-               © . .   , .   a.a.horoshilov@mail.ru #! #  !  "    #$ ,   ' '      %  !  . &  !  " ! #,   , $          +    !  "  #$ ,  " # ". 0  !  ,       %!    !  " +   # ". &  #" !#  ! #' #   " $ *  $* $$$ ,   *   # '' $$   # %!   . #$ ,  – +      $   " ! #$  # '",   $  %     ,    " ! #$ $ #      " $$ %  . (   '    # ,   $)  # #   ,  %!    #.  ! * +%%   ' ! 1.2 "   # !  , *   $ –    !  . '* # "         1   !  "  #$ .      $!" '*  1.1         !   #$*) !#: x # '  !' #   %! )  $ #    #    ' !' $'  #$ .    %  x # '  !' # $*)"  ,   # $%   #  + ' $".   !  +  '  " " ( $  " $' ! # '!   !   ! ,   $    ,   ).    , #  # # "  $   !$' x # '  !' #  $'" #',  !     $   '   !  "  "  " !   "   !". -    +    #$ . ! $ ! " ! x 3!'     ,  !    ! !  "  #$ .       $ !$' x 3!'    $'" #'.  !  "  #$ . #   , ' ' % x &  +' # , !      %, $  *) # ' !* $$$ , , '!$  "  +%% '     ", #   ! #   $#  , !   /# !  "  #$ . #". *)  , 1.3 # $%$    & XVII     '          DAMDID/RCDL’2015 «                       90- # XX  # '      », # , 13-16 #     !# '   2015 266 , #! #  . %$. &$   - !  , '!$   #" #$  !  ! $,  * TurnItIn , SafeAssign, +%%    ' #$ #$ ". CopyScape, WriteCheck, iThenticate, PlagAware,   . (  # # # PlagScan, Copyscape, CheckForPlagiarism.net, !* #   # PlagiarismDetection.org. # 2000- #   # '"      '  # $ % " # –  [12, 24, 25]. 0 !. (#" !  !   # ' # ' ! #   ! " Forecsys  #  # ,  +  . ( '!$  # ' # # . &  67, # $$,  !    # ' #  $#  . #  * +-#. ; #    !   #$  #$ #  ' ' '  ,  eTXT ,  #*   +-#  . Advego Plagiatus  Text.ru. (# !      . #    "      #$ ,   *)   !' #$  " ! !", #   " %, * #)" #$. 0   # $) . ( ! *   '   $ $'   !   ,   $* $$$  ,  !  ". !  +$ '!$  #,   '   #    ' " $ !  "  '!$   $* !$ ,    , #   #$ ,  '!$      ,   +  $   ' * ! ! #$  ! # '   . 0 .    $ #    !*   !#, * #$ ! ## #    %  - #$ #$ ". 3  !. (#   '  #  *) # #   ##. (  #' #   #   . #   $) $*)           . [2,14,15,23,26] – $'" %  $ # #" # [21] !* # $$,   #  #$ #  n- # $# !# [13], $*)   #   ,     !' #$ #  $.   "  #$ . 9#$   # !# # * $      , # # , ,    - #*)  !',  # +" ! ,    '!$    #      # ,  #$. &  #" ! #    !  " #  ',    $)   *)" +   + # $  $* $$$ #$,  ! * # $  '  #  #   ,    ' +  #  #   $ . ;  !  . ?  -   ' ' !  $   $   # " $ ! # $ # [19-20] ! * '   ,    $* . !# $   )  ,       . !  ". - , #    ( " #"  # [22]      $ (  «$» -   !    , !$$    $*) $ #$. ),   $    ,  + $  #*, , $  #"  #$ * . (# ! "    +  !   # , I-Match. ; $. -  !# #  #  #$   +%%        '  , #)  !  " # #" #$,  + # !' #  #  %! ) '  "    #$$  " $$  ,   !   $$  . 7  I-Match  $ %   $   $ #$. ; +  '  "  #$ " [8]. $# ,  !  +- 267 2        $#  *)" $  '"  '" .  ʢ˔ˎˑ˅ˋˈˏ ˎˑˍ˃ˎ˟ːˑˆˑ        ˔ˏ˞˔ˎˑ˅ˑˆˑ ˔˘ˑˇ˔˕˅˃ ˢ˅ˎˢˈ˕˔ˢ ˔˘ˑˇ˔˕˅ˑ ˍˑː˕ˈˍ˔˕ːˑˆˑ ˑˍ˓˖ˉˈːˋˢ ˋˇˈː˕ˋ˚ː˞˘ 2.1 &         ː˃ˋˏˈːˑ˅˃ːˋˌ ˒ˑːˢ˕ˋˌ ˅ ˇ˅˖˘ ˕ˈˍ˔˕˃˘ ˋˎˋ ˋ˘   ˗˓˃ˆˏˈː˕˃˘Ǥ ʢ˔ˎˑ˅ˋˈˏ ˆˎˑ˄˃ˎ˟ːˑˆˑ & #     ˔ˏ˞˔ˎˑ˅ˑˆˑ ˔˘ˑˇ˔˕˅˃ ˢ˅ˎˢˈ˕˔ˢ ˔˘ˑˇ˔˕˅ˑ #   #' ! ˒ˑ˓ˢˇˍ˃ ˔ˎˈˇˑ˅˃ːˋˢ ː˃ˋˏˈːˑ˅˃ːˋˌ ˒ˑːˢ˕ˋˌ ˅  ' # "    " ˔˓˃˅ːˋ˅˃ˈˏ˞˘ˇ˅˖˘˕ˈˍ˔˕˃˘ˋˎˋˋ˘˗˓˃ˆˏˈː˕˃˘Ǥ $$. &   #  7#' # ',  '$  %        !'" $"  #   *  #    [5]. ( !* '  $,  " #   !  ,   )'*   #   $' ! !   #      " ",  ' '  *  !  ' ,  $# #' #      %$*         #  . $ ($#" # '' 3  $ #  !   " "       # , '!    ,  $' .)  # '" '*   $" $$ ",   #  %  # *)  # + #.   $' ! !  !#'  , , '  " ",       $   – #H #,  #  C## # * [5],  !  $#   $ * '" . $)  #  #  2.2           *#. “ ”     "  ' ! * $         "   #$  !    # # #  [9,10,11,17]. & $ #    ,   #  $#   !     '! '  $'       [5]. ?!$'  +  " " - $'" ! $ #    ,  #$ [6,7], #"    '"  '"  ! $  " " ሺʙʝʓʙʝሻ.  . & + ,  '  !  !'    # . G'  !'   ʙʝʓʙʝ ൌ ሼʜʞ௜ ǡ ‫ܭ‬௜ ȁ݅ ‫ א‬ሾͳǡ ݊ʜʞ ሿሽ, # ʜʞ௜ ൌ ሺ‫ݐ‬௜ ǡ         i ሻ - i-   ; ݊ʜʞ - . &#  "  !'*     " ";   % $# '  $' ‫ݐ‬௜ -   #  i –    ! !  " ", ;   #H #  i - # #" i –     *)     #    %.  ; ʞ˓ˈˑ˄˓˃ˊˑ˅˃ːˋˈ˕ˈˍ˔˕ˑ˅ˑˆˑ˒˓ˈˇ˔˕˃˅ˎˈːˋˢ˅ ‫ܭ‬௜ -    i –    ˈˆˑ ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˈ ˔ˏ˞˔ˎˑ˅ˑˈ , # +   * ˒˓ˈˇ˔˕˃˅ˎˈːˋˈ ˑ˄ˈ˔˒ˈ˚ˋ˅˃ˈ˕ ˔ˑ˒ˑ˔˕˃˅ˎˈːˋˈ  ! ˕ˈˍ˔˕ˑ˅ ˒ˑ ˋ˘ ˔ˏ˞˔ˎˑ˅ˑˏ˖ ʙ௜ ൌ ሼʜʞʙ௜ ȁ݅ ‫ א‬ሾͳǡ ݊ʜʞʙ೔ ሿሽǡʜʞʙ௜ ൌ ሺ‫ݐ‬௜ ǡ  i ሻǤ ˔ˑˇˈ˓ˉ˃ːˋˡሾͳǡ͵ǡͶǡͳ͸ሿǤ ʟˈˊ˖ˎ˟˕˃˕ˑˏ ˕˃ˍˑˆˑ ʓˎˢ ˘˓˃ːˈːˋˢ ˓ˈˊ˖ˎ˟˕˃˕ˑ˅ ˖˔˕˃ːˑ˅ˎˈːˋˢ ˔ˑ˒ˑ˔˕˃˅ˎˈːˋˢ ˢ˅ˎˢˈ˕˔ˢ ˖˔˕˃ːˑ˅ˎˈːˋˈ ˎˑˍ˃ˎ˟ːˑˆˑ ˔ˏ˞˔ˎˑ˅ˑˆˑ ˔˘ˑˇ˔˕˅˃  ˇˑˍ˖ˏˈː˕ˑ˅ ˔ˏ˞˔ˎˑ˅ˑˌ ˄ˎˋˊˑ˔˕ˋ ˇˑˍ˖ˏˈː˕ˑ˅Ǥ  &# ˋ ˒ˑˇ˔˚ˈ˕˃ ˍˑˠ˗˗ˋ˙ˋˈː˕ˑ˅ ˔ˏ˞˔ˎˑ˅ˑˌ  " !'*  ,  # $ ˄ˎˋˊˑ˔˕ˋ ˏˈˉˇ˖ ˗˓˃ˆˏˈː˕˃ˏˋ ˕ˈˍ˔˕ˑ˅ ˄˖ˇˈ˕    %,  ˈˏ˞˘ ˑˇːˑˌ ˋ˔˒ˑˎ˟ˊˑ˅˃˕˟˔ˢˏ˃˕˓ˋ˙˃ ˋ ˕ˑˌ ˉˈ ˔ˑ˅ˑˍ˖˒ːˑ˔˕˟ˡ   § 11 12 .. 1n1 · ", ˋˈ $, $ ' ! ¨ ¸  $ ,   !˕ˈˎ˟ːˑ #˞ˏˋǤ ¨ 21 22 .. 2 n1 ¸ ʗˇˈː˕ˋ˚ː˞ˏˋ ˏˑˆ˖˕ ˄˞˕˟ ˔ˋ˕˖˃˙ˋˋǡ ˈ˔ˎˋ   ¨ ¸ ¨ : : ij : ¸   #    ¨ n 1 ¸ n 2 2 .. n 2 n1 "  * " ( !' © 2 ¹ # ") #  # , 268 ˓˃ˊˏˈ˓ːˑ˔˕ˋ n n1 u n2 ǡˆˇˈ n1 Ǧˍˑˎˋ˚ˈ˔˕˅ˑ ʢ˔ˎˑ˅ˋˈˏ ˆˎˑ˄˃ˎ˟ːˑˆˑ ˔ˏ˞˔ˎˑ˅ˑˆˑ ˔˘ˑˇ˔˕˅˃ ˢ˅ˎˢˈ˕˔ˢ ˔˘ˑˇ˔˕˅ˑ ˒ˑ˓ˢˇˍ˃ ˔ˎˈˇˑ˅˃ːˋˢ ˠˎˈˏˈː˕ˑ˅ ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˆˑ ˔ˏ˞˔ˎˑ˅ˑˆˑ ː˃ˋˏˈːˑ˅˃ːˋˌ˒ˑːˢ˕ˋˌǡːˑ˒ˑ˔ˍˑˎ˟ˍ˖˒ˑ˓ˢˇˑˍ ˑ˒ˋ˔˃ːˋˢ ͳǦˑˆˑ ˋˊ ˔˓˃˅ːˋ˅˃ˈˏ˞˘ ˇˑˍ˖ˏˈː˕ˑ˅ǡ ˔ˎˈˇˑ˅˃ːˋˢ ː˃ˋˏˈːˑ˅˃ːˋˌ ˒ˑːˢ˕ˋˌ ˖˚˕ˈː ˒˓ˋ n 2 Ǧ ˍˑˎˋ˚ˈ˔˕˅ˑ ˠˎˈˏˈː˕ˑ˅ ˒ˑˇ˔˚ˈ˕ˈ ˍˑˠ˗˗ˋ˙ˋˈː˕ˑ˅  ij ǡ˔ ˕ˑ˚ːˑ˔˕˟ˡ ˇˑ ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˆˑ˔ˏ˞˔ˎˑ˅ˑˆˑˑ˒ˋ˔˃ːˋˢʹǦˑˆˑ ˒ˈ˓ˈ˔˕˃ːˑ˅ˑˍǡ ˍˑ˕ˑ˓˞ˈ ˅ˑˊˏˑˉː˞ ˅ ˕ˈˍ˔˕ˈ ˋˊǦ ˋˊ˔˓˃˅ːˋ˅˃ˈˏ˞˘ˇˑˍ˖ˏˈː˕ˑ˅ǡ ˊ˃ ˑ˔ˑ˄ˈːːˑ˔˕ˈˌ ˈ˔˕ˈ˔˕˅ˈːːˑˆˑ ˢˊ˞ˍ˃Ǥ ʞˑ˔ˎˈ ʒˇˈ ij Ǧ ˚ˋ˔ˎˈːː˃ˢ ˘˃˓˃ˍ˕ˈ˓ˋ˔˕ˋˍ˃ ˠ˕ˑˆˑ ˒˓ˑˋˊ˅ˑˇˋ˕˔ˢ ˒ˑˋ˔ˍ ˅˞˒ˑˎːˈːˋˢ ˖˔ˎˑ˅ˋˢ ˎˑˍ˃ˎ˟ːˑˆˑ ˔ˏ˞˔ˎˑ˅ˑˆˑ ˒ˑ˔ˎˈˇˑ˅˃˕ˈˎ˟ːˑ˔˕ˈˌ ː˃ˋˏˈːˑ˅˃ːˋˌ ˒ˑːˢ˕ˋˌǡ ˔˘ˑˇ˔˕˅˃Ǥ ʑ ˔ˎ˖˚˃ˈ ij 0 ˇ˃ːːˑˈ ˖˔ˎˑ˅ˋˈ Ȃ ːˈ ˖ ˍˑ˕ˑ˓˞˘ ˊː˃˚ˈːˋˢ ˎˑˍ˃ˎ˟ːˑˌ ˔ˏ˞˔ˎˑ˅ˑˌ ˔˘ˑˉˈ˔˕ˋ  i ˅˞˛ˈ ːˈˍˑˆˑ ˊ˃ˇ˃ːːˑˆˑ ˒ˑ˓ˑˆ˃ǡ ˅ ˅˞˒ˑˎːˈːˑǡ ˒˓ˋ ij ! 0 Ǧ ˅˞˒ˑˎːˈːˑ ˚˃˔˕ˋ˚ːˑǡ ˋ˔˔ˎˈˇˑ˅˃ːˋˢ˘ ˋ˔˒ˑˎ˟ˊˑ˅˃ˎˋ˔˟ ˊː˃˚ˈːˋˢ ˃˒˓ˋ ij 0 Ǧ˅˞˒ˑˎːˈːˑ˒ˑˎːˑ˔˕˟ˡǤ  i ! 0.65 Ǥ ʖ˃˕ˈˏ  ˇˎˢ ˠ˕ˋ˘ ʔ˔ˎˋ  (-& pi , -& qj ) ൌͲǡ˕ˑ ij 0 ǡˋː˃˚ˈ ˒ˑ˔ˎˈˇˑ˅˃˕ˈˎ˟ːˑ˔˕ˈˌ ˅˞˚ˋ˔ˎˢˡ˕˔ˢ ˏˈ˓˞ n -&9 pi , n -&9 qj ˅˞˒ˑˎːˈːˋˢ ˖˔ˎˑ˅ˋˢ ˆˎˑ˄˃ˎ˟ːˑˆˑ ˔ˏ˞˔ˎˑ˅ˑˆˑ 2( 䌥 (9 pil , K qjm )) ˔˘ˑˇ˔˕˅˃Ǥ ʓ˃ːː˃ˢ ˊ˃ˇ˃˚˃ ˔˅ˑˇˋ˕˔ˢ ˍ (-& pi , -& qj ) l,m 0 ˅˞˚ˋ˔ˎˈːˋˡ˔˓ˈˇːˈˆˑˊː˃˚ˈːˋˢ˘˃˓˃ˍ˕ˈ˓ˋ˔˕ˋˍ ij  ˅˞˒ˑˎːˈːˋˢ ˖˔ˎˑ˅ˋˢ ˎˑˍ˃ˎ˟ːˑˆˑ ˔ˏ˞˔ˎˑ˅ˑˆˑ 3 3(n -&9pi  n -&9qj ) ˔˘ˑˇ˔˕˅˃ǡ ˔ˑˇˈ˓ˉ˃˜ˋ˘˔ˢ ˅ ˠ˕ˋ˘ ˒ˑ˔ˎˈˇˑ˅˃˕ˈˎ˟ːˑ˔˕ˢ˘ ː˃ˋˏˈːˑ˅˃ːˋˌ ˒ˑːˢ˕ˋˌǤ ʬ˕˃ ˅ˈˎˋ˚ˋː˃ ˋ ˄˖ˇˈ˕ ˢ˅ˎˢ˕˟˔ˢ ǡˆˇˈ  (-& pi , -& qj ) Ǧ ˗˖ːˍ˙ˋˢ ˑ˒˓ˈˇˈˎˈːˋˢ ˍˑˠ˗˗ˋ˙ˋˈː˕ˑˏ ˔ˏ˞˔ˎˑ˅ˑˌ ˄ˎˋˊˑ˔˕ˋ ˠˍ˅ˋ˅˃ˎˈː˕ːˑ˔˕ˋ ˔ˎˑ˅ˑ˔ˑ˚ˈ˕˃ːˋˌǡ ˒˓ˋ˚ˈˏ ˗˓˃ˆˏˈː˕ˑ˅˕ˈˍ˔˕ˑ˅ǣ n ! (-& pi , -& qj ) 䌜[0,1] ǡ -& pi Ǧ ‹Ǧ˞ˌ ˠˎˈˏˈː˕ 䌥  ! i ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˆˑ˔ˏ˞˔ˎˑ˅ˑˆˑˑ˒ˋ˔˃ːˋˢ’Ǧˑˆˑ K " i 0 ˇˑˍ˖ˏˈː˕˃ǡ  -& qj Ǧ ŒǦ˞ˌ ˠˎˈˏˈː˕ n! ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˆˑ˔ˏ˞˔ˎˑ˅ˑˆˑˑ˒ˋ˔˃ːˋˢ“Ǧˑˆˑ ʒˇˈ  ! Ǧ ˠˎˈˏˈː˕ ˅ˈˍ˕ˑ˓˃ ʑʖǡ ˇˑˍ˖ˏˈː˕˃Ǥ ʞˑ˔ˍˑˎ˟ˍ˖ ˗˖ːˍ˙ˋˢ (-& pi , -& qj ) Ǧ ˒˓ˋː˃ˇˎˈˉ˃˜ˋˌ ː˃ˌˇˈːːˑˌ ˙ˈ˒ˑ˚ˍˈǡ n Ǧ ˅ˑˊ˅˓˃˜˃ˈ˕ ˊː˃˚ˈːˋˢ ˑ˕ˎˋ˚ː˞ˈ ˑ˕ Ͳ ˚ˋ˔ˎˑˠˎˈˏˈː˕ˑ˅˅˙ˈ˒ˑ˚ˍˈǤ ˊː˃˚ˋ˕ˈˎ˟ːˑ ˏˈː˟˛ˈˈ ˍˑˎˋ˚ˈ˔˕˅ˑ ˓˃ˊǡ ˚ˈˏ 2.3           ː˖ˎˈ˅˞ˈ ˊː˃˚ˈːˋˢǡ ˏ˃˕˓ˋ˙˃  ˄˖ˇˈ˕ ˔˚ˋ˕˃˕˟˔ˢ ˓˃ˊ˓ˈˉˈːːˑˌǤʠˑˑ˕˅ˈ˕˔˕˅ˈːːˑˇ˃ːː˖ˡˏ˃˕˓ˋ˙˖        ˏˑˉːˑˊ˃ˏˈːˋ˕˟͵Ǧˢ˅ˈˍ˕ˑ˓˃ˏˋǤ  !$'  # # "  § 1 · !     ¨ ¸ ¨ : ¸ Ȃ˅ˈˍ˕ˑ˓ˊː˃˚ˈːˋˌˋˊˏ˃˕˓ˋ˙˞ʛʬǡ  !  "   ¨ : ¸ #$ . -# $  # ¨ ¸ ! +    ¨  n ¸ ©  ¹ '!  + $' ˇˎˢ ˍˑ˕ˑ˓˞˘ ˅˞˒ˑˎːˢˈ˕˔ˢ ˖˔ˎˑ˅ˋˈ ij ! 0 ǡ   (  09 ),  *)  "       ˒˓ˋ˚ˈˏ i 䌜[0, n2 ] ǡ j 䌜[0, n1 ] Ǥ 90%.  ' 09 (/ 1.7 . §  p1 ·  " "), **)" ¨ ¸ ¨ : ¸ Ȃ ""    ,  p ˅ˈˍ˕ˑ˓ ˋːˇˈˍ˔ˑ˅   ˋˊ ¨ : ¸   !#   C! [7] ¨ ¸ $  !  ! 30 . ¨  pn ¸ ©  ¹ % #$ , #) ! ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˆˑ˔ˏ˞˔ˎˑ˅ˑˆˑˑ˒ˋ˔˃ːˋˢ’Ǧˑˆˑ #  - [3]  '!  # ˇˑˍ˖ˏˈː˕˃ǡ ˔ˑˑ˕˅ˈ˕˔˕˅˖ˡ˜ˋ˘ ˊː˃˚ˈːˋˢˏ ˋˊ + #    " ˅ˈˍ˕ˑ˓˃ʑʖǤ " .  ;  !# §  q1 ·  #    "   ¨ ¸ ¨ : ¸ Ȃ ˅ˈˍ˕ˑ˓ ˋːˇˈˍ˔ˑ˅   ˋˊ $%    #   q ¨ : ¸ ! # # %": 1)    ¨ ¸ ¨  qn ¸ +   #  " %; ©  ¹ 2) ! #    (  ˗ˑ˓ˏ˃ˎˋˊˑ˅˃ːːˑˆˑ˔ˏ˞˔ˎˑ˅ˑˆˑˑ˒ˋ˔˃ːˋˢ“Ǧˑˆˑ     " !, !    ˇˑˍ˖ˏˈː˕˃ǡ ˔ˑˑ˕˅ˈ˕˔˕˅˖ˡ˜ˋ˘ ˊː˃˚ˈːˋˢˏ ˋˊ - #); 3) ˅ˈˍ˕ˑ˓˃ʑʖǤ $ %!  #  269  #  # ! #   3 )       % %!  (/H 500 .         ") ! #  !  $%  %!       #  (!  #" ).  !$'   #$  1. #   '   -  $' !  "  #$ !    * 09  *  & & ' ' %!$*   "  (! (# (! (# $!  #   . "  ) "  ) &#  #    )'* #) #) $! # # . 9 $ #  !# 0.67 0.48 0.94 0.96  $   # $#" ( $)  $'* "       . (-, 7   !  $  "    7 "  ).   " ! #$   ()" #      !#   : '   !  "  " ! #$ ( 12%)  * #$*) +: '       " "    ( 1.  !$   )'* #$ ( 30 + ). -   + + $'       $ 17   $' !  " "  #$ ,    #$ $! " + " . '  23 # 117. ; # #     !     !  " # ( 1. 9#     !$' , $  . )'* #$  "  " 6# !$'  # !    $%  #   #  1. %!  #   " "  #  $% " %. 4 * %  ( 2. &! #   #*)  " "   3!" ##  *  %!  # " #$ .     !  " $-      $' !  + ( 3. ;   #$ # ' # " !  * $  * ' #$ ! $* +%% '  $  $   $ #*. ! # !  ", *   $ –   ( 4. ;  #$ -   !  . 0 ## !$  #$  # ! #$ , "# #$*) !   # . 4 $  *   !  %!  !  " $$  $ #* %  : !$  . x #      " "  #$ . x #   $  ( 5. ; #" $ " .5     !" #$   !  $ %  ". #* '   '  x #    #  " " + % .   #  "   $% $ %! $ ( 6. * # ' # *.  ", *) ! '" x #   !  "   !# . ; !$   ! ! #" " # '  " %. "    '  x # $   "  '"  " . ! ! % !$  .  !* # ',  270  +%%      [12] 7 W.M.,   ..  !  " $  '" ! # #  ##   *,  !  #$ # WEB-#$ //  ,  #$  #'* ! $# 9-" "" $" #  # %!  " % «0 : $$  , $  !#    #  ,  $! #  # + » RCDL’2007: . # !  " %.  $ $ / & '- 7", 3, 2007. +  [13] ? .W. , G .Y. ,   [1] 9$! .&. !  .. & $' % " %. – .: -$, 1978.  ## +  // – 175 . . 9-" . $. %. «0 [2] ( M. . & !" :   #  $' : (  , + » — RCDL   . – .: -$. C!, 2007. — & '-7", 3, 2007. 1997. – 112 . — . 2. — . 104—110. [3] ? M.M.   [14] . . &, . G. 9 ", -. M. & %,  2.  9$' %     %. &# )" #"    -! " 9. . 9$ . – .: 30 . M.. & , % // Z  Z . 2008. – 342 . -9i , 2009,N N 3.- .67-79 [4] ' .M., 9  .&. # [15] ^$ .G. #' $$  ! "   . – .: #   " %  # & 3-, 2008. – 301 .   !    - [5] * C## #. 9$ )" " %// ;. … #.  . – .: &, 1977. – 370 . . $. – -&$, 2003. – 185 . [6] ?! . ., ? M..,  .. [16] ? M.M., ? . .  #. #  " !  " $'" ! #$ ) $-"  . // -$- %. % #  !#  . 2. – .:  - , 2002. – _ 10.   #$ // [17] 7  .. &#   %!   !'. – 2012. – . 8.   !$  . – .: !#-  [7] 7 .-.,  ..   $ , 1976.    # [18] Banea C., Hassan S., Mohler M., Mihalcea R.  #     UNT: A Supervised Synergistic Approach to    %!    Semantic Text Similarity// Proc. of the Sixth Int. " // $# XIV-" . $. %. Workshop on Semantic Evaluation SemEval, «0 :   2012. #  , + [19] Hassan S., Mihalcea R. Measuring semantic » – RCDL’2012, . & '- relatedness using salient encyclopedic concepts// 7", 3, 15 – 18  2012 . Arti`cial Intelligence, Special Issue, 2011. [8] 7 .-.,  .. # [20] Mohler M., Mihalcea R. Text-to-text semantic  !#     similarity for automatic short answer grading// In !  " $$  $- Proc. of the European Association for  #$     Computational Linguistics (EACL 2009), Athens,  ! // $# XV-" Greece. . $. %. «0 [2[1] Salton, G.; Wong, A.; Yang, C. S. (1975). "A :   #  vector space model for automatic indexing" / , + » – Communications of the ACM Volume 18 Issue RCDL’2013, . U ', 14 – 17  2013 11, New York, NY, USA, Nov. 1975 Pages 613- #. 620., Salton et al. 1994. [9] '$ .. (    [22] Abdur Chowdhury, Ophir Frieder, David #" «  ֞ ». – ., 1974 (2- Grossman, Mary Catherine McCabe // Collection !#., 1999). statistics for fast duplicate document detection // [10] '$ .. 3$" ! # «  Journal ACM Transactions on Information ֞ ». –   – , 1995. Systems (TOIS) TOIS Homepage archive Volume [11]  W.;., ?$ " .., # 20 Issue 2, April 2002, Pages 171-191. G.G.  #. G   [23] Vor der Brück T., Hartrumpf S. A readability  0 &-2. – .: -$, 1989. checker based on deep semantic indicators// In 271 Human Language Technology. Challenges of the A Method for Detecting Implicit Information Society – 2009. – V. 5603 of Lecture Plagiarism in Scientific and Technical Notes in Computer Science (LNCS). – P. 232-244. Berlin, Germany: Springer. Texts on the Basis of Their Conceptual [24] A. Broder. On the resemblance and containment Analysis of documents. Compression and Complexity of Sequences (SEQUENCES'97), pages 21-29. IEEE Alexey A. Khoroshilov Computer Society, 1998. The paper presents the process of automatic [25] Broder, S. Glassman, M. Manasse and G. Zweig. plagiarism detection in documents on the base of Syntactic clustering of the Web. Proc. of the 6th comparison of their formalized representations. In International World Wide Web Conference, April solving this problem we developed a model of the 1997. semantic structure of texts. To detect plagiarism, we [26] Hartrumpf, Sven; Tim vor der Brück; and developed an algorithm for detection of similar Christian Eichhorn (2010a). Detecting duplicates semantic fragments and a method for identification of with shallow and parser-based methods. In semantic similarity between text fragments. The main Proceedings of the 6th International Conference advantage of this method is that it makes it possible to on Natural Language Processing and Knowledge detect not only minor changes in the structure or Engineering (NLPKE), pp. 142-149. Beijing, lexical structure of the text, but also more China. complicated cases of intended changes in the plagiarized texts. 272