=Paper=
{{Paper
|id=Vol-1536/paper22
|storemode=property
|title=
Об автоматической спецификации стиха в информационно-аналитической системе
(On an Automatic Procedure for the Specification of a Poetic Text for an Open Information-Analytical System)
|pdfUrl=https://ceur-ws.org/Vol-1536/paper22.pdf
|volume=Vol-1536
|dblpUrl=https://dblp.org/rec/conf/rcdl/BoikovKSP15
}}
==
Об автоматической спецификации стиха в информационно-аналитической системе
(On an Automatic Procedure for the Specification of a Poetic Text for an Open Information-Analytical System)
==
- . . , . . , . . . ., . . . . !. " . . . # boykov_bh@bk.ru; mari.s.ka@mail.ru; valery-sokolov@yandex.ru; pilshch@yandex.ru = + %- , '+%- ' '() ( - , SPARSAR (System for Poetry Automatic Rhythm and Style AnalyzeR) [17-18]. SPARSAR ' + $ % & + - +- -: ' ( '() ( '*& , ' /, ). " ' - & + ) ( ' ' &, - . + ( ' ( & & +. ) ( -- + ( ) ), + «$» ' + ' ' $ -. " + '+ + '- ' WordNet [19], + / +& -/. '% ) (%, ' + 0 $ ' / 0 ) - . & ' ) - , 113-06- ' % $ + $ 00448. @ [16], '+% + '*& '+ 1 '- ' + (+. ) (- & 2 " "" '*+ ( 0), + $ http://wikipoetics.ru/, ' ' '*&- ' : ' $- %- ( -& «6+ ' '*» + - $ % ( 2000 ) « + ' ' '() ( : '() (» - $9 [1,3-5]. x 1; 0 ' 0. 1. x ' 1 ( , C); « + '() (» + x / ; % - ' - x 2, 3 .. ( & & ); &- ' + &: '() ( x ' 2, 3 ..; &- + x / 2, 3 ..; '() ( '*& ' + (). x + - ( ' + $ ' &- ' ( & ); - & '() ( x + 1; ' 0. 2., % x incipit (' ); '' &- ;: x + 2, 3 .. ( + , - - & + ; ); - + ' ' '() ( ; x incipit + 2, 3 ..; - ) ( . x $ ( vs. XVII ' ' ); DAMDID/RCDL’2015 « x ( (' / (, -/ ( ); ! », , 13-16 x - (-/ 2015 -); x 1 ( ( - ); 144 # $ $ #%&" # - #%&" '( ) ! «' ! » * ( ! ) ! ! % 0. 1. 0 ". ". ! . $ ! ("") % "" " "": - - !$ - incipit ( ) - / $ $ ! - ! ( $, , ) - 1 (2, … ) - 1 (2, …) - / - … ! 4 6 4 - ! 7 "" # 0. 2. ' &- ' ( '() ( 145 x + 1 (& , ', x - ); , & /- x ) (%& ) ); +); x ) (& ); x & + (0, 1, 2, 3,…); x & ). x & $+ - / ); ' & x & $+ - + (1, 2, 3. '+%. 4,…); x 2,3 .. ( ' ; - 3 - ! + ); ! "" x & 1; x & 2,3 ..; /; & % ' '() ( x $ & &- ; ' '% x $ & )&- ( $& & + - & & & &- ); +, ' x - ); $- ' x ) (%& ) ); – «- ». x ) (& ); - ' +$ x & ); + &- + x + - (' & %: ); ' $ - x +() ) - (' ) )& . / ( ) & ) - + ' – $ + -); ) ) , $ + ' (, x + ( ' - ' - + & ('( ' +); , $+ & % ( ). x + ( ' - ' + & + ' - ' +); -& + & x () ( ' - ' $ $ - [10, 12], ' - ' +); + ' $ - (& +. 0 x ' ; + - , ' x / ; + x ' - ( ( - . , - (+ / ' / % + '$ ' $- + , - $+ - « » - : -, ' . & ) - , $ ) (& + ' ..). «! & » E + [8] ( " + ' &- * ) ' ' ( - & '() ( [11,14]), ' ' ( ( + ' ; ' ' / ' . '() ( % '' ' + ( - & + - & '() (: - %& $ % 0 + (- ) 0: ' ( . x & (/); 1. ( ' - x & - – (); + '% & x & /- +; ={ (n)}, n=1,2,...N, / x & + (0, 1, 2, 3,…); ' ' (n) N – & . x & + (1, 2, 3, 4,…); 2. & (+ () ('& x + /- (& $- , &- ' $+ - / ); +, + ' ( & x (' ); ' %- $ )& x + ('); , ' ( x ' ( - + =q1q2…qr(0)s…sq1q2…qr(i)s…sq1q2…qr(k), (). q {א,$,,…}, i=1,2,...(k-1), s – +. 0 + ' +: 3. ( ( )&- ' + x $ & )&- ( $& « ( ' ' & & &- ); . . E +» [13], ' x $ & &- ; - $ - ' x & ); ' ) – q', q {א,,*,,,,,G,%,}. * x ); ' % % - ' 146 $+ - – $+ , (1…m(i)) – + , ' ( .). " ' / ( + , 0KiKk, i – ( .) & % , 1KiKk, k – & - . ' ' & - & , '& , + & '()( % - % . & - . $+ - 4. " ) - / %& (& ' '+ ) , ' $ . / / / ) '% * ' + '/ - , * & / '& $ )*'& ) ( % - - & '' ' - , / + ( / . *- - % , .. E / ' ' , & ' ' ' % +% ) - / ' + , ' % /- '% «; )» [6]. , - ' - [2]. & ' , & '' ' ( q1… qi- 4 9 4 1qi'qi+1…qr(k) $ ) {0)1}. $ "" '%- ' % ' * $ . ' 0; + & ) ( ' ' $ + %& ' &- ) {0)2} ' % , - +& $ ;; ' $ . &- ; $ + ' ' '%- ' % ' - &- - ' $ . ( [7]. ' - ' , ' " * $- - ' , ;; $ '- () ) - &- - . $ . / , '&; ) + % $+ & - + $ , ' ' -&- ' ) + (' ) * $ &-, - &- &- (n,0)j), n=1,2,...N. / ) ( $ - - , ' %- $ ('& )) - $+ - ' 0)j{n}, + / '' ' {(n,0)j)} + '() ( - ( & ). ). / + , & & ( ) - - : ={ (n,0)n)}, .. + – , ' + & ) - / $ , / + + & % ; $ ). b – $ , ' + & 5. + )& ' $+ . - '.2. - ( ) ('& - & ( ) - - $ )&- - , $+ - : + ' – ; - -: b – $ $+ ; =12…r(0)s…s12…r(i)s…s12…r(t), – $+ ; {א,,*,,,,,G,%,}, i=1,2,...(t-1), s – – $ $+ ; +. & ( ) - - : 6. ('& + – ; ' ;%- ( -): – $+ ; sr(0)…sr(0)+…+r(i)…sr(0) +…+r(i)+…+r(t-1). " ('& $+ - : + / c1c2…ck=ck, c0=1, c1=c 1c=c. + / - '%- ) - (- -) - sr(0)+…+r(i), j=r(0)+…+ r(i)=const. 6 + %&, ' & $ +, (+ Sj=sr(0)+…+r(i) (+ - - $ '. 6. – + ' - - ' + . , (+ $+ & S0. 7. - ('& 4.1 & $ - $+ - $+ +: =1…m(0) 11…m(1)… i1…m(i)…Ck-11…m(k-1) k - + ' - $+ & / 1…m(k), $< < : =cr(0)C1cr(1)C2cr(2) … Cicr(i)Ci+1… Ck-1cr(k-1)Ckcr(k), 147 0Kr(i) – & $+ - , 0KiKk, Q + & Ufg / r(i) – / ( , 1KiK(k-1), , Ufg(1,2,3,…20), r(0) – + ($+ ( & - ), % %& 1), 2) r(k) – + ($+ ( & - ). 3), - (1) ' &% - M '% / ( $ $ $ , & & '' $ . - , & / 3-& % ;% ) / -: & - : (1) %=cr(0)(=i=1,2,..(k-1)Cicr(i))br(k), (1". ) - $ $ 1KiK(k-1) ' & ( & - ) $$ ( 4$) ' (n,0)j), jTn, ' +, & ( jV2, - n=1,2,...N; - ) ' ('& &- '', (1".$) - $ $ & (& - ) ' ' (n,0)n) - ' k- $+ Ck= n=1,2,...N. (' ' > 2 ' + (2). [15]) + $+ $+ Q - n=1,2,...N ' (R-r(k))Tconst cr(k)=br(k). k=const, - (1) / ' 0 + 0 n & - ( - : ' + / ' (3) br(0)(=i=1,2,..(k-1)ibr(i))br(k), '() ( '% + Sj, br(0) – + , br(k) – + , (Xi=1,2,..(k- r(i) & - k, $ & 1)ib ) – ('& &- '' R=(k+Or(i)i=0,1,…k) ('& & / ( , 1KiK(k-1). +, / (- + - (3) ' ' ;% ) {r(i)}=(r(0), r(1), r(2),… r(i-1), r(i),… r(k-1), r(k)), ( - : i=0,1,…(k): (3. ) - $ k- $ 0‹n, Sj, k, R, r(0), {r(i)}i=1,2,…(k-1), r(k)›. $ ' (n,0)j), jTn, jV2, - & ' - (1) * n=1,2,...N; / / $9 ' R (3.$) - $ k- $ r(k) (R-r(k))=(k+r(0)+Or(i)i=1,…(k-1)), $ ' (n,0)n) - n=1,2,...N. & - k & $+ - & + $+ + + , & + (2) & / (- - +, ' % & , ' k ' + + & (R-r(k)): ) - (3) - : (2) 0‹n, Sj, k, (R-r(k)), r(0), {r(i)}i=1,2,…(k-1)›. (3.1) - $ $ k- $ 6 $ +, + , ) , $ ' r(i)maxV4, 1KiK(k-1), - + ' %- ' n=1,2,...N; + - & (3.2) - $ $ k- $ - . $ ' r(i)maxK3, 1KiK(k-1), - > 1 ' + (2). n=1,2,...N. Q - n=1,2,...N ' (R-r(k))Tconst " ; & & kTconst, - (1) / ' / (- - (3.2) - + + Ufg / ' + * % ': & ' (R-r(k)) +- (3.2.64) - k- ( , f,g=1,… N. E & Ufg{Ufg} / & - 4-/ ' + (1,2,3,…20). & '' 4- $ k- $ > 1 + Ufg / ' 1Kr(i)K3, 1KiK(k-1), - . Q n=1,2,...N; 1) + & Ufg 2, (3.2.63) - k- ( & - 3-/ ' + Ufg(2,4,6,8,10,12,14,16,18,20); & '' 3- $ k- $ 2) + & Ufg 3, ' 0Kr(i)K2, 1KiK(k-1), - Ufg(3,6,9,12,15,18); n=1,2,...N; 3) + & Ufg 5, (3.2."3) - k- ( Ufg(5,10,15,20), & - 3-/ ' + - (1) $; % ' & '' 3- $ k- $ &% - $ $ ' 1Kr(i)K2, 1KiK(k-1), - ( $) $ , n=1,2,...N; $ - $ . (3.2."2) - k- ( > 1( + Ufg / & - 2-/ ' + . & '' 2- $ k- $ 148 ' 0Kr(i)K1, 1KiK(k-1), - r(0)=2, – - - $ . n=1,2,...N. &! 4- , r=3: (5.4-1) (b3)k-1br(k), 4.2 $ r(0)=0, – - - $ .-1; (5.4-2) b(b3)k-1br(k), > 3 ' + (2). r(0)=1, – - - $ .-2; Q - n=1,2,...N ' (R- (5.4-3) b2(b3)k-1br(k), r(k))Tconst, k=const r(i)=const (r(i)=r – ' r(0)=2, – - - $ .-3; / ), - (3) / (5.44) b3(b3)k-1br(k), ' - $ $ k- r(0)=3, – - - $ .-4. $ - $ : &! 5- , r=4: (4) br(0)(br)k-1br(k), (5.5-1) (b4)k-1br(k), br(0) – + , br(k) – + , (br)k-1 – ('& r(0)=0, – - - $ -1; (k-1) &- '' / (5.5-2) b(b4)k-1br(k), , 1KiK(k-1), & (k-1)- (r+1)- r(0)=1, – - - $ -2; / & '' ' $ (5.5-3) b2(b4)k-1br(k), $ + ' [9]. r(0)=2, – - - $ -3; " R=(k+r(0)+r(k)+(-1)r). (5.5-4) b3(b4)k-1br(k), - (4) ' ' ;% ) r(0)=3, – - - $ -4; -: (5.5-5) b4(b4)k-1br(k), (4. ) - $ $ $ r(0)=4, – - - $ -5. ( !) k- $ - 6 *+& + $. + $ ' (n,0)j), jTn, jV2, - + ' %. n=1,2,...N; > 5 ' + (2). (4.$) - $ ( $) Q - n=1,2,...N ' (R-r(k))=const $ $ ( !) k- kTconst, r(i)Tconst, 1KiK(k-1), - (3) ' $ - $ ' ;% ) ' (n,0)n) - n=1,2,...N. - $ $ ! $ : > 4 ' + (2). 6. ) - $ $ $ Q - n=1,2,...N ' (R- ! $ ' (n,0)j), jTn, jV2, r(k))=const, k=const r(i)=const (r(i)=r – ' - n=1,2,...N; / ), r(0)=const (' (6.$) - $ ( $) + ), - (4) ' $ $ ! $ ' (5) - $ $ $ k- $ (n,0)n) - n=1,2,...N. - $ . M 5 ' ' & ' - (5) ' ' ;% ) - + - (3) -: (6.1) - $ $ - (5. ) - $ $ $ +& ;. $ $ k- $ - -' -, * ' ' -- : $ ' (n,0)j), jTn, jV2, - ' - + - 2-/ ' (); n=1,2,...N; $ - + - 3-/ ' (). (5.$) - $ ( $) $ - -, * / --- $ $ k- $ - : $ ' (n,0)n) - ' + - 2-/ '; n=1,2,...N. + - 3-/ ' – ( ), " + & ) ( ) ( ) ' ( ), ) - (5) + $ - ( ) ( ) )$ - / r + r(0) ( ), $ - ( ) )$ - ( ) - n=1,2,...N ' / - $- ' ( ). &- + - . Y - &- - 0! 2- , r=1: (6.1) ' '& (5.2-@) (b)k-1br(k), . r(0)=0, – - - $ ; ' & ' - (5.2-) b(b)k-1br(k), $ M% 5 $ r(k)=1 + - r(0)=1, – - - $ . (3) - R- $ $ &! 3- , r=2: (5.3-") (b2)k-1br(k), (6.2) br(0)(=i=1,2,..(k-1)ibr(i))b. r(0)=0, – - - $ ; + - (6.2) / - ' (5.3-) b(b2)k-1br(k), ;% (+ : r(0)=1, – - - $ ; (6.2) - R- $ !$ (5.3-) b2(b 2)k-1br(k), $ R=7,8,9,10; 149 (6.2) - R- $ ! $ &- + , - (6.2) $ R=11,12,13,14,15,16, $&-, ' r(k)=0 3-- & - + 5. (+ Sj, jV5. ; & - % 4.3 " $ ! / + (5.2), & /- + %& + - , $ 0 - Z.. 6%& : '- - (5.2) k- $ , ! – &, & k=5. !.. &% - « – , – &% - 5-' $ , / , , '& - &% - ' , " …» ' $/: - & - * : b bb b b b b bb b bb b b bb b b b bb b b * - + / $ / % + ' , ' - ' & '' & + $ / . Y$ '& % - & - $+ & +: &% -, $+ & ' ' - - -, + , , + b, $+ & & $+ . - + % ' -- 5 "$- 4 & + + – ' ' ! "" ' 4-, ' + / (+ S4, ' + ' & + ( / - ' + ';: ' Python, '- 1s 23s 4s 567s 8910 $ $ + , 1s 2s 34s 56s 7891011 ) Django ; 1s 23s 4s 5678s 9s 10 '+ + $ 1s 23s 4s 567s 8s 910 web- . 1s 23s 4s 5678s 9s 1011 + (% ' + $ '() ( - ), + & +, ' + 3 + &: / (- + , &$ ' - + : 1. -; (1,0)1), 0 0 1 S41 3 0, k=5, r(0)=0, 0K r(i)K3, 2. - & + ; r(k)=0, R=10 3. ) ( - . (2,0)2), 0 0 1 S41 3 1, k=5, r(0)=0, 0K r(i)K3, r(k)=1, R=11 + , & +/ ' (3,0)1), 0 0 1 S41 2 0, k=6, r(0)=0, 0K r(i)K2, ' ' , ' ) $ r(k)=0, R=10 & -, ' & (4,0)1), 1 1 S41 3 3 0, k=4, r(0)=1, 1K r(i)K3, ) ( $ r(k)=0, R=10 *' ; & - (5,0)2), 1 1 S41 3 3 1, k=4, r(0)=1, 1K r(i)K3, & + , / r(k)=1, R=11 '+ ; $& 6 $ +, $$ + ) ( + &- (. : ((1,3,4, 0)1), (2,5, 0)2); S4; k=5,5,6,4,4; (R- 6 7 < r(k)=10; r(0)=0,0,0,1,1; 0Kr(i)K3). " , $ M + 4, / $ ' ' ( , , & + '+% & % M 5, , '() (% ' + & ' + (. $ & - (6 ) (6.1) $- '- '+ $- (& + 150 ' ) ( . & -: ' ( $ % $ ' 6 / ) ( «" + '% 2003» ( , 11-16 % 2003 .). - ., 0. 2003. - . 354-360. [11] = & A + . http://odict.ru [12] .., . . [1] .., E - .Q., & '+ : .., 6. . 6+ ' $ ;. // -. IX. – '* // .: 0' ' " 0, + ) (- . 2010. 2012. – . 492–498 6. 17, 1 1. . 5–24. (Boykov V.N., [13] ( ' ' . . Zakharov V.E., Pilshchikov I.A., Sysoev T.M. E +. ' $'& Thesaurus as a Poetological Tool // Modeling M &G , 2004. and analysis of information systems. 2010. V. http://www.speakrus.ru/dict/ 17, No 1. P. 5–24 [in Russian]). [14] .. 1994 — 0 $& [2] .. -$ // ! & ) ( -. - 1994. - 1 2. - - . // + . 7-22. ) (- . – 2012. – 6. 19, 1 4. [15] Jakobson R. Closing Statement: Linguistics and – . 154 Poetics // Style in Language / Ed. by T. A. [3] .., E - .Q., . ., Sebeok. - New York - London. - 1960. - P. 350- .. 6+ ' '* 377. ) ( ' [16] Hayward M. A connectionist model of poetic ( + . // meter //Poetics. – 1991. – 20(4), 303-317. + ) (- . – 2013. – [17] Rodolfo D., CIPRIAN B. SPARSAR: a System 6. 20, 1 4. – . 5–24. for Poetry Automatic Rhythm and Style [4] .., .. AnalyzeR //SLATE 2013. – Grenoble University, & «6+ ' 2013. – . 95-95. '*» ) (- [18] SPARSAR https://sparsar.wordpress.com/ & // $: $ &- [19] WordNet https://wordnet.princeton.edu/ . 6 XVI $9 ) ( « $» (IMS-2013), - $ , 9 – 11 $ 2013 . — $.: M 6 =, 2013. – . 273–278. On an Automatic Procedure for the [5] .., E - .Q., . ., Specification of a Poetic Text for an Open .. =$ & Information-Analytical System $ ( + ) (- & . // V.N. Boikov, M.S. Karyaeva, V.A. Sokolov, p $$: ' ' I.A. Pilshchikov -, * (, RCDL - "$ , 2014. [6] ; ) The paper deals with such automatic procedure for http://rifmovnik.ru/docs.htm the specification of a poetic text as the metric-rhythmic [7] ! ' .#. =& - . marking and the identification of verse meters. . 0 . 0) . ) . – .: Procedure algorithmization for identification of verse Z #, 2- + , 2002. dimensions of such a meter as "iambic" looks promising to develop approaches for the entire spectrum [8] E + .. ! & of Russian versification systems. + . +. – : 0 +, 1980. The work was supported by the Russian Foundation [9] .. *& . – .: for Basic Research, grant 1 13-06-00448. *(', 1966. (http://feb- web.ru/feb/kle/default.asp?/feb/kle/kle.html) [10] .., .. 2003 — + & )& + + ) ( STARLING // '% 151