
Assessing the Use of Eclipse MDE Technologies
in Open-Source Software Projects

Dimitrios S. Kolovos1, Nicholas Matragkas2, Ioannis Korkontzelos3,
Sophia Ananiadou3, and Richard Paige1

1Department of Computer Science, University of York, UK
{dimitris.kolovos,richard.paige}@york.ac.uk

2Department of Computer Science, University of Hull, UK
n.matragkas@hull.ac.uk

3National Centre for Text Mining, School of Computer Science,
University of Manchester, UK

{firstname.lastname}@manchester.ac.uk

Abstract. We assess the use of several Eclipse-based Model-Driven En-
gineering technologies (e.g. EMF, GMF, Xtext, Sirius, ATL, QVTO, Ep-
silon) in open-source software development projects hosted on GitHub.
We discuss our data collection and analysis methodology, and present
a number of findings related to the extent to which such technologies
appear to be used in open-source projects on GitHub. Our study has
revealed, among others, a significant number of GitHub repositories that
make use of such technologies and a substantial community of increas-
ingly active MDE-literate developers.

1 Introduction

Several studies have assessed the use of Model-Driven Engineering (MDE) tech-
nologies in a range of industry sectors. However, to our knowledge no study
has been conducted on the use of such technologies in open-source projects. In
contrast to existing studies which are predominantly based on interviews and
questionnaires, in this study we extract data directly from open-source GitHub
repositories, in order to assess the degree to which a number of di↵erent tech-
nologies are used in the wild. This study focuses on Eclipse-based modelling
technologies, including Eclipse Foundation-hosted technologies (e.g. Ecore, ATL,
IncQuery, QVTo, Epsilon), as well as technologies hosted outside the Eclipse
Foundation – which however provide deep integration with the Eclipse Model-
ing Framework (http://www.eclipse.org/emf) – such as Kermeta and EMFText. The
questions that we are interested in answering through this study include the
following:

– Which of these technologies demonstrate significant adoption in open-source
projects?

– Is the activity related to these technologies increasing or decreasing over
time?
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– What is the size of the community of GitHub developers who are familiar
with these technologies?

The rest of the paper is organised as follows. Section 2 discusses the process
we followed to collect the required data from GitHub and Section 3 presents
the analysis we performed on this data and the results we obtained. Section 4
then discusses threats to the validity of the obtained results, Section 5 presents
an overview of related work, and Section 6 concludes the paper and provides
directions for further research on this topic.

2 Data Collection

For this study we have chosen to focus on publicly accessible GitHub repositories
due to the dominant role of GitHub in the open-source software development
world and the comprehensive API it provides for extracting information of in-
terest. We have also chosen to focus on Eclipse-based MDE technologies due to
the fact that the Eclipse Modeling Project (http://eclipse.org/modeling/) arguably
fosters the most active open-source MDE community. This section outlines the
steps of the process we followed to collect data of interest from GitHub.

2.1 Identifying Technologies of Interest

The first step of the process was to identify specific Eclipse-based technologies
that we would include in our study. The following technologies were selected for
inclusion.

– Ecore: The metamodelling language of the Eclipse Modelling Framework;
– Acceleo (http://www.eclipse.org/acceleo/), Xpand (http://eclipse.org/modeling/m2t/?project=

xpand), JET (http://eclipse.org/modeling/m2t/?project=jet): Model-to-text transfor-
mation languages that provide deep integration with EMF;

– ATL (http://eclipse.org/atl/): Hybrid model-to-model transformation language
that provides support for EMF models;

– Xtext (http://www.eclipse.org/Xtext/), EMFText (http://www.emftext.org): Frame-
works for specifying textual concrete syntaxes for Ecore metamodels;

– Emfatic (http://eclipse.org/emfatic/): Textual concrete syntax for Ecore;
– OCL1: Declarative language for specifying constraints on Ecore metamodels;
– QVTo (http://www.eclipse.org/mmt/?project=qvto): Imperative model-to-model trans-

formation language that provides support for EMF models;
– IncQuery (http://www.eclipse.org/incquery/): Incremental pattern matching lan-

guage for EMF models;
– Epsilon (http://www.eclipse.org/epsilon/): Family of model management languages

and tools that provides support for EMF models;
– Kermeta (http://www.kermeta.org/): Object-oriented model management language

for EMF;

1
http://www.eclipse.org/modeling/mdt/ocl and http://www.dresden-ocl.org
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– Henshin (http://www.eclipse.org/henshin/): EMF-based graph transformation lan-
guage.

Projects that were initially considered but eventually left out of the study
after a preliminary evaluation phase included VIATRA2 (http://wiki.eclipse.org/
VIATRA2) (very few search results on GitHub, replaced by a new version which
is currently under heavy development), CDO (http://eclipse.org/cdo/) (very few
results outside of the tool’s own repository), QVTd (currently, only an incom-
plete prototype is provided by the respective Eclipse project (https://projects.
eclipse.org/projects/modeling.mmt.qvtd), and UML/Papyrus (UML models can be used
in both MDE and non-MDE projects - i.e. exclusively for documentation and
communication purposes). Including a wider range of both Eclipse-based (e.g.
Spoofax (http://strategoxt.org/Spoofax)) and non-Eclipse based (e.g. MetaEdit+ (http:
//www.metacase.com/), JetBrains MPS (http://www.jetbrains.com/mps/)) technologies and
tools would clearly be an interesting direction for future work.

2.2 Mining GitHub for Files of Interest

Having identified the technologies of interest, the next step was to use GitHub’s
search capabilities to find files strongly related to each technology (e.g. files
with a .atl extension for ATL). GitHub’s search interface allows searching for
files with specific extensions (across all public GitHub repositories), however it
also requires a search term (that must appear in the content of the retrieved
files) to also be included in the query. After manual experimentation we iden-
tified the extensions and search terms in Table 1, which provided the largest
number of relevant results for each technology. We also manually sampled the
returned results to ensure that no irrelevant files were returned. This was the

Table 1: File extensions and search terms per technology

Techn. Ext. Search Term Techn. Ext. Search Term

ATL atl rule QVTo qvto transformation
Emfatic emf class Acceleo mtl template
EGL* egl var IncQuery eiq pattern
Eugenia* ecore ”gmf.diagram” GMF gmfgraph figure
EOL* eol var Xtext xtext grammar
ETL* etl transform Ecore ecore EClass
EVL* evl context OCL ocl context
Sirius odesign node Henshin henshin rule
MOFScript m2t texttransformation Kermeta kmt class
Xcore xcore class JET javajet jet
EMFText cs syntaxdef Xpand xpt for

case for all technologies except EGL and Acceleo. Files with a .egl extension
that contain the search term var can be either Epsilon Generation Language
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model-to-text transformation templates or IBM’s Enterprise Generation Lan-
guage (http://www.eclipse.org/edt/) programs. The latter are not of interest to this
study and were filtered out by also requiring that the returned snippet contains
the [% characters, which are used by Epsilon’s EGL to denote dynamic tem-
plate sections. Similarly, files with a .mtl extension containing the search term
template can be Acceleo templates or Blender 3D material files. The latter are
of no interest to this study and had to be filtered out in a similar fashion.

It is worth noting that GitHub’s search interface returns the number of files
that meet the query’s conditions but only the details (i.e. repository, path in
the repository, snippet) of up to 1,000 files returned by the query (for example,
the query for Ecore files (http://github.com/search?q=EClass+extension:ecore&type=Code), re-
turns 15,038 files but the search interface allows only for the details of 1,000 of
them to be retrieved). To retrieve details for additional files of interest, we col-
lected all repositories returned by a first round of queries, and we queried these
repositories again for all file extensions of interest. The number of search results
and the number of actual files that we managed to retrieve the details of are
displayed in Table 2. This endeavour revealed that GitHub’s search interface

Table 2: Number of search results and retrieved files per technology

Technology Search

Results

Retrieved

Files

Technology Search

Results

Retrieved

Files

Ecore 15038 9629 QVTo 1247 1396
Xpand 7005 4974 GMF 1138 1100
Acceleo 6091 3158 Emfatic 525 510
JET 5323 3682 Sirius 428 503
OCL 3131 2418 EMFText 375 365
Xtext 2272 1605 Kermeta 339 343
ATL 1404 1481 Xcore 305 313
Epsilon 1352 1765 IncQuery 187 192
Henshin 1281 1142 MOFScript 34 34

is not particularly reliable. For example, after the dataset expansion phase we
have collected details for 1481 ATL files, 77 more than the number returned
by GitHub’s search interface in our first search (1404)). Similar discrepancies
have been observed for other technologies including Sirius, IncQuery, Kermeta,
and Epsilon – however the scale of these discrepancies is not prohibitive for the
extraction of useful insights. There are also technologies where we were able to
collect the details of a smaller number of files than the number returned by
GitHub’s search interface – however, this is expected due to GitHub’s 1000-
results-per-query limitation discussed above.

2.3 Collecting Commits

Having collected the details (i.e. repository, path and snippet) of files of interest,
the next step was to use GitHub’s API to collect additional information about
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the commits in which each of these files was involved since its creation. Each
“commit” API response contains information about the committer and the au-

thor of the commit (Git distinguishes between the author of a commit – i.e. the
person that did the job – and the person that performed the commit in the repos-
itory). For each of these roles, the response contains the real name and email
address of the person, (optionally) their GitHub ID, and the commit date. Since
not all commits have associated GitHub IDs (in fact, from the 74K commits we
collected in this study, more than 31K are not associated with GitHub IDs), in
the remainder of this work, we identify developers using their email addresses
(as opposed to their GitHub ID).

2.4 Unification

The last step of the process involved unifying the collected information in the
form of a model that conforms to the Ecore metamodel illustrated in Figure 1.
In its current state, the model contains data about 1,928 repositories, 34,442 files
and 74,403 commits. We have made the model and its metamodel available under
http: // github. com/ kolovos/ datasets/ tree/ master/ github-mde so that the results presented
in the next section can be independently reproduced and verified.

Fig. 1: The Unification Metamodel

3 Data Analysis and Results

Having collected and unified the data of interest in the form of a model con-
forming to the Ecore metamodel of Figure 1, our next step was to analyse the
data and obtain insights related to the use of the MDE technologies involved in
our study, both individually and as a whole.

3.1 Number of Relevant Files per Technology

We first report on the number of relevant files found across GitHub. Figure 2
provides an overview of the obtained measurements. We can observe the domi-
nance of Ecore which accounts for more than twice the files compared to the next
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technology (Xpand). We also observe that files related to model-to-text trans-
formation languages (Xpand, Acceleo and JET) appear much more frequently
compared to files related to model-to-model transformation (ATL, QVTo, Hen-
shin, Kermeta) and model query (OCL, IncQuery) languages.
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Fig. 2: Number of files per technology
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Fig. 3: Number of repositories per tech-
nology

3.2 Number of Repositories per Technology

Conceivably, a small number of repositories that contain a large number of files
related to a particular technology could lead to misleading interpretations of the
chart in Figure 2. Therefore, in Figure 3 we present the estimated number of
repositories in which files related to each technology appear.

To compute these estimates, we accept that the files related to each tech-
nology for which we have been able to retrieve details comprise a representative
sample of the entire population of files related to this technology. Consequently,
we can assume that the ratio of repositories over files in the sample generalises
over the entire population. To estimate the error in this computation, we used
binomial proportion confidence intervals.

We modelled the occurrence of a new, previously unseen repository in each
of the files in the sample as a Bernoulli trial, since files are independent as far
the repository that they belong to is concerned. We computed normal approxi-
mation (Wald), exact binomial (Clopper-Pearson), Wilson score, adjusted Wald
(Agresti-Coull) and Je↵reys intervals for 90%, 95% and 99% confidence levels.
We observed that in all cases, normal approximation, exact binomial, Wilson
score and Je↵reys intervals coincide or exhibit a di↵erence equal or less than
1%. Figure 3 displays the normal (Wald) approximation intervals for 95% con-
fidence level.

While Ecore continues to dominate the chart, there are a few interesting
di↵erences. First, Xtext and GMF (6th and 11th in Figure 2), climb up to 2nd
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and 4th places in this chart. This is expected as model-to-text transformations
typically consist of many files (templates), while graphical and textual syntaxes
are often limited to one file per language. In the same spirit, while model-to-text
transformation languages still appear to be more popular compared to M2M
languages, the gap is substantially smaller in this chart.

We also observe that OCL and Henshin (5th and 9th in Figure 2), slip down
to the 15th and 17th position in this chart. This suggests that there are a few
repositories that contain a large number of OCL constraints and Henshin trans-
formations. Further analysis revealed that for OCL, two repositories (dresden-
ocl/dresdenocl and regressiontesttool/rtt) account for nearly 50% of the OCL
files on GitHub. Similarly, a single repository (CoWolf/CoWolf ) accounts for
more than 80% of all Henshin files on GitHub.

3.3 Number of MDE-literate Developers

Overall, we have identified 2,195 developers (developers with unique email ad-
dresses) who are responsible for at least one commit related to files of interest
across all technologies included in this study. The breakdown for each technol-
ogy is presented in Figure 4. Compared to Figure 3, we don’t observe any major
changes in the relative order of technologies. Estimates and confidence intervals
were computed in the same way used in Figure 3.
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Fig. 4: Estimated number of developers
per technology
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Fig. 5: Number of commits per year
across all technologies

3.4 Activity per Year

Figure 5 illustrates the number of commits that involve files of interest (across
all technologies) over time. We observe a steep increase, from 4.4K commits in
2010 to 24K commits in 20142. This can be attributed to di↵erent extents to the
2
We intentionally excluded results for 2015 as at the time of writing this paper we are only a few

months into the year.
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increasing popularity of Git and GitHub and to an increase of the use of Eclipse
MDE technologies in open-source software development over the last few years.

3.5 Last-updated Files per Year

On a related measurement, Figure 6 illustrates the number of files that were
last updated on di↵erent years (as with the previous chart, we omit data for
the current year). In this figure we observe that more than 40% of the files of
interest can be considered as active as they have been updated at least once over
the last year.
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Fig. 6: Number of files last updated on
each year
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Fig. 7: Estimated number of active
repositories per technology

4 Threats to Validity

The following threats to the validity of the results reported in this paper have
been identified:

– The results reported largely rely on the accuracy of the number of results
reported by GitHub’s interface in response to search queries. As previously
discussed, there is evidence to suggest indications that GitHub’s search inter-
face does not return all matching files for a query. In the most extreme case,
while according to the GitHub search interface, 1352 Epsilon-related files ex-
ist on GitHub, our extended search has revealed 1765 files. Smaller deviations
of similar nature were identified for ATL (1404/1481), QVTo (1247/1396)
and Sirius (428/503). Substantial deviations can have significant ripple ef-
fects in dependent metrics such as the number of (active) repositories per
technology, the number of commits etc.

– Although we extensively sampled the results returned by GitHub’s search
interface to avoid including irrelevant files in our unified model, it is con-
ceivable that a (small) number of irrelevant files may have still found their
way in, thus skewing the results obtained in favour of specific technologies.
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5 Related Work

We are not aware of any previous work that evaluates the use of MD* practices
and technologies in open-source software developed in the wild ; existing studies
utilise techniques such as surveys, interviews, and case studies to assess MD*
adoption, maturity, usage patterns, etc, in industrial settings.

More particularly, in [1,2] the authors perform an industry-wide survey in
which they surveyed 450 MDE practitioners and carried out in-depth interviews
with 22 more. The findings of this study suggest that MDE is widely used by de-
velopers in the industry. The main motivation for using MDE though is not code
generation of entire systems, as originally thought, but generation of key parts of
a system, often using domain-specific modeling languages developed specifically
for a given purpose. This study does not focus on specific MDE technologies,
but rather on the generic use of MDE principles in industrial settings.

In [3] the authors performed an empirical study to investigate the state of
practice of MDE, and to identify factors that are considered important for its
adoption. The subjects of this study are developers from four di↵erent compa-
nies. The authors use di↵erent techniques such as interviews and surveys. The
main finding of this study is that tool maturity is the most important factor
for adopting MDE. Similarly to the survey in [1], the authors do not focus their
analysis on any particular MDE technologies or tools, but they provide a general
assessment of MDE.

Likewise, Whittle et al. [4] investigate what is the impact of tools on MDE
adoption, and places tooling in an organisational context. To achieve this, the
authors use a set of 20 in-depth interviews from two organisations. The main
contribution of this work is a taxonomy of tool-related considerations, which can
be used to reflect on existing MDE tooling.

The aforementioned empirical investigations focus mainly on the use of MDE
in general, and they do not focus on particular technologies or tools. Moreover,
these studies focus on the adoption of MDE in industrial settings but they do
not consider its adoption in open-source software projects.

In a broader context, in [5] a survey methodology is used to study the adop-
tion of programming languages. To this end, the authors analyse a dataset con-
sisting of 200,000 SourceForge projects, and 590,000 projects tracked by Ohloh.
The results of this work indicated that language adoption follows a power law.
Moreover, it is found that the community of a language plays a more impor-
tant role for language adoption than language features such as performance, and
reliability.

Finally, in [6] 100,000 GitHub projects are analysed in order to assess the
popularity, impact, and interoperability of programming languages. The authors
find that earlier popular languages like C are still widely used, while the advent
of web development has made relevant languages such as JavaScript and Ruby
pervasive.
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6 Conclusions and Further Work

This paper reported on the process and the findings of a study that involved
mining GitHub to assess the use of Eclipse-based MDE technologies in open-
source software development projects. The key findings of our study follow:

– We have identified a substantial number of GitHub repositories (1,928) which
make use of the technologies included in this study;

– We have identified a substantial community of 2,195 developers who are
responsible for at least one commit related to these technologies;

– We have observed an increasing number of commits on files related to these
technologies over the last decade;

– We have observed that model-to-text transformation languages (XPand, Ac-
celeo and JET) appear to be more widely used than model-to-model trans-
formation languages (ATL, QVTo, Henshin);

– We have identified that technologies that are led by industrial organisations
(Ecore, Xtext, Xpand, GMF, Acceleo and JET) are more widely used com-
pared to technologies predominately developed in academia (Epsilon, ATL,
Kermeta, Henshin).

In future iterations of this work, we plan to extend the selection of participat-
ing technologies to include languages, frameworks and tools beyond the bounds
of the Eclipse Modelling Framework (e.g. commercial UML tools, Simulink, Mi-
crosoft’s T4, MetaEdit+, JetBrains MPS, MediniQVT, Modelmorf, USE).
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Réveillere. Popularity, interoperability, and impact of programming languages in
100,000 open source projects. In Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual, pages 303–312. IEEE, 2013.


