encoded in a semantic graph.

The present paper proposes SSDM+, an algorithm
which extends existing techniques for computing the
structural similarity between two graph nodes. Structural
similarity techniques measure node pair similarity by ex-
amining the similarity of the pair’s respective subgraphs.
In the following sections, we will give a brief introduc-
tion to semantic graphs, detail the motivation behind this
research, describe the prior work we build on, explain
the new algorithm we have developed, and demonstrate
the application of our algorithm to the decomposition of
a notional intelligence problem of “Illegal Fishing”.

II. SEMANTIC GRAPHS

Resource Description Framework (RDF) graphs are
comprised of two types of elements: resources and
literals. Resources are things which can be described,
such as objects and relationships. To remove ambiguity
about which object a statement is being made, resources
are given globally unique resource identifiers. Literals,
in comparison, are used to annotate resources with data
values such as strings and integers. There is no expecta-
tion that literals will be unique, so with RDF statements
in the form of subject-predicate-object triples, literals are
never allowed to be the subject or the predicate.

Another key feature of RDF graphs is the inclusion
of ontology data in the graph itself. Ontologies are
often compared to relational database schemas. Ontolo-
gies define classes, relationships, and their inheritances.
Through these definitions, all of the statements defined
for a class are added to the graph (inferred) every time
a user creates a new instance of that class. For example,
when given an ontology, a reasoning engine will infer
that instances of a class are also instances of all of the
class’s ancestors.

III. MOTIVATION FOR THIS WORK

This work is primarily motivated as part of an effort to
develop a tool for creating intelligence problem decom-
positions represented as semantic graphs. In this context,
finding similarity between nodes in a semantic graph
could allow analysts to collaborate and reuse portions
of existing problem decompositions when working on a
new problem.

A. Semantic problem decomposition
In order for analysts to determine what informa-

tion needs to be collected for a particular intelligence
problem, they must first break the problem down in a
logical and systematic way - a process we refer to as
problem decomposition. To illustrate this, we will use

STIDS 2015 Proceedings Page 50



2

a fictitious intelligence problem of “Illegal Fishing in
Hawaii” shown on Fig. 1. The first step is to determine
the states in which entities related to the problem (e.g.,
fishing boats) can exist. For example, a fishing boat
might be either “in port” or “in a legal fishing zone”.
Next, the analyst must specify how to tell if an entity
is in a particular state by creating indicators. Indicators
must be boolean statements such as “boat moving” or
“outriggers deployed”. The analyst then specifies the
observable phenomena, or stimuli, that needs to be
collected in order to determine if an indicator is present.
Next the analyst defines sensor system specific collection
parameters, called observation needs such as resolution,
location, and time to collect the stimuli. Finally, an an-
alyst can specify algorithms which combine input from
one or more observation needs to determine whether an
indicator is present.

Semantic graphs are a good way to represent problem
decompositions because they provide an intuitive way for
analysts to capture the relationships from a mental model
of the problem into a format, which is both machine-
readable and human-understandable. In addition, storing
the decomposition as a graph preserves the semantics
of the relationships between decomposition components.
Finally, these graphs can also be reasoned over to
determine completeness, decomposition alternatives, or
efficiency of collection.

Fig. 1: Example of a simple semantic problem decomposition
graph for the intelligence problem “Illegal Fishing in Hawaii”.
Nodes in column 1 represent intelligence problems (not shown),
column 2 - States, column 3 - Indicators, column 4 - Algo-
rithms, column 5 - Stimuli, and nodes in column 6 represent
Observation Needs. Edges represent logical relationships such
as “Supports” or “State Transition”.

IV. PREVIOUS ALGORITHMS

Our work on SSDM+ derives from three earlier works.
These are SimRank [2], the work of Fogaras and Racz

in their paper: Scaling Link-Based Similarity Search [5],
and the Semantic Similarity Distance Metric (SSDM)
[7]. These algorithms share the following desirable qual-
ities:

• They are domain-independent, meaning that they
can be applied to any data representing relationships
between entities.

• They can be computed efficiently over very large
datasets, in contrast to algorithms which scale very
poorly, such as ones which rely on Singular Value
Decomposition [4].

• They have the ability not only to determine the
similarity of any two given nodes, but also to
generate a list of entities which are most similar
to one specified by a user.

• The computations are easily understood, meaning
that similarity scores generated can be explained
based on the actual computation performed - some-
thing which can be difficult with more abstract
calculations.

• The algorithms look beyond a node’s immediate
neighbor to create a broader knowledge of the
entity’s structural context.

We provide a more in depth explanation of each of
the previous algorithms below followed by an overview
of the changes we have made with SSDM+.

A. SimRank
The key insight of SimRank is that two nodes are

similar if they are connected to similar nodes [2]. This
simple idea can be translated mathematically as: the
similarity score between two entities is the average
pairwise similarity of their neighbors, scaled by a decay
factor.

A concrete example of this can be seen with movie
data. Consider the example in Fig. 2.

Fig. 2: Example of a semantic graph [7] with information on
movies. Director 1 and Director 2 are similar because they
directed similar movies, although the directors themselves are
not connected

Movie 1 and Movie 2 appear to be similar to each
other because they are in the same genre and they both
have two of the same actors. Furthermore, although

STIDS 2015 Proceedings Page 51



3

Director 1 and Director 2 do not share any nodes, they
can also be considered similar because they directed
similar movies. SimRank provides a formalization of this
type of idea.

Each pair’s similarity is dependent on many other
pairs because of the recursive definition of SimRank. On
small datasets, the system can be solved with an iterative
algorithm. On large datasets, it can be solved using an
efficient approximate method outlined by Fogaras and
Racz in [5]. The SSDM calculation and our extensions
are based on this efficient approximate method.

B. Fogaras and Racz’s extensions
The algorithm outlined by Fogaras and Racz relies

on the mathematical notion of a random walk through
a graph, in which an abstract walker steps from node
to node through the graph by following random edges
[5]. In the original SimRank paper, Jeh and Widom
[2] observed that the SimRank score of two nodes
can be approximated from the expected meeting time
of two random walkers starting at those two nodes; a
longer expected meeting time corresponds with a lower
SimRank score. Fogaras and Racz used this observation
to develop an efficient and scalable algorithm for calcu-
lating similarity scores. In their algorithm, one walker
is initialized per node and at every time step, each
walker steps across one edge. To reduce the number of
computations required, walkers converge (are treated as a
single walker) when they meet at the same node. Fogaras
and Racz found that this type of convergence does not
reduce the correctness of the approximate calculation.

Fig. 3: Diagram of walker convergence [7]. Walkers a, b, c,
and d begin as independent. As the progress through the graph
(left to right) they meet each other and converge.

Additionally, Fogaras and Racz’s algorithm incen-
tivises walkers to converge if they are near each other.
Convergence is encouraged as a result of how a walker
chooses its next step. In this model, all of the edges in the
graph are randomly assigned an index and walkers will
always choose the edge with the lowest index to step to.
This shuffling of indexes is universal. This means that if
walkers share multiple of the same possible next steps,
and the walkers select a shared node as the next step,
they must choose the same shared node. Restated: the

set of shared possible next steps for the two nodes only
contains one edge with the lowest index. Therefore, if
each of the walkers chooses the edge with the lowest
index from this set, they will choose the same edge and
meet.

The output of one run of Fogaras and Racz’s scalable
SimRank algorithm is a collection of fingerprint graphs
which store the convergence data for each of the random
walkers. Each graph stores the node a walker began
on, the node it merged into, and how many steps it
took for that convergence to occur. These fingerprint
graphs are precomputed and are collected to be stored
in database which can be queried at runtime. Separating
the fingerprint graph generation and querying allows real
time similarity queries to be quite rapid.

C. SSDM
SSDM [7], also developed by BBN, was closely

related to SimRank with two principal differences. The
first difference is that SSDM seeks to be independent
of ontological choice, meaning that the directionality of
each edge (predicate) is ignored.

The second involves the semantics of RDF graphs.
Whereas SimRank is a measure over unlabeled directed
graphs, SSDM incorporates the semantic labels given to
edges. This makes it well-suited to semantic graph data,
which is organized in subject-predicate-object triples.
Subjects and objects are equivalent to nodes in the graph
and predicates are equivalent to edges. In RDF graphs,
these predicates, or labeled edges, describe how the
nodes they connect are related to each other. In order to
utilize the meaning contained in these edge labels, the
SSDM algorithm only considers two walkers to have met
if they arrived at the same node having traveled through
an identical list of edges to get there. This adds a stricter
definition of similarity; it is no longer good enough that
two nodes were connected to the same third one, they
now had to be connected in the same (semantic) way.

V. SSDM+: INCORPORATING LITERAL AND
ONTOLOGY-BASED SIMILARITY

Our new algorithm builds off of previous work with
SSDM by allowing literals to influence similarity scores,
relaxing the need for walkers to meet at the exact same
resource in order to converge, and creating a stricter
approach to how the ontology influences similarity.
This is motivated by the desire to create a cohesive
model for including literal and ontological similarity in a
larger structural similarity framework. Additionally, we
removed the weighting of similarity scores based on
the time it takes walkers to meet (decay), because the
identical paths restriction already significantly decreases
the probability of any walkers meeting after very few

STIDS 2015 Proceedings Page 52



4

steps and we found that further decay was not neces-
sary. Otherwise we retained the same functionality and
methods as the original SSDM algorithm.

In SSDM, similarity was calculated only taking into
account the resources in the graph; literals in the graph
were completely ignored. Additionally because of the
strict definition of convergence, nodes which humans
might consider to be very nearly the same (such as
multiple instances of the same class) could not contribute
directly to the similarity scores. This approach does
not fully utilize the ontological information stored in a
semantic graph. String literals often serve as meaningful
labels for nearby nodes; numerical literals store quan-
tities that tend to be of similar magnitude for nearby
nodes. Therefore ignoring literals causes some nodes to
appear much more similar than a human might consider
them and the requirement for walkers to walk the exact
same predicate path, prevented inferred inheritance from
sufficiently representing the ontological similarity of two
nodes. In particular, because of the number of inferred
classes a resource might have, it was highly probably
that two nodes, which shared an ancestor, might walk a
path to that ancestor, but each take a different number
of steps to get there. Additionally, many of the inferred
classes are very high level concepts (e.g. owl:Thing) and
the number of instances of these classes is high enough
in a graph that even if two walkers did converge at one
of these parent classes, a human would not consider that
convergence to have added any similarity.

With SSDM+, we combine both the literal and onto-
logical similarity into a larger structural approach. There
may be other existing works which make use of literal
and ontological similarity, but we are unaware of any
others which do so as part of a cohesive structural
similarity measurement.

A. Literal Similarity

In order to incorporate literal similarity, we had to
loosen the definitions of convergence present in the
original paper [7]. Rather than only converging when
two walkers had reached the same resource (referred to
here as ”physcal” convergence), walkers could converge
if they reached two literals that were sufficiently similar.
In this case, we defined similarity for numeric literals
as the ratio of the smaller over the larger - or percent.
The similarity for all other literals - which for simplicity
were converted to strings - was calculated as a Leven-
shtein distance between the two, normalized for their
sizes. Levenshtein distance is a measure of structural
similarity between two strings by measuring the number
of substitutions, insertions, and deletions required to turn
one string into the other. These metrics work well with
the data sets we tested, but for graphs which contain

long strings or vastly different types of data, alternative
to Levenshtein distance (e.g., [6]) can be utilized.

B. Ontological Similarity
In an analogous way, we added ontology-based sim-

ilarity by allowing walkers to converge if they stepped
onto resources which we considered to be ontologically
similar. In this case, we define “ontologically similar”
as: sharing a most-distant-salient ancestor, with salience
defined as:

Salience = 1� (instances/total) (1)

where instances is the number of instances of a class and
total represents the total number of nodes in the graph.
This number represents how unique each class is, or how
much of the graph is not made up of instances of that
class.

Fig. 4: Example of finding the most-distantly-salient ancestor.
The node “In Illegal Fishing zone” is an instance of a State
(fairly unique). State is also a subclass of owl:Thing, but
because that is too common to be considered salient, “In Illegal
Fishing zone’s” most-distant-salient node is State.

To find the most-distant-salient ancestor, we precom-
puted the salience of each class and traced its ancestry
until we could find the most distantly related ancestor
which remained more salient than a user defined cutoff
(see example in Fig. 4). Defining similarity this way
means that all instances of a class that is considered to
be salient (or instances of that class’s children) will have
the same most distantly related ancestor, thus reducing
the number of comparisons needed to find similar nodes.
Additionally, when we implemented the ontology-based
matching, we removed nodes representing inferred types
from the graph, which allows the user to fully control the
effect of ontology-based matches on the final similarity
score and removes the possibility for nodes to match
based on a shared, unsalient class.

C. Five Types of Convergence
To make this tool as flexible as possible, we compute

an overall similarity score composed of five different
similarity scoring methods. The user assigns weights

STIDS 2015 Proceedings Page 53



5

for each type, allowing them to emphasize the method
they believe will deliver the most accurate results in the
current context.

Fig. 5: Visualization of different convergence types. Arrows
represent edges in the graph connecting nodes. Light (blue)
dotted lines indicate literal similarity of unconnected nodes.
Dark (purple) dotted lines indicate ontological similarity of
two unconnected nodes.

Walkers are considered to have converged when:
1) Physical convergence: two or more walkers meet

at the same resource
2) Ontology-based convergence: two or more walkers

step onto nodes whose classes share a most-distant-
salient ancestor

3) Literal based convergence: two or more walkers
step onto literals that are more similar than a user defined
cutoff

4) First ontology-based convergence: the nodes they
start on are considered to be ontologically the same -
because the graph sizes can become quite large, this is
only evaluated after the first step

5) First literal based convergence: walkers step onto
similar literals after the first step - this is considered
significant because it is the only step where the literals
are guaranteed to be connected to the node a walker
started on

The last two types of convergence are separate from
the others because they are the only two types of
convergence that happen based on the original nodes a
walker started on. If a user were to query the similarity
between two nodes, while they are important to finding
the overall structural similarity, those two are the only
types of similarity that are uniquely about the queried
nodes.

D. Integration of new types of convergence
As with the original SSDM, finding similarity is

broken into two stages: a preprocessing stage where
fingerprint graphs (trees) are generated from the conver-
gences that occur during random walkers and a runtime
stage where these trees are queried. The changes we have
made affect the former. SSDM+, our new algorithm,
maintains the random walk paradigm of the original
SSDM algorithm and continues to use convergences to
generate trees. The primary difference is the way walkers
can converge. By extension, trees now also contain an
additional piece of information: the type of conver-
gence which has occurred. Tracking the convergence
type allows a user to control how much each type of
convergence affects the similarity scores they receive.

By preserving the random walks paradigm, we gain
a consistent framework for assessing all five types of
similarity. From a more practical view, however, the
requirement that walkers must travel the same predicate
path greatly reduces the number of comparisons which
must be completed to find literal and ontological simi-
larity.

In addition, the order which we check convergences
was also influenced by the need to reduce the number
of comparisons, a need which becomes increasingly
important as datasets grow. We first check the ”physical”
convergences because they are the most common type of
convergence. We then check for literal convergences and
then for ontological convergences. This order matters
less because we separate the literals and resources so the
two types of convergence are independent of one another.
In order to reduce the number of comparisons we must
perform, we changed the way “physical” convergence is
calculated. In the new method, we sort all walkers by the
path they have traveled, then split within those groups,
by the current location of the walker. With the nodes
that did not converge, but did walk the same path, we
split the walkers based on whether they are located at a
resource or a literal and look to see if they can converge
via ontological similarity or literal similarity. This is
a more efficient method (as compared to the original
SSDM), when literal and ontological similarity must
also be determined. The main drawback to this order
of comparisons is that literal and ontological similarity
are not calculated until after the first step has been taken.
This greatly increases the speed of the calculation, but
does ignore ontological and literal similarity between
two original nodes if their walkers did not take the same
first step. Given the high number of random walks we
perform for each graph, we consider this acceptable.

VI. TESTING AND TUNING

In the course of the development of the SSDM+
algorithm, we executed multiple test cases comparing

STIDS 2015 Proceedings Page 54



6

the results of the algorithm against human intuition on
which nodes should be considered to be similar. Based
on these empirical results, we developed a procedure for
tuning the similarity paramters, as outlined below.

A. Determining literal and ontological cutoff similarities
To determine some baseline values for similarity

thresholds, we experimented with both the literal and
ontological cutoffs. Cutoffs represented the minimum
similarity needed for a user to consider two literals
or two resources to be the same for the purposes of
allowing convergence. We recorded the time it took to
generate trees and the similarity scores between three
sets of nodes. These experiments allowed us to optimize
the shortest time needed to generate the trees for the
highest increase in similarity from the added literal and
ontological matching. For all of the tests, the weighting
on each type of convergence was kept equal so that only
the cutoffs were being varied. From our experiments,
we found that literals needed to be at least 60% similar
and classes could be considered salient if less than
60% of the instance data was an instance of that class.
With higher cutoffs, the time needed to generate the
trees began to increase dramatically. With lower cutoffs,
similarity scores did not match very well with human
predications. It should be noted that these baseline
values were generated using mock intelligence problem
decompositions and may need to be adjusted for other
types of datasets.

B. Determining weights for physical, literal, and onto-
logical convergences

In order to see the effect of allowing literal and onto-
logical matching, we created a series of decompositions.
We then tested them to see how changing the weighting
of each type of similarity affected which nodes were
returned as similar when queried and how similar the
algorithm considered them. As a first test, we constructed
ten identical graphs whose only difference was in the
literal labels associated with each node. The goal of this
test was to show that when a node was selected, the most
similar resources would be the corresponding nodes in
the other graphs.

Once we verified that this was true, we started to test
on graphs which were generated from the same tem-
plate, but were not identical. Templates in the Semantic
Problem Decomposition (SPD) tool are fragments of a
decomposition that can be reused. When they are copied
into a new graph, they retain all of their properties,
except that all of the nodes in the graph are given
new randomly generate Universal Resource Identifiers
(URIs), which are globally unique. These graphs were
the primary data we used to test the weighting. In these

tests, we used a smaller dataset - four graphs, rather
than ten - and aimed to find parameters which returned
results that we, as humans, understood to be similar. In
order to get more universal results, we made sure to test
several different types of nodes and observe the results.
This proved to be interesting as some of the nodes were
more influenced by literals - in both positive and negative
manners - than others. From these tests we were able
to find the weights which had the greatest improvement
over the results generated from only considering physical
convergence.

Results of this type of tuning may be dependent to the
datasets we used. We believe that, in order to use this
for other datasets, it would be important to run a similar
test to choose appropriate weights.

VII. APPLICATION: ILLEGAL FISHING PROBLEM
DECOMPOSITION

A tool for finding similarity between nodes in a
semantic graph can be useful in a variety of settings.
In this case, however, we are primarily interested in
how it can aid in rapid development of intelligence
problem decompositions via the retrieval and reuse of
existing decomposition structures. While representing
problem decompositions in a semantic way has many
benefits, it can also be a time consuming process to
manually input all of the relevant nodes. We envision
using SSDM+ to suggest nodes from existing problem
decompositions which are similar to a node selected by
a user. In this way, the user would be able to look at the
graphs associated with each suggestion and, if desired,
copy the suggested node and its children into the new
decomposition.

This interaction reduces the amount of time it takes
an analyst to perform their job, but also gives them
more context for generating a new decomposition. In
addition to saving the analyst time, a tool like this also
provides analysts the opportunity to see how their peers
solved similar problems. This type of knowledge sharing
could allow analysts to envision new ways of completing
their decomposition tasks. This latter feature has the
potential to be especially significant, given the limited
sensor resources for collecting stimuli.

In this section we use the mock decomposition prob-
lem of illegal fishing which we described earlier in the
paper and demonstrate some of the preliminary results
we have been generating.

A. Results
The results shown in this section were determined

by comparative analysis of similarity suggestions. We
created four decompositions from the same starting
template and modified them by adding and deleting

STIDS 2015 Proceedings Page 55



7

Top Three Suggestions of Most Similar Nodes and Their
Similarity Scores for the Node: “In Illegal Fishing Zone 4”

Types of
convergence

First
suggestion
(score)

Second
suggestion
(score)

Third
suggestion
(score)

Physical (SSDM)
In Illegal
Fishing Zone
(0.57)

In Illegal
Fishing Zone2
(0.46)

In
transit3
(0.33)

Physical and
Literal

In Illegal
Fishing Zone
(0.57)

In Illegal
Fishing Zone2
(0.46)

In
transit3
(0.33)

Physical and
Ontological

In Illegal
Fishing Zone
(0.85)

In Illegal
Fishing Zone2
(0.75)

In Illegal
Fishing Zone3
(0.73)

Physical,
Literal, and
Ontological

In Illegal
Fishing Zone
(0.85)

In Illegal
Fishing Zone2
(0.75)

In Illegal
Fishing Zone3
(0.73)

TABLE I: Top three results from similar decompositions when
querying for most similar nodes to the “In Illegal Fishing
Zone” node. The far left column describes the types of con-
vergence which contributed to the scores and the remaining
columns represent the labels of the highest scoring nodes and
their similarity scores. All of the suggestions are the same class
(States), but SSDM+’s inclusion of Literal and Ontological
convergence produces scores which align better with human
understanding, and does find the “In Illegal Fishing Zone”
node from each graph to be the top three most similar.

nodes and connections. This gave us four similar, but not
identical decompositions. We then generated suggestions
for several nodes varying which types of convergences
contributed to the similarity scores. A sample of the
results can be seen in Table I and Table II where we
show the top three suggested nodes and their similarity
scores for two of our test nodes. For simplicity, if a type
of convergence was included the weight was set to 1 and
if it was not included, the weight was set to 0.

In the first example, both algorithms perform similarly.
The main difference is the magnitude of the scores. It
should be noted, however, that while both algorithms
produced results which were all of the same class (State)
as the node from which the query was generated, the
modified algorithm - when ontological similarity was
included - was able to provide a “In Illegal Fishing
Zone” node for each of the top three results. The second
example, though shows a more extreme distance. The
results of the modified algorithm, are from the same
class (Indicators) as the node from which the query was
generated, while the results from the original algorithm
are Stimuli - a class which connects to Indicators.

From our experimentation, we found that are two main
improvements offered by SSDM+. The first improvement
is that the top suggestions are more frequently closer
matches for the node which has been queried. The
second improvement stems from the addition of terms for
new types of similarity which were previously ignored,
resulting in higher scores that align more closely with
how a human might perceive the similarity. For example

Top Three Suggestions of Most Similar Nodes and Their
Similarity Scores for the Node: “Outriggers not deployed 4”

Types of
convergence

First
suggestion
(score)

Second
suggestion
(score)

Third
suggestion
(score)

Physical (SSDM) Comms2
(0.40)

SAR
(0.38)

SAR4
(0.37)

Physical and
Literal

Comms2
(0.40)

SAR
(0.38)

SAR4
(0.37)

Physical and
Ontological

Outriggers
not deployed
(0.69)

Outriggers
deployed2
(0.51)

Transponder
On3
(0.42)

Physical,
Literal, and
Ontological

Outriggers not
deployed
(0.70)

Outriggers
deployed2
(0.51)

Boat
Moving2
(0.42)

TABLE II: Top three results from similar decompositions
when querying for most similar nodes to the “Outriggers not
deployed” node. The far left column describes the types of
convergence which contributed to the scores and the remaining
columns represent the labels of the highest scoring nodes and
their similarity scores. SSDM+’s use of Literal and Ontolog-
ical convergence performs in a more human understandable
way here: suggesting nodes which are all of the same class
(Indicator) as the node for which the query was generated, in
contrast to the original SSDM algorithm which suggests only
Stimuli nodes.

in Table I, the top suggestions are all for the correspond-
ing nodes from other similar decomposition models.
These top-suggestion nodes have nearly the same labels
as the queried node and, in this test, have identical
connections. The similarity scores increase dramatically
with ontological similarity turned on, demonstrating
the value-added of ontological matching; however, even
when considering non-ontological matching the the top
three suggestions of SSDM+ are still as good or better
than that of SSDM.

While more extensive testing would provide a more
definitive picture, our preliminary results indicate that
supplementing physical convergence with literal and
ontological convergence does increase the accuracy of
similarity calculations and the relevance of the results
generated. Additionally, we believe that the incentivized
Physical convergence described in Section V may un-
equally weight the Physical component of the score. We
plan to investigate and address this issue in future work.

VIII. FUTURE WORK

There are several possible directions for future work.
The first, and most pressing, is a more rigorous compar-
ison between SSDM+ and the original SSDM algorithm.
A major difficulty in performing such a comparison is
the lack of concrete ground truth similarity values to
compare our algorithm results to. To that end, there is
a need to develop a repeatable system for quantifying
which nodes humans consider to be similar. However,
due to the subjective nature of such measurements,

STIDS 2015 Proceedings Page 56



8

constructing ground truth data based on user judgments
presents many challenges. An alternative approach could
be to compare the similarity results from our SSDM+
algorithm to similarity derived from entity attribute com-
parison - comparisons of the presence/absence of certain
attributes. If we choose to pursue this path, there are
several well-established algorithms [8] that we could
use. However, since the data we have been using so
far consists of only a handful of main classes, such
comparisons may not be as useful.

The second area for improvement is in tree generation.
One of the goals prompting this research was to develop
a way for intelligence analysts to reuse portions of
existing decompositions when developing new mission
packages. To aid in that process, we hoped that analysts
could click on a node they had added to their graph
and query for all similar nodes among all of the mission
packages that had already been developed. This is not
yet possible because of the latency involved in the tree
(re-)generation stage. In order to re-run the entire graph
analysis, it takes more than a minute on small graphs
with size of approximately three hundred nodes. Such
a long delay is unlikely to be tolerated by an analyst
in interactive mode. We are currently investigating ways
to reduce latency, including further optimization of the
algorithm and applying the algorithm incrementally as
nodes are added to a graph.

We also plan to explore more accurate techniques of
determining literal similarity. In particular, at present, we
analyze only the structure of textual literals rather than
looking at the meaning of that text. Finally, although
we have relaxed the strictness in matching nodes, we
still require that walkers walk an identical predicate
path. It may be, that in a similar way to the additional
insight gained by allowing ontological matching, we
could also gain a better measure of similarity by relaxing
the predicate restrictions so that walkers would also be
allowed to travel similar rather than identical predicate
paths. The challenge with this would be to find a
computationally efficient way of relaxing the restrictions
because performing something similar to our ontological
check for convergence would be too time intensive for
a dataset of any reasonable size.

Additionally, the role of literals is currently under-
mined by the fact that we encourage convergence in
the same way as the original SSDM algorithm which
biases physical convergences to occur. In doing this,
literal matches occur much less frequently and thus have
less of an effect on the total results. Due to the low
repeatability, however, we found it was not feasible to
stop encouraging convergence. To fully utilize similarity
from literals in the graph, an alternative to the way
convergence is encouraged would need to be developed.

IX. CONCLUSION

Due to the wide spectrum of application of semantic
graphs, finding similarity within and between them also
has significant utility. In this paper, we focused on
extending previous structural semantic similarity algo-
rithms with functionality aimed at aiding analysts in
the development of new intelligence problem decom-
positions. The resulting extended SSDM (or SSDM+)
algorithm will be incorporated in a tool that finds frag-
ments of existing graphs, which could be relevant to the
problem being decomposed. This not only saves analyst
time by allowing them to reuse relevant pieces from
existing decompositions, but also allows the exploration
of options for completing the decompositions in ways
that might not have been previously considered. The
modifications we made to the SSDM algorithm allow
it to take better advantage of the data stored in semantic
graphs rather than merely using structural (physical) con-
vergences. By providing users control (via weights) over
the various types of convergences - physical, literal, and
ontological - SSDM+ becomes easily customizable to
varying datasets. The extended algorithm also produces
results that better match human intuitions on similarity.
In the future, we plan to develop a more rigorous test to
quantify these improvements and to speed up the off-line
(tree) generation of similarity traces.

REFERENCES

[1] T. Berners-Lee, M. Handler, & O. Lassila, “The seman-
tic web”, Scientific American, May 2008. [Online]. Avaiable:
http://www.ds3web.it/miscellanea/the semantic web.pdf

[2] G. Jeh & J. Widom, “SimRank: a measure of structural-context
similarity”, in Proceedings of the eigth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ser.
KDD ‘02 New York, Ny: ACM, 2002, pp. 538-543. [Online].
Available: http://doi.acm.org/10.1145/77504/775126

[3] A. Islam & D. Inkpen, “Semantic text similarity using corpus-
based word similarity and string similarity”, ACM Transactions on
Knowledge Discovery from Data, vol. 2 no. 2 pp. 1-25, July 2008.
[Online]. Available: http://doi.acm.org/10.1145/1376815.1376819

[4] R. Hartley & A. Zisserman, Multiple view Geometry in Computer
Vision. Cambridge University Press, 2003. [Online]. Available:
http://books.google.com/books?id=si3R3Pfa98QC

[5] D. Fogaras & B. Racz, “Scaling link-based similarity search”, in
Proceedings of the 14th international conference on World Wide
Web, ser. WWW ‘05. New York, NY: ACM, 2005, pp. 641-650.
[Online]. Available: http://doi.acm.org/10.1145/1060745.1060839

[6] W. H. Gomaa, “A Survey of Text Similarity Approaches”, INter-
national Journal of Computer Applications, vol 68, no. 13, 2013.
doi:10.1.1.403.5446

[7] C. Olsson, P. Petrov, J. Sherman, A. Perez-Lopez. “Finding and
Explaining Similarities in Linked Data”, Semantic Technology
for Intelligence, Defense, and Security (STIDS 2011), Fairfax,
Virginia, November 2011.

[8] B. Gallagher “Matching Structure and Semantics: A Survey
on Graph-Based Pattern Matching”, American Association
for Artificial Intelligence, 2006, [Online]. Available:
http://www.aaai.org/Papers/Symposia/Fall/2006/FS-06-02/FS06-
02-007.pdf

STIDS 2015 Proceedings Page 57


