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Abstract. Ontology matching techniques that are based on the analysis of names
usually create first a set of matching hypotheses annotated with similarity weights
followed by the extraction or selection of a set of correspondences. We propose
to model this last step as an optimization problem. Our proposal differs funda-
mentally from other approaches since both logical and linguistic entities appear
as first class citizens in the optimization problem. The extraction step will not
only result in a set of correspondences but will also entail assumptions related to
the meaning of the tokens that appeared in the involved labels. We discuss ex-
amples that illustrate the benefits of our approach and present a Markov Logic
formalization. We conduct an experimental evaluation and present first results.

1 Introduction

Ontology Matching has become a vivid field of research over the last decade. Hundreds
of papers propose and discuss ontology matching techniques, introduce improvements,
or present complete matching systems. Especially the system papers illustrate a general
paradigm common to probably all systems using name-based alignment methods. This
paradigm is the understanding of ontology matching as a sequential process that starts
with analyzing different types of evidence, in most cases with a focus on the involved
labels, and generates as an intermediate result a set of weighted matching hypotheses.
From the intermediate result a subset of the generated hypotheses is chosen as final
output. The first phase is typically dominated by the computation, aggregation, propa-
gation, and any other method for refining similarity scores. The techniques applied in
the second phase range from thresholds to the selection of coherent subsets [6, 8] that
might be optimal with respect to an objective function. Most approaches model the in-
termediate result as a set of correspondences annotated with confidence scores. These
confidence scores are aggregated values derived from an analysis of the tokens that ap-
pear in the labels of the ontological entities. With the help of several examples we argue
that the extraction problem should be modeled differently such that both tokens and
logical entities (classes and properties) appear as first class citizens. Otherwise it will
not be possible to exploit that the acceptance or rejection of a correspondence follows
from the assumption that two tokens have (or do not have) the same meaning. However,
any reasonable extraction should be consistent with its underlying assumptions. This
can only be ensured if the assumptions themselves can be modeled explicitly.

We presented a first sketch of this approach in [9]. Now we extend and concretize
the approach including a first implementation. We present foundations in Section 2. In



Section 3 we discuss two scenarios where a classic approach makes a selection deci-
sion in an non-reasonable way. In Section 4 we present our approach and explain how
to deal with the issues mentioned before. Experimental results of a first prototypical
implementation are presented in Section 5 before concluding in Section 6.

2 Foundations

We introduce some technical terms (Section 2.1), describe state of the art methods for
extracting an alignment (Section 2.2), and take a closer look at one them (Section 2.3).

2.1 Nomenclature

LetO1 andO2 be ontologies that have to be matched. A correspondence is a quadruple
〈e1, e2, r, c〉 where e and e′ are entities defined in O1 and O2. r is a semantic relation
between e1 and e2. Within this paper the semantic relation will always be equivalence
and e1 and e2 will always be classes or (data or object) properties. The numerical value
c is referred to as confidence value. The higher the value, the higher is the probability
that r(e1, e2) holds. The confidence value is an optional element and will sometimes
be omitted. The outcome of a matching system is a set of correspondences between O1

and O2. Such a set is called an alignment A between O1 and O2.
In the following we distinguish between linguistic entities (labels and tokens) and

ontological entities (classes and properties) using the following naming convention.

n#ClassOrProperty - Refers to a class or property in On (with n ∈ 1, 2).
n:Label - Refers to a label used in On as a class or property description.
n:Tokent - Refers to a token that appears as a part of a label in On.

We will later, e.g., treat 1#AcceptedPaper and 1:AcceptedPaper as two differ-
ent entities. The first entity appears in logical axioms and the second might be a descrip-
tion of the first entity. The label consists of the tokens 1:Acceptedt and 1:Papert.
We need three types of entities (logical entities, labels, tokens) because a logical entity
can be described by several labels and a label can be decomposed in several tokens.

2.2 Alignment Extraction

The easiest way for selecting a final alignment A from a set of matching hypothesesH
is the application of a threshold. However, a threshold does not take into account any
dependencies between correspondences inH. Thus, it might happen that an entity 1#e
is mapped on 2#e’ and 2#e’’ even though 2#e’ and 2#e’’ are located in different
branches of the concept hierarchy.

This can be solved easily. We first sort H by confidence scores. Starting with an
empty alignment A, we iterate over H and add each 〈e1, e2,=, c〉 ∈ H to A if A does
not yet contain a correspondence that links one of e1 or e2 to some other entity. This
ensures that A is finally a one-to-one alignment. Similar algorithms can be applied
to ensure that certain anti-pattern (e.g., Asmov [5]) are avoided when adding corre-
spondences to A. It is also possible to use reasoning to guarantee the coherence of the



generated alignment (e.g., Logmap [6]). Checking a set of patterns is then replaced by
calling a reasoning engine.

Such an approach needs to decide upon the order in which correspondences are it-
erated over because different orders can lead to different results. Global methods try to
overcome this problem. Similarity flooding [10], for example, is based on the follow-
ing assumption: The similarity between two entities linked by a correspondence in H
must depend on the similarity of their adjacent nodes for which an initial similarity is
specified inH. The algorithm does not select a subset ofH as final outcome but gener-
ates a refined similarity distribution over H. Other global methods explicitly define an
optimization problem in which a subset from H needs to be chosen that maximizes an
objective function. This is detailed in the following section.

2.3 Global Optimization with Markov Logic

In [13] and [2] Markov Logic has been proposed to solve the alignment extraction
problem. The authors have argued that the solution to a given matching problem can
be obtained by solving the maximum a-posteriori (MAP) problem of a ground Markov
logic network. In such a formalization the MAP state, which is the solution of an op-
timization problem, corresponds to the most probable subset A of H. In the following
we explain the basic idea of the approach proposed in [13]. Due to the lack of space we
omit a theoretical introduction to Markov Logic and refer the reader to [15].

In [13] the authors have defined, due to the fact that Markov Logic is a log linear
probabilistic model, the objective function as the confidence total of A ⊆ H. With-
out any further constraints and given that all confidences are positive it follows that
A = H. However, some of the constraints that have been mentioned above can easily
be encoded as first-order formulae in Markov Logic. We can postulate that a pair of
correspondences violating the 1:1 constraint is not allowed in the final solution. This
can be expressed as follows.

map(e1, e2) ∧map(e′1, e
′
2) ∧ e1 = e′1 → e2 = e′2

Similarly, coherence constraints can be added to avoid certain patterns of incoherent
mappings. An example is the constraint that the classes e1 and e′1 where e′1 is a subclass
of e1 cannot be mapped on e2 and e′2 where e2 and e′2 are disjoint:

sub(e1, e
′
1) ∧ dis(e2, e

′
2)→ ¬(map(e1, e2) ∧map(e′1, e

′
2))

Due to the lack of space, we cannot specify all constraints of the complete for-
malization. Additional constraints are required to take into account that properties can
also be involved in logical inconsistencies (see [13]). Moreover, there are some soft
constraints that reward homomorphism introduced by the selected correspondences.

Given such a formalization, a reasoning engine for Markov Logic can be used to
compute the MAP state which corresponds to the most probable consistent mapping. In
our terminology we call this mapping a global optimal solution. Note that the entities
that appear in such a formalization are logical entities (classes and properties) only,
while labels or token are completely ignored. The have only been used to compute
weights for the matching hypotheses, which are the weights attached to the map-atoms.



3 Illustrating Examples

In Section 3.1 and 3.2 we analyze examples that illustrate problems of the classical
approaches described in the previous section. In Section 3.3 we discuss the possibility
to cope with these problems without introducing a new modeling style.

3.1 Multiple Token Occurrences

For most matching problems some of the tokens used in the labels will appear in more
than one label. This is in particular the case for compound labels that can be decom-
posed into modifier and head noun. Figure 1 shows a typical example.

O1

O2
1#Document

1#Contribution

1#ReviewedContribution

1#AcceptedContribution

2#Document

2#Paper

2#ReviewedPaper

2#AcceptedPaper

2#Fee

2#SponsorFee

2#AcceptedContribution

2#RegistrationFee

Fig. 1. Example of a non-trivial matching problem.

Let us first discuss a simplified version of the example where we ignore the branch in
O2 rooted at the 2#Fee class. Note that a matching problem very similar to the simpli-
fied example can be found in the OAEI conference dataset (testcase conference-ekaw).
For this small excerpt there are four correspondences (solid arrows) in the reference
alignment. Probably, most systems would generate 〈1#Document,2#Document,=〉
due to the usage of the same label. The same does not hold for the other three corre-
spondences. For two of them the labels can be decomposed into modifier and headnoun.
For all of these correspondences it is crucial to answer the question whether the words
1:Contribution and 2:Paper have the same meaning. How would a standard ap-
proach deal with this example? In such an approach a similarity metric would be used
to compute a similarity for all relevant pairs of words. This would probably also result
in a (numerical) similarity for the pair 〈1:Contribution,2:Paper〉, for example
sim(1:Contribution,2:Paper) = 0.3. This similarity would then be aggregated
into a score that might result into a set of weighted hypothesesH.

c1 = 〈1#Document,2#Document,=, 1.0〉
c2 = 〈1#Contribution,2#Paper,= 0.3〉

c3 = 〈1#ReviewedContribution,2#ReviewedPaper,= 0.65〉
c4 = 〈1#AcceptedContribution,2#AcceptedPaper,= 0.65〉



At this stage we have lost the dependency between our final decision and the question
whether or not the words 1:Contribution and 2:Paper have the same meaning.
Without being aware of this dependency it might happen that c1, c3, c4 and not c2 are
selected. This would, obviously, be an inconsistent decision, because the selection of c3
and c4 should always result in the selection of c2.

One might criticize that we are making (invalid) assumptions. Above we used the
average for aggregating confidences. One might also use, for example, the minimum.
This results in the same confidences for c2, c3 and c4. Nevertheless, the distance be-
tween 1:Contribution = 2:Paper is taken into account not once but several
times. Thus, the decision related to c2 will not be affected by the possibility of gen-
erating c3 and c4, while a human expert would take c3 and c4 into account.

Let us now analyze the extended example where we have the additional branch
that deals with fees and (monetary) contributions. Now we have another (incorrect)
matching candidate.

c5 = 〈1#AcceptedContribution,2#AcceptedContribution,=, 1.0〉

Obviously, c5 is in a 1:1 conflict with c4. A consistent 1:1 mapping might thus consist
of c1, c2, c3 and c4 or (exclusive!) c5. However, taking the involved tokens and their
possible meanings into account, we should not generate an alignment that contains c2
and c5 at the same time. Such an alignment will only be correct, if the tokens in O1 are
used in an inconsistent way.

The classical approach cannot handle such cases in the appropriate way. As long as
the tokens themselves are not explicitly modeled as entities in the extraction phase, un-
reasonable and inconsistent decisions, inconsistent with respect to assumptions related
to the use of words, are made.

3.2 Ignoring Modifiers

We illustrate another pattern by an example taken from the OAEI conference dataset,
namely the confof-ekaw testcase. The reference alignment for this testcase contains 20
correspondences, here we are interested in the following three correspondences.

〈1#Banquet,2#ConferenceBanquet,=〉
〈1#Participant,2#ConferenceParticipant,=〉

〈1#Trip,2#ConferenceTrip,=〉

The developer ofO2 was more verbose than the developer ofO1. InO2 some of the la-
bels have been extended by adding the prefix modifier 2:Conference. This modifier
has been omitted inO1 because each of the participants, trips and banquets is implicitly
always associated to a conference. We are not interested in pros and cons of both styles.
Both exist and a matching system should be able to cope with them.

Let us again think how we, as reasonable agents, would deal with this issue. After
studying the O1 ontology, we would come to the decision, that it might make sense
to ignore the token 1:Conferencet whenever it appears as modifier. Maybe we
would first try to match both ontologies without ignoring the modifier, then we would



match both ontologies while ignoring 1:Conferencet when it appears as modifier.
In both cases we ensure the coherency of the generated alignment. For our example
the outcome would be that the second approach allows to generate three additional cor-
respondences that do not introduce any logical conflicts. Thus, ignoring the modifier
1:Conference seems to be a good choice.

Again, we can see that a first class citizen in such considerations are linguistic enti-
ties. We make certain decisions about the role of tokens and their implications result in
the acceptance of correspondences, while logical constraints that deal with ontological
entities have also an impact on our interpretation of tokens.

3.3 Work Around

In [12] the authors have proposed a measure called extended Tversky similarity that
copes with the situation described in Section 3.2. Their idea is to weigh each token by its
information content. A token like 2:Conference that appears very often has a very
low weight. It follows that a relatively high confidence score is assigned to a correspon-
dence like 〈1#Banquet,2#ConferenceBanquet,=〉 because 2:Conference
has only a limited discriminative power. Note that this approach is still based on the
principle to assign confidences to correspondences. Once this assignment has been
made, the tokens that have been involved are no longer taken into account.

This technique has been implemented in the YAM++ matcher. This matcher achieved
very good results the OAEI 2012 campaign [1] (see also the results table in Section 5).
However, not the number of token-occurrences is important, but the maximal num-
ber of additional coherent correspondences that would result from ignoring a modi-
fier. While these numbers are often correlated, this is not necessarily the case. Suppose
that we have an ontology that contains the class 1#PaperAuthor and the property
1#paperTitle, as well as some other labels that contain the token 1:papert. Let
the other ontology contain a class 2#Author (including authors of reviews) and a
property 2#title (to describe the title of a conference). In O1 we have a relatively
high number of 1:papert-token occurrences, however, the word 1:papert is in most
cases a feature that needs to be taken into account. This can be derived from the fact
that 〈1#PaperAuthor,2#Author,=〉 and 〈1#paperTitle,2#title,=〉 can-
not be added without introducing logical conflicts given a meaningful axiomatization
in O1 and O2. In our approach we will be able to take such cases into account.

4 Approach

We first present our approach and it formalization in Section 4.1 followed by an analysis
of its impact in Section 4.2 where we revisit the examples of the previous section.

4.1 Formalization

In the following we distinguish explicitly between entities from two different layers.
The first layer is the layer of labels and tokens; the entities that appear in the second
layer are classes and properties. In our approach we treat entities from both layers as first



class citizens of an optimization problem. Thus, we can define the objective function
of our optimization problem on top of token similarities (first layer) instead of using
confidence values attached to correspondences (second layer).

Hidden predicates
map(e1, e2) e1 is mapped on e2, i.e. 〈e1, e2,=〉 ∈ A
equivt(t1, t2) t1 and t2 have the same meaning
equivl(l1, l2) l1 and l2 have the same meaning
ignore(t) token t can be ignored if it appears as a modifier
Logical predicates
sub(e1, e2) class/property e1 is subsumed by class/property e2
dis(e1, e2) e1 and e2 are disjoint classes
dom(e1, e2) class e1 is the domain of property e2
ran(e1, e2) class e1 is the range of property e2
Linguistic predicates
pos1(l, t) label l has token t at first position
pos2(l, t) label l has token t at second position
pos3(l, t) label l has token t at third position
has1Token(l) label l is composed of one token
has2Token(l) label l is composed of two tokens
has3Token(l) label l is composed of three tokens
hasLabel(e, l) entity e is described by label l

Table 1. Variables starting with e refer to classes or properties, e.g., 1#ConferenceFee; l
refers to complete labels, e.g., 1:ConferenceFee, and t refers to tokens, e.g., 1:Feet

We extend the approach described in Section 2.3, i.e., we use Markov Logic and
most of the constraints presented above. However, we also need a rich set of (new)
predicates listed in Table 1 to support our modeling style. The first four predicates in
the listing are hidden predicates. This means that we do not know in advance if the
ground atoms for these predicates are true or wrong. We attach a weight in the range
[−1.0, 0.0] to the atoms instantiating the equivt predicate, if we have some evidence
that the respective tokens have a similar meaning. We explicitly negate the atom if there
is no such evidence. As a result we have a fragment as input that might look like this.

equivt(1:Acceptedt,2:Acceptedt) , 0.0

equivt(1:Organizationt,2:Organisationt) , −0.084
equivt(1:Papert,2:Contributiont) , −0.9
¬equivt(1:Acceptedt,2:Rejectedt) unweighted

We do not add any (weighted or unweighted) groundings of the map, equivl, and
ignore predicates to the input. Our solution will finally consist of a set of atoms that are
groundings of the four hidden predicates. While we are mainly interested in the map-
atoms (each atom refers to a correspondence), the groundings of the other predicates
can be seen as additional explanations for the finally generated alignment. These atoms



inform us which tokens and labels are assumed to be equivalent and which tokens have
been ignored.

The other predicates in the table are used to describe observations relevant for the
matching problem. We describe the relations between tokens and labels and the relation
between labels and logical entities.

pos1(1:AcceptedPaper,1:Acceptedt)

pos2(1:AcceptedPaper,1:Papert)

has2Token(1:AcceptedPaper)

hasLabel(1#AcceptedPaper, 1:AcceptedPaper)

We postulate that a label is matched if and only if all of its tokens are matched. We
specify this explicitly for labels of different size.1 The 2-token case is shown here.

has2Token(l1) ∧ has2Token(l2) ∧ pos1(l1, t11) ∧ pos2(l1, t12) ∧
pos1(l2, t21) ∧ pos2(l2, t22)→ (equivl(l1, l2)↔ equivt(t11, t21) ∧ equivt(t12, t22))

Next, we have to establish the connection between label and logical entity. A logical
entity is matched if and only if at least one of its labels is matched.

map(e1, e2) ↔ ∃l1 ∃l2 (hasLabel(e1, l1) ∧ hasLabel(e2, l2) ∧ equivl(l1, l2))

We follow the classic approach and translate (a subset of) the ontological axioms
to our formalism by using the logical predicates. We add several constraints as re-
strictions of the map-predicate ensuring that the generated alignment is a 1:1 map-
ping and that this mapping is coherent taking the ontological axioms into account.
These constraints have already been explained in [13] and we can integrate them eas-
ily in our approach as constraints on the second layer. In addition to the 1:1 con-
straint for the map predicate, we also add a 1:1 constraint for the equivt-predicate
on the token layer. This ensures that equiv(1:Papert,2:Contributiont) and
equiv(1:Contributiont,2:Contributiont) cannot be true at the same time.

Computing the MAP state for the modeling described so far will always yield an
empty result, because the summands in the objective function are only the weights
attached to the equivt-atoms. All of them are ≤ 0, thus, the best objective will be
0, which is the objective of an empty mapping. We have to add a weighted rule that
rewards each correspondence, i.e., a rule that rewards each instantiation of the map
predicate. We have set the reward to 0.5.

map(e1, e2),+0.5

Now each correspondence added to the solution increases the score of the objective by
0.5. At the same time each instantiation of the map predicate forces to instantiate at least
one equivl-atom, which again forces to instantiate the related equivt-atoms weighted
with values lower or equal to zero. Thus, we have defined a non trivial optimization

1 We have not included labels with more than three tokens in our first implementation. For larger
labels, we decided to match these labels directly if they are the same after normalization.



problem in which the idea of generating a comprehensive alignment conflicts with our
assumptions related to the meaning of words.

Finally, we need to explain the role of the ignore predicate. We want to match a
1-token label to a 2-token label if and only if we are allowed to ignore the modifier of
the 2-token label and if the remaining token is equivalent to the token of the 1-token
label. This can be expressed as follows.

has1Token(l1) ∧ has2Token(l2) ∧ pos1(l1, t11) ∧ pos1(l2, t21) ∧
pos2(l2, t22)→ (equivl(l1, l2)↔ equivt(t11, t22) ∧ ignore(t21))

However, a modifier should not be ignored be default. For that reason we have to add
again a simple weighted rule.

ignore(t),−0.95

Together, with the previous constraint this rule assigns a punishment to ignoring a token
that is used as modifier. Note that the weight is set to a value lower than -0.5. By setting
the value to -0.95 it will only pay off to ignore a token if it will result in at least two
additional correspondences (n× 0.5− 0.95 > 0.0 for n ≥ 2).

4.2 Impact

For the small fragment depicted in Figure 1 (from Section 3.1), we present the weighted
input atoms (marked with an I) and the resulting output atoms (marked with an O) in
the following listing. We omit the atoms describing the relations between tokens, labels,
and logical entities, as well as those that model the logical axioms.

I O equivt(1:Documentt,2:Documentt) input weight 0.0
I O equivt(1:Reviewedt,2:Reviewedt) input weight 0.0
I O equivt(1:Acceptedt,2:Acceptedt) input weight 0.0
I equivt(1:Contributiont,2:Contributiont) input weight 0.0
I O equivt(1:Contributiont,2:Papert) input weight -0.9

O equivl(1:Document,2:Document)
O equivl(1:Contribution,2:Paper)
O equivl(1:ReviewedContribution,2:ReviewedPaper)
O equivl(1:AcceptedContribution,2:AcceptedPaper)
O c1 ≈ map(1#Document,2#Document)
O c2 ≈ map(1#Contribution,2#Paper)
O c3 ≈ map(1#ReviewedContribution,2#ReviewedPaper)
O c4 ≈ map(1#AcceptedContribution,2#AcceptedPaper)

The generated solution consists of four equivt-atom, four equivl-atoms, and four map-
atoms. The four map-atoms are converted to the four correspondences of the output
alignment {c1, c2, c3, c4}. The objective of this solution is 1.1 = 4× 0.5+ 0.0+ 0.0+
0.0 + 0.0 − 0.9. The example shows that the low similarity between 1:Papert and



2:Contributiont atom is compensated by the possibility to generate four corre-
spondences. The same result would not have been achieved by attaching aggregated
weights directly to the map-atoms.

Let us compare this solution to other possible and impossible solutions. Thus, let
c5 ≈ map(1#AcceptedContribution,2#AcceptedContribution) and let
c6 ≈ map(1#Contribution,2#AcceptedContribution). .

objective for {c1, c2, c3, c4} = 4× 0.5− 0.9 = 1.1
objective for {c1, c5} = 2× 0.5 = 1.0
{c1, c2, c3, c4, c5} is invalid against 1:1 constraint on the token layer

objective for {c1} or {c5} = 1× 0.5 = 0.5
objective for {c1, c6} = 2× 0.5− 0.95 = 0.05

The alignment {c1, c5} is listed with a relatively high objective. Note that {c1, c5}
would be invalid, if we there would be a disjointness statement between 2#Fee and
2#Document due a constraint on the layer of ontological entities. We have also added
{c1, c6} to our listing. It illustrates the possibility to ignore a modifier. However, this
solution has a low objective and there are other solutions with a better objective.

5 Preliminary Evaluation Results

In the following we report about experiments with a prototypical implementation based
on the formalization presented above. The formalization is extended as follows.

– We added the constraint that if a property p is matched on a property p′, then the
domain (range) of p has to be matched to the domain of p′ or to a direct super or
subclass of the domain (range) of p′. In the latter case a small negative weight is
added to the objective.

– We derived alternative labels from the directly specified labels by ignoring cer-
tain parts. For example, we added the label 1:writes to a property labeled with
1:writesPaper, if 1:Paper was the label of that properties domain.

– We derived alternative labels by adding 1:ConferenceMember as alternative
label given a label like 1:MemberOfConference.

– We added rules that allow to match two-token labels on three-token labels in case
that all tokens from the two-token label are matched, however, such a case was
punished with a negative weight.

We use the following basic techniques for computing the input similarity scores. First
we normalize and split the labels into tokens. Given two tokens t1 and t2, we compute
the maximum of the values returned by the following five techniques. (1) We assign a
score of 0.0, if t1 = t2. (2) If t1 and t2 appear in the same synset in WordNet [11], we
assign a score of -0.01. (3) We compute the Levenshtein distance [7], multiply it with
-1 and assign any score higher than -0.2 to detect spelling variants. (4) If t1 or t2 is a
single letter token and t1 starts with t2 or vice versa, we assign a score of -0.3. (5) We
check if t1 and t2 have been modified at least two times by the same modifier. If this is
the case, we assign a (very low) score of -0.9.



We have used the RockIt [14] Markov Logic engine to solve the optimization prob-
lem. RockIt does not support all logical constructs of our formalization directly. Thus,
we had to rewrite existential quantification in terms of a comprehensive grounded rep-
resentation. We applied our approach to the OAEI conference track. The results are
depicted in Table 2.

2014 Pre F Rec 2013 Pre F Rec 2012 Pre F Rec

* .80 .68 .59 YAM++ [12].78 .71 .65 YAM++ .78 .71 .65
AML [4] .80 .67 .58 * .80 .68 .59 * .80 .68 .59
LogMap [6] .76 .63 .54 AML .82 .64 .53 LogMap .77 .63 .53
XMAP [3] .82 .57 .44 LogMap .76 .63 .54 CODI .74 .63 .55

Table 2. The proposed approach (*) compared with the top systems of 2012, 2013, and 2014.

We have listed the top-3 participants of the OAEI 2012, 2013, and 2014 conference
track. The results are presented in term of precision (Pre), recall (Rec), and F-measure
(F) using the the ra2 reference alignment.2 For each year the results are ordered by
the F-measure that has been achieved. We inserted the results of our system, marked
as *, at the appropriate row. Note that the vast majority of participating systems, which
perform worse, is not depicted in the table. It can be seen that our approach is on the
first position in 2014 and on the second in 2013 and 2012. This is a very good result,
because we spent only a limited amount of work in the computation of the ingoing
similarity scores. On the contrary, we presented above a complete description in less
then 10 lines. This indicates that the quality of the generated alignments is mainly based
our new approach for modeling the task of selecting the final alignment from the given
similarity scores.

The OAEI conference dataset can processed in less than 20 minutes on a standard
laptop. While slightly larger matching tasks are still feasible, significantly larger tasks
cannot be solved anymore. Scalability is indeed an open challenge for the proposed
approach. Currently we are working on a robust version of our approach in order to
participate in the OAEI 2015 campaign.3

6 Conclusion

We presented a new approach for extracting a final alignment from an initial set of
matching hypotheses. We have argued by a detailed discussion of several examples that
our approach makes reasonable choices in situations where classical approaches are
doomed to fail. Moreover, our approach generates results in a transparent and com-
prehensible manner. It can, for example, be proven that any other solution with a better
objective must be invalid. Moreover, the objective for any other possible solution can be

2 The ra2 reference alignment is not available for the public. We thank Ondřej Šváb-Zamazal,
one of the track organizers, for conducting an evaluation run outside an OAEI campaign.

3 A first implementation is available at http://web.informatik.uni-mannheim.de/mamba/



computed to understand why the generated alignment was preferred over an alternative.
A preliminary evaluation has shown that our approach can compete with the top systems
participating in previous OAEI campaigns even though we put only limited effort in the
optimal choice and design of the similarity measures we used in our evaluation. While
the evaluation revealed that scalability is a crucial issue for the proposed approach, the
positive results observed so far as well as the elegant nature of the approach engages us
to improve the approach and to analyze it future work.
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6. Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and scalable on-
tology matching. In The Semantic Web–ISWC 2011, pages 273–288. Springer, 2011.

7. Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

8. Christian Meilicke. Alignment incoherence in ontology matching. PhD thesis, University
Mannheim, 2011.

9. Christian Meilicke, Jan Noessner, and Heiner Stuckenschmidt. Towards joint inference for
complex ontology matching. In AAAI (Late-Breaking Developments), 2013.

10. Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In Data Engineering,
2002. Proceedings. 18th International Conference on, pages 117–128. IEEE, 2002.

11. George A. Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

12. DuyHoa Ngo, Zohra Bellahsene, and Konstantin Todorov. Extended tversky similarity for
resolving terminological heterogeneities across ontologies. In On the Move to Meaningful
Internet Systems: OTM 2013 Conferences, pages 711–718. Springer, 2013.

13. Mathias Niepert, Christian Meilicke, and Heiner Stuckenschmidt. A probabilistic-logical
framework for ontology matching. In AAAI, 2010.

14. Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt. RockIt: Exploiting parallelism
and symmetry for map inference in statistical relational models. 2013.

15. Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning,
62(1-2):107–136, 2006.


