
Submitted to:
TTC 2015

Solving the TTC Train Benchmark Case with FunnyQT

Tassilo Horn
Institute for Software Technology, University Koblenz-Landau, Germany

horn@uni-koblenz.de

This paper describes the FunnyQT solution to the TTC 2015 Train Benchmark transformation case.
The solution solves all core and all extension tasks, and it won the overall quality award.

1 Introduction

This paper describes the FunnyQT1 [1, 2] solution of the TTC 2015 Train Benchmark Case [3]. All core
and extension tasks have been solved. The solution project is available on Github2, and it is set up for
easy reproduction on a SHARE image3. This solution won the overall quality award for this case.

FunnyQT is a model querying and transformation library for the functional Lisp dialect Clojure4.
Queries and transformations are Clojure programs using the features provided by the FunnyQT API.

Clojure provides strong metaprogramming capabilities that are used by FunnyQT in order to define
several embedded domain-specific languages (DSL) for different querying and transformation tasks.

FunnyQT is designed with extensibility in mind. By default, it supports EMF models and JGraLab
TGraph models. Support for other modeling frameworks can be added without having to touch Fun-
nyQT’s internals.

The FunnyQT API is structured into several namespaces, each namespace providing constructs sup-
porting concrete querying and transformation use-cases, e.g., model management, functional querying,
polymorphic functions, relational querying, pattern matching, in-place transformations, out-place trans-
formations, bidirectional transformations, and some more. For solving the train benchmark case, espe-
cially its in-place transformation DSL has been used.

2 Solution Description

In this section, the individual tasks are discussed one by one. They are all implemented as in-place
transformation rules supported by FunnyQT’s funnyqt.in-place transformation DSL. The rules’ repair
actions simply call the CRUD functions of the EMF-specific funnyqt.emf namespace.

Task 1: PosLength. The transformation rule realizing the PosLength task is given below.

1 (defrule pos-length {:forall true :recheck true} [g]
2 [segment<Segment>
3 :when (<= (eget-raw segment :length) 0)]
4 (eset! segment :length (inc (- (eget-raw segment :length)))))

1
http://funnyqt.org

2
https://github.com/tsdh/ttc15-train-benchmark-funnyqt

3The SHARE image name is ArchLinux64_TTC15-FunnyQT_2
4
http://clojure.org

http://funnyqt.org
https://github.com/tsdh/ttc15-train-benchmark-funnyqt
http://clojure.org


2 Solving the TTC Train Benchmark Case with FunnyQT

The defrule macro defines a new in-place transformation rule with the given name (pos-length),
an optional map of options ({:forall true, ...}) a vector of formal parameters ([g]), a pattern
([segment<Segment>...]), and one or many actions to be applied to the pattern’s matches ((eset!
...)). The first formal parameter must denote the model the rule is applied to, so here the argument g
denotes the train model when the rule is applied using (pos-length my-train-model).

The pattern matches a node called segment of metamodel class Segment. Additionally, the segment’s
length must be less or equal to zero as defined by the :when constraint. The action says that the segment’s
length attribute should be set to the incremented negation of the current length.

The normal semantics of applying a rule is to find one single match of the rule’s pattern and then
execute the rule’s actions on the matched elements. The :forall option changes this behavior to finding
all matches first, and then applying the actions to each match one after the other. FunnyQT automatically
parallelizes the pattern matching process of such forall-rules under certain circumstances like the JVM
having more than one CPU available and the pattern declaring at least two elements to be matched.

The :recheck option causes the rule to recheck if a pre-calculated match is still conforming the
pattern just before executing the rule’s actions on it. This can be needed for forall-rules whose actions
possibly invalidate matches of the same rule’s pattern, e.g., when the application of the action to a match
m

i

cause another match m

j

to be no valid match any longer5.

Task 2: SwitchSensor. The transformation rule realizing the SwitchSensor task is given below.

5 (defrule switch-sensor {:forall true :recheck true} [g]
6 [sw<Switch> -!<:sensor>-> <>]
7 (eset! sw :sensor (ecreate! nil ’Sensor)))

It matches a switch sw which is not contained by some sensor. The exclamation mark of the edge
symbol -!<:sensor>-> specifies that no such reference must exist, i.e., it specifies a negative application
condition. The action fixes this problem by creating a new Sensor and assigning that to the switch sw.

Task 3: SwitchSet. The switch-set rule realizes the SwitchSet task. Its definition is given below.

8 (def Signal-GO (eenum-literal ’Signal.GO))

9 (defrule switch-set {:forall true :recheck true} [g]
10 [route<Route> -<:entry>-> semaphore
11 :when (= (eget-raw semaphore :signal) Signal-GO)
12 route -<:follows>-> swp -<:switch>-> sw
13 :let [swp-pos (eget-raw swp :position)]
14 :when (not= (eget-raw sw :currentPosition) swp-pos)]
15 (eset! sw :currentPosition swp-pos))

It matches a route with its entry semaphore where the semaphore’s signal is Signal.GO. The route
follows some switch position swp whose switch sw’s current position is different from that of the switch
position. The fix is to set the switch’s current position to the position of the switch position swp.

Note that there are no metamodel types specified for the elements semaphore, swp, and sw because
those are already defined implicitly by the references leading to them, e.g., all elements referenced by a
route’s follows reference can only be instances of SwitchPosition according to the metamodel. Fun-
nyQT doesn’t require the transformation writer to encode tautologies in her patterns6.

5This cannot happen for the pos-length rule, however the case description demands matches to be revalidated before
applying the repair actions.

6In fact, if there are types specified, those will be checked. So omitting them when they are not needed also results in
slightly faster patterns.



T. Horn 3

Extension Task 1: RouteSensor. The extension task RouteSensor is realized by the route-sensor
rule given below.

16 (defrule route-sensor {:forall true :recheck true} [g]
17 [route<Route> -<:follows>-> swp -<:switch>-> sw
18 -<:sensor>-> sensor --!<> route]
19 (eadd! route :definedBy sensor))

It matches a route that follows some switch position swp whose switch sw’s sensor is not contained
by the route. The repair action is to assign the sensor to the route.

Extension Task 2: SemaphoreNeighbor. The second and last extension task SemaphoreNeighbor is
realized by the semaphore-neighbor rule defined as shown below.

20 (defrule semaphore-neighbor {:forall true :recheck true} [g]
21 [route1<Route> -<:exit>-> semaphore
22 route1 -<:definedBy>-> sensor1 -<:elements>-> te1
23 -<:connectsTo>-> te2 -<:sensor>-> sensor2
24 --<> route2<Route> -!<:entry>-> semaphore
25 :when (not= route1 route2)]
26 (eset! route2 :entry semaphore))

It matches a route route1 which has an exit semaphore. Additionally, route1 is defined by a sensor
sensor1 which contains some track element te1 that connects to some track element te2 whose sensor
is sensor2. This sensor2 is contained by some other route route2 which does not have semaphore as
entry semaphore. The fix is to set route2’s entry reference to semaphore.

2.1 Deferred Rule Actions

As mentioned above, the normal semantics of a forall-rule is to compute all matches of the rule’s pattern
first (possibly in parallel), and then apply the rule’s actions on every match one after the other. However,
the case description strictly separates the computation of matches from the repair transformations.

FunnyQT also provides stand-alone patterns. Using them, one could have defined patterns for finding
occurrences of the five problematic situations in a train model, and separate functions for the repair
actions where the latter receive one match of the corresponding pattern and fix that.

But for in-place transformation rules, FunnyQT also provides rule application modifiers. Concretely,
any in-place transformation rule r can be called as (as-pattern (r model)) in which case it behaves
as a pattern. That is, where a normal rule would usually find one match and apply its actions on it
and a forall-rule would usually find all matches and apply its actions to each of them, when called with
as-pattern, a rule simply returns the sequence of its matches. With a normal rule, this sequence is a lazy
sequence, i.e., the matches are not computed until they are consumed. With a forall-rule, the sequence is
fully realized, i.e., all matches are already pre-calculated (possibly in parallel).

The second FunnyQT rule application modifier is as-test, and this is what is highly suitable for this
transformation case. When a rule r is applied using (as-test (r model)), it behaves almost as without
modifier but instead of applying the rule’s actions immediately, it returns a closure of arity zero (a so-
called thunk) which captures the rule’s match and the rule’s actions. Invoking the thunk causes the actions
to be applied on the match. Thus, the caller of the rule gets the information if the rule was applicable at
all, and if it was applicable, she can decide if she wants to apply it or not. And when she applies it, the
pattern matching part is already finished and only the actions are applied on the pre-calculated match the
thunk closes over.

In case of a forall-rule r, (as-test (r model)) doesn’t return a single thunk but a vector of thunks,
one thunk per match of the rule’s pattern. This is exactly what is needed for solving this transformation



4 Solving the TTC Train Benchmark Case with FunnyQT

case. Using this feature, a final function is defined that receives a rule r and a train model g and executes
the rule as a test.

27 (defn call-rule-as-test [r g]
28 (as-test (r g)))

This function is then called with the transformation rules from the Java trainbenchmark framework.
The given rule gets applied and returns a sequence of thunks which will apply the actions to the match
they are wrapping. Thus, the only thing the framework has to do is to apply the thunks corresponding to
the matches which are going to be repaired in the current repair phase.

These 28 lines of Clojure code form the complete functional part of the FunnyQT solution that solves
all core and extension tasks. There is also a plain-Java glue project which implements the interfaces
required by the benchmark framework and simply delegates to the Clojure/FunnyQT part of the solution.
This glue project is briefly discussed in the following section.

2.2 Gluing the Solution with the Framework

Typically, open-source Clojure libraries and programs are distributed as JAR files that contain the source
files rather than byte-compiled class files. This solution does the same, and that JAR is deployed to a
local Maven repository from which the Maven build infrastructure of the benchmark framework can pick
it up.

Then, in the FunnyQT glue project the rules and functions from above are referred to like shown in
the next listing.
private final static String SOLUTION_NS = "ttc15-train-benchmark-funnyqt.core";
Clojure.var("clojure.core", "require").invoke(Clojure.read(SOLUTION_NS));
final static IFn POS_LENGTH = Clojure.var(SOLUTION_NS, "pos-length");
...
final static IFn CALL_RULE_AS_TEST = Clojure.var(SOLUTION_NS, "call-rule-as-test");

In line 2, the solution namespace ttc15-train-benchmark-funnyqt.core is required7. The Clojure
class provides a minimal API for loading Clojure code from Java. When requiring a namespace as above,
it will be parsed and compiled to JVM byte-code just in time8.

Thereafter, the solution’s in-place transformation rules and the call-rule-as-test function are re-
ferred to. IFn is a Clojure interface whose instances are Clojure functions that can be called using the
invoke() method as can be seen in the definition of the glue project’s BenchmarkCase.check() method
shown below.
@Override
protected final Collection<Object> check() throws IOException {

matches = (Collection<Object>) FunnyQTBenchmarkLogic.CALL_RULE_AS_TEST
.invoke(rule, this.resource);

// If the rule has no matches it returns nil/null but the framework

// wants a Collection.

if (matches == null) {
matches = new LinkedList<Object>();

}
return matches;

}

In that code, rule is one of the rule IFns POS_LENGTH, SWITCH_SET, et cetera, and they are called via
the call-rule-as-test function to make them return one thunk per match instead of performing the
rules’ repair actions immediately.

The implementation of the BenchmarkCase.modify() method is even simpler.
7require is kind of Clojure’s equivalent to Java’s import statement.
8If the Clojure code was distributed in a pre-compiled form, the resulting classes would simply be loaded.



T. Horn 5

@Override
protected final void modify(Collection<Object> matches) {

for (Object m : matches) {
((IFn) m).invoke();

}
}

Since the rules are called as tests and thus return thunks that apply the rule’s actions, those simply
need to be invoked.

3 Evaluation & Conclusion

The FunnyQT solution implements all core and all extension tasks exactly as demanded by the case
description, thus it is complete. When run in the benchmark framework, all assertion it checks are
satisfied, thus the solution is also correct.

The FunnyQT solution consists of 28 NCLOC of FunnyQT/Clojure code for the five rules with their
patterns and repair actions, and the function call-rule-as-test. Therefore, it is very concise.

Readability is a very subjective matter, and not everyone is fond of Lisp syntax. However, there
are some strong points with respect to readability. (1) The queries (patterns) and repair actions are
bundled in one in-place transformation rule each keeping the definition of cause and effect localized.
(2) FunnyQT’s pattern matching DSL used to specify the rules’ patterns is both concise and readable. It
should be easy to understand for graph transformation experts especially if they have used other textual
graph transformation languages such as GrGen.NET before. It should also be easy to understand for any
Clojure programmer because it strictly conforms to the style guidelines and best practices there.

FunnyQT implements pattern matching as a local search. Thus, each recheck phase take approx-
imately as much time as the initial check phase. In contrast, with an incremental approach like EMF-

IncQuery, the rechecking the patterns is not needed because all matches of all patterns are cached and up-
dated when the model changes. This makes FunnyQT not especially suited for incremental model valida-
tion scenarios. However, given the fact that the evaluation of forall-patterns is automatically parallelized
on multi-core machines, the performance is still reasonable. The benefit of FunnyQT’s search-based
approach is that it has far less memory requirements than an incremental approach. When comparing the
performance with the EMF-IncQuery solution on an 8-core machine with 32 GB RAM, FunnyQT was
only about 15% slower and could still transform models which already caused an OutOfMemoryError
with EMF-IncQuery. But of course, when increasing the number of iterations, the performance benefit
of incremental approaches will increase, too.

References

[1] Tassilo Horn (2013): Model Querying with FunnyQT - (Extended Abstract). In Keith Duddy & Gerti Kappel,
editors: ICMT, Lecture Notes in Computer Science 7909, Springer, pp. 56–57.

[2] Tassilo Horn (2015): Graph Pattern Matching as an Embedded Clojure DSL. In: International Conference on
Graph Transformation - 8th International Conference, ICGT 2015, L’Aquila, Italy, July 2015.

[3] Gábor Szárnyas, Oszkár Semeráth, István Ráth & Dániel Varró (2015): The TTC 2015 Train Benchmark Case

for Incremental Model Validation*. In: Transformation Tool Contest 2015.


	Introduction
	Solution Description
	Deferred Rule Actions
	Gluing the Solution with the Framework

	Evaluation & Conclusion

