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Abstract. One of the hallmarks of human intelligence is the ability
of predicting the consequences of actions and efficiently plan behaviors
based on such predictions. This ability is supported by internal models
that human babies acquire incrementally during development through
sensorimotor experience: i.e. by interacting with objects in the environ-
ment while being exposed to sensori perception. An elegant and pow-
erful concept to represent these internal models has been proposed in
developmental psychology under the name of object affordances: action
possibilities that an object offers to an agent. Affordances are learned
ecologically by the agent and exploited for action planning. Clearly, en-
dowing artificial agents with such cognitive capabilities is a fundamental
challenge both in artificial intelligence and robotics. We propose a learn-
ing framework in which an embodied agent (i.e. in our case, the humanoid
robot iCub) autonomously explores the environment, and learns object
affordances as probabilistic dependencies between actions, object visual
properties and observed effects; we use Bayesian Networks to encode this
probabilistic model. By making inferences across the learned dependen-
cies a number of cognitive skills are enabled: e.g. i) predicting the effects
of an action over an object, or ii) selecting the best action to obtain a
desired effect. By exploring object-object interactions the robot can de-
velop the concept of tool (i.e. a handheld object that allows to obtain a
desired effect on another object), and eventually use the acquired knowl-
edge to plan sequences of actions to attain a desired goal (i.e. problem
solving).
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1 Introduction

Humans solve complex tasks on a routine basis, by choosing, amongst a vast
repertoire, the most proper actions to apply onto objects in order to obtain cer-
tain effects. According to developmental psychology [1], the ability to predict
the functional behavior of objects and their interaction with the body, simu-
lating and evaluating the possible outcomes of actions before they are actually
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executed, is one of the purest signs of cognition, and it is acquired incremen-
tally during development through the interaction with the environment. Neu-
roscientific evidence [2] supports the idea that, in the brain, these predictions
happen during action planning through the activation of sensorimotor structures
that couple sensory and motor signals. To reproduce such intelligent behavior
in robots is an important, hard and ambitious task. One possible way to tackle
this problem is to resort to the concept of affordances, introduced by Gibson
in his seminal work [3]. He defines affordances as action possibilities available
in the environment to an individual, thus depending on its action capabilities.
From the perspective of robotics, affordances are powerful since they capture
the essential world and object properties, in terms of the actions that a robot is
able to perform. They can be used to predict the effects of an action, or to plan
the actions to achieve a specific goal; by extending the concept further, they can
facilitate action recognition and be exploited for robot imitation [4], they can
be a basis to learn tool use [6, 5], and they can be used together with planning
techniques to solve complex tasks. We propose a probabilistic model of affor-
dances that relates the shape properties of a hand held object (intermediate)
and an acted object (primary) with the effects of the motor actions of the agent,
measured as relative displacements of the primary object. We performed exper-
iments in which the iCub [7] humanoid robot learns these object affordances by
performing numerous actions on a set of objects displaced on a table (see Fig.
1). The learned model can then be used to predict the consequences of actions,
leading to behaviors such as tool use and problem solving.

Fig. 1. The iCub humanoid robot standing in front of a table full of objects. The
knowledge of the objects affordances can be exploited for problem solving.

2 Related work

Many computational models have been proposed in the literature in order to
equip robots with the ability to learn affordances and use them for prediction
and planning. The concept of affordances and its implications in robotics are
discussed by Sahin et al. [8], who propose a formalism to use affordances at
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different levels of robot control; they apply one part of their formalism for the
learning and perception of traversability affordances on a mobile robot equipped
with range sensing ability [9]. In the framework presented by Montesano et al.
[10], objects affordances are modeled with a Bayesian Network [11], a general
probabilistic representation of dependencies between actions, objects and effects;
they also describe how a robot can learn such a model from motor experience
and use it for prediction, planning and imitation. Since learning is based on a
probabilistic model, the approach is able to deal with uncertainty, redundancy
and irrelevant information. The concept of affordances has also been formalized
under the name of object-action complexes (OACs, [12]).

3 A computational model of affordances

We follow the framework of [10], where the relationships between an acted object,
the applied action and the observed effect are encoded in a causal probabilistic
model, a Bayesian Network (BN)whose expressive power allows the marginaliza-
tion over any set of variables given any other set of variables. It considers that
actions are applied to a single object using the robot hands, whereas we model
interobject affordances, including new variables that represent the intermediate
object as an individual entity, as depicted in Fig. 2 (left side). The BN of our ap-
proach explicitly models both primary (acted) and intermediate (held) objects,
thus we can infer i) affordances of primary objects, ii) affordances of interme-
diate objects, and iii) affordances of the interaction between intermediate and
primary objects. For example, our model can be used to predict effects given
both objects and the performed action, or choose the best intermediate object
(tool) to achieve a goal (effect to be produced on a primary object). Both objects
are represented in the BN network as a set of basic shape features obtained by
vision (e.g. convexity, eccentricity). Further details can be found in [5].

Fig. 2. On the left: Bayesian Network model of affordances, modeled as relations be-
tween actions, effects and objects (both held and acted). On the right: general model
for tool use. The model on the left corresponds to the Usage Affordances part of the
model on the right.
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3.1 A model for tool use

The affordances of the intermediate hand-held object (i.e. the tool) can be incor-
porated in a more complete model for cognitive tool use. Tools can be typically
described by three functional parts: a handle, an effector, and a body of a cer-
tain length L connecting the two (see right part of Fig. 2). These three parts
are related to three different motor behaviors humans have to perform in order
to successfully use a tool: grasping the handle, reaching for a desired pose with
the effector and then executing an action over an affected object. Each of those
behaviors requires some prior mental reasoning, first to estimate whether the
behavior is feasible (e.g. is the handle graspable?) and then to plan the cor-
rect motion to be executed (e.g. determine the target hand pose and the finger
movements to grasp the tool). We can therefore define three levels of tool af-
fordances: i) usage affordances, ii) reach affordances and iii) grasp affordances
(see right part of Fig. 2). These affordances relate to specific problems: i) what
actions the tool affords, because of its effector properties, ii) what part of the
workspace the tool affords to reach for, depending on its length, iii) what grasps
the tool affords, based on the shape and size of the handle. The outcomes of
these three reasoning processes are based on internal models that the robot can
learn through motor exploration. The model of affordances in the left part of
Fig. 2 represents the usage affordances. In previous work we proposed a learning
framework that enables a robot to learn its own body schema [13–15], and to
update it when tools are included [16, 17], and a representation of its own reach-
able space [18, 19]; these internal models are related to the reach affordances.
Also, a number of models for learning and using grasp affordances have been
proposed in the literature (e.g. [20, 21]).

3.2 Use affordances for problem solving

Since the early days of Artificial Intelligence (AI), planning techniques have been
employed to allow agents to achieve complex tasks in closed and deterministic
worlds. Every action has clearly defined pre-conditions, and generates determin-
istic post-conditions. However, these assumptions are not plausible if we consider
a real robot acting in real unstructured environments, where the consequences of
actions are not deterministic and the world is perceived through noisy sensing.
The affordance model (and more generally, the tool use model) depicted in Fig.
2 provide probabilistic predictions of actions consequences, that depend on the
perceived visual features of the objects and on the robot sensorimotor abilities
and previous experiences. Inspired by recent advances in AI, we can use these
predictions within probabilistic planning algorithms, to achieve a grounding of
the planning operators based on the robot sensorimotor knowledge. Through
this computational machinery, the robot is able to plan the sequence of actions
that has the higher probability to achieve the goals, given its own motor abilities
and the perceived properties of the available objects.



Learning object affordances 5

References

1. C. von Hofsten, An action perspective on motor development. Trends in Cognitive
Sciences, 8, 266272. 2004.

2. V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, Action recognition in the pre-
motor cortex. Brain, 119, 593609. 1996.

3. J. J. Gibson, The Ecological Approach to Visual Perception. Boston, MA: Houghton
Mifflin. 1979.

4. M. Lopes, F. S. Melo and L. Montesano, Affordance-based imitation learning in
robots. IEEE IROS. 2007.

5. A. Goncalvez, J. Abrantes, G. Saponaro, L. Jamone and A. Bernardino, Learning
Intermediate Object Affordances: Towards the Development of a Tool Concept.
IEEE ICDL/Epirob. 2014.

6. A. Goncalvez, G. Saponaro, L. Jamone and A. Bernardino, Learning Visual Af-
fordances of Objects and Tools through Autonomous Robot Exploration. IEEE
ICARSC. 2014.

7. G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hof-
sten, K. Rosander, M. Lopes and J. Santos-Victor, The iCub humanoid robot: An
open-systems platform for research in cognitive development, Neural Networks, 23,
11251134. 2010.

8. E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur and G. Ucoluk, To Afford or Not
To Afford: A New Formalization of Affordances Toward Affordance-Based Robot
Control, Adaptive Behavior, 15(4), 447472, 2007.

9. E. Ugur and E. Sahin, Traversability: A Case Study for Learning and Perceiving
Affordances in Robots. Adaptive Behavior, 18(3-4), 258284. 2010.

10. L. Montesano, M. Lopes, A. Bernardino and J. Santos-Victor, Learning Object
Affordances: From Sensory Motor Coordination to Imitation, IEEE Transactions
on Robotics, 24(1), 1526. 2008.

11. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann. 1988.

12. N. Kruger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Worgotter, A. Ude, T.
Asfour, D. Kraft, D. Omrcen, A. Agostini, and R. Dillmann. ObjectAction Com-
plexes: Grounded abstractions of sensorymotor processes. Robotics and Autonomous
Systems, 59(10), 740757. 2011.

13. L. Jamone, L. Natale, K. Hashimoto, G. Sandini and A. Takanishi, Learning Task
Space Control through Goal Directed Exploration. IEEE ROBIO. 2011.

14. L. Jamone, L. Natale, G. Metta, F. Nori and G. Sandini, Autonomous Online
Learning of Reaching Behavior in a Humanoid Robot. International Journal of Hu-
manoid Robotics, 9(3). 2012.

15. B. Damas, L. Jamone and J. Santos-Victor, Open and Closed-Loop Task Space
Trajectory Control of Redundant Robots Using Learned Models. IEEE IROS. 2013.

16. L. Jamone, B. Damas, J. Santos-Victor and A. Takanishi, Online Learning of Hu-
manoid Robot Kinematics Under Switching Tools Contexts. IEEE ICRA. 2013.

17. L. Jamone, B. Damas, N. Endo, J. Santos-Victor and A. Takanishi, Incremen-
tal development of multiple tool models for robotic reaching through autonomous
exploration. PALADYN Journal of Behavioral Robotics, 3(3), 113-127. 2013.

18. L. Jamone, L. Natale, G. Sandini and A. Takanishi, Interactive online learning of
the kinematic workspace of a humanoid robot. IEEE IROS. 2012.



6 L. Jamone

19. L. Jamone, M. Brandao, L. Natale, K. Hashimoto, G. Sandini and A. Takanishi,
Autonomous online generation of a motor representation of the workspace for in-
telligent whole-body reaching. Robotics and Autonomous Systems, 64(4), 556-567.
2014.

20. L. Montesano and M. Lopes, Learning grasping affordances from local visual de-
scriptors. IEEE ICDL. 2009.

21. R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Kruger and J. Piater,
Learning Grasp Affordance Densities. PALADYN Journal of Behavioral Robotics,
2(1), 117. 2011.


