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ABSTRACT
Analytical computations over energy data are gaining pop-
ularity thanks to the growing adoption of smart electricity
meters. Computations in this context range from seemingly
straightforward tasks such as calculating monthly bills based
on time-of-use pricing, to elaborate model building for pre-
dictions and recommendations in an effort to reduce peak
demand. While research in this promising area is progressing
steadily, published algorithms and prototypes have largely
avoided the important practical question of how to deal effi-
ciently with the incremental nature of energy data, for exam-
ple per-hour readings produced by smart electricity meters.
As a stepping stone towards a comprehensive solution to
this problem, we investigate incremental techniques for dis-
aggregating different categories of energy consumption, such
as base load versus activity load, from hourly smart meter
data using the popular “three-line model” of Birt et al. Our
software prototype, called Insparq, exhibits speedups in ex-
cess of 2x for data sets up to tens of GB in size, compared
to a naive implementation on top of a conventional scalable
batch processing framework.

Keywords
Smart meters, energy data modeling, incremental analytics,
Apache Spark, cluster computing, batch processing.

1. INTRODUCTION
Analytical computations over energy data are gaining pop-

ularity thanks to the growing adoption of smart electricity
meters, which are critical data sources in the emerging smart
grid. A smart meter reports energy usage data for a given
customer at regular intervals, such as every hour, and trans-
mits it to the utility company for storage and analysis. Some
of the most fundamental analytic tasks are carried out on
a subset of the latest data, for example, calculating a cus-
tomer’s monthly bill based on time-of-day pricing, or identi-
fying the top energy consumers in the past 24 hours. These
tasks are simple enough that they can be expressed using
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SQL and solved using existing database tools (e.g., [5]) with-
out the need for specialized techniques. In contrast, more
elaborate analytic computations proposed in the context of
predictions and recommendations consider patterns in en-
ergy data over longer timescales [7, 15–17], and therefore
operate on potentially much larger data sets. For example,
a model of the relationship between external temperature
and energy consumption for a customer may by constructed
over a year, or perhaps even several years, of data, and yet
the utility company may want to recompute the model at
monthly, weekly, or even daily intervals. Thus, successive
repetitions of an analytic task may operate on largely over-
lapping data sets.

In this paper we focus on techniques for incremental com-
putation over energy data that integrate new incoming data
efficiently with existing data. Although most of the ana-
lytic tasks in this context are easy to parallelize because
they deal with each customer independently, efficient so-
lutions are hard to obtain for several reasons. First, the
style of computation lies between conventional batch pro-
cessing (e.g, using MapReduce [9]) and stream processing
techniques (e.g., using Apache Spark or Storm [4, 26, 27]),
neither of which is a good fit for incremental tasks. Batch
processing accommodates massive data sets but discards in-
termediate state when a job runs to completion, whereas
stream processing techniques operate on small windows of
data and tend to maintain intermediate state continuously
in main memory, making them very resource-intensive. Sec-
ond, the few available systems that manage intermediate
state between execution of jobs (e.g., [6, 10, 18, 20, 22]) pro-
vide a variety of novel abstractions for manipulating data
but do not automate the translation of complex tasks onto
those abstractions.

As a stepping stone towards a comprehensive framework
for incremental energy analytics, we consider in this paper
the specific task of disaggregating energy data into cate-
gories, such as base versus activity load, using the “three-
line model” of Birt et al. [7]. This task, described in more
detail in Section 2, involves several stages:

1. grouping energy consumption readings into bins by
temperature

2. computing energy consumption percentiles for each bin

3. fitting regression lines over temperature-percentile data

The model must be computed over a long time interval, such
as a year or more, to capture a range of outdoor tempera-
tures. However, updates to the model may be based on a



day, week, or month of new data that exhibits relatively nar-
row temperature variations. For example, the temperature
bins for a household in Waterloo may range from −30◦C
to 35◦C on an annual basis whereas data collected in the
month of September typically varies from 10◦C to 25◦C. As
a result, more than three quarters of the bins determined in
stage (1) and processed in stage (2), corresponding mostly
to low-to-mid temperatures, are unaffected by the addition
of new data.1 This, in turn, means that the regression line
fitted over the low-temperature data remains unaffected in
stage (3), and hence the heating gradient determined from
this line segment is unchanged.

Our main contribution with respect to incremental com-
putation of the three-line model is two-fold:

• We present Insparq, a distributed computation frame-
work that provides a flexible incremental computation
model. We designed and implemented Insparq on top
of Spark [26], a state of the art data-parallel process-
ing framework, along with a number of other software
components including Parquet [2], Zookeeper [12] and
Avro [1].

• We compare the performance of an incremental three-
line model implementation in Insparq with a naive
batch-oriented implementation that runs directly on
top of Spark, and show performance gains of up to 5x
on data sets tens of GB in size.

2. BACKGROUND: THREE-LINE MODEL-
ING & CHALLENGES

In this section we review in greater detail the three-line
model of Birt et al. [7], which is used to disaggregate energy
data into different categories, as well as to determine the
effect of external temperature on energy consumption. The
model is computed independently for each customer using
fine-grained (e.g., hourly) smart-meter data coupled with
external temperature readings. The computation comprises
the three stages outlined earlier in Section 1:

1. Energy-temperature pairs are grouped into bins ac-
cording to the temperature value rounded to the near-
est integer. Only bins with sufficient data (at least 20
points) are used in subsequent stages.

2. The 10th and 90th percentile energy consumption is
calculated for each bin. The 10th percentile represents
the base load, which is the energy demand of appli-
ances that operate continuously, such as a fridge, wa-
ter heater, furnace, air conditioner, or security alarm.
The difference between the 90th and 10th percentile
energy consumption is the activity load, which is the
additional demand due to human activity, for example
from lighting, cooking, showering, or watching TV.

3. Regression lines are computed separately for the 10th
and 90th percentile data. In each case the bins are
partitioned into three contiguous sections by tempera-
ture, and one line is fitted per region. The first section
starts at −15◦C and continues up to at least 10◦C and
at most 20◦C. The second (respectively, third) section

1A similar argument applies to the deletion of old data,
which is outside the scope of this paper.

starts where the first (respectively, second) one ends,
encompasses at least five temperature bins, and spans
at most 15◦C in total. Regression lines are then fit-
ted for all possible combinations of section boundaries,
and the combination that minimizes the total root-
mean-square error (RMSE) is chosen. In the event
that the piecewise-linear fit is discontinuous, a second
stage of line fitting is applied that pins the regression
lines to specific points chosen from a 9×9 grid around
the discontinuity at each section boundary. A total of
(92)2 = 6561 combinations of such points are tested,
and the final three-line model is chosen by once again
minimizing the RMSE. An example of the final fit is
shown in Figure 1.

Figure 1: Example of the three-line model.
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From an implementation standpoint, the first stage of the
model computation is the most I/O-intensive as it requires
scanning over the entire dataset, whereas the second and
third stage involve mostly CPU. In particular, the amount of
data involved in the regression computations is fairly small,
with only one point per temperature bin at each percentile,
and thousands of regression lines. An incremental imple-
mentation of the algorithm stands to improve performance
in terms of both I/O and CPU by addressing the following
points:

• Redundant I/O. Energy-temperature pairs for a cus-
tomer need to be loaded from storage only when an
update occurs to a particular bin on arrival of new
data. For the remaining bins, it suffices to load the
percentile data directly, which is much more compact.

• Redundant arithmetic operations. When new en-
ergy readings are added to a particular temperature
bin, the percentiles can be recomputed efficiently if
the data in each bin are sorted, which makes it pos-
sible to combine new data with old data using merge
sort. Furthermore, regression lines can be recomputed
efficiently by retaining intermediate data, such as sums
of squares, over the data points.

3. DESIGN AND IMPLEMENTATION
Insparq is an API layer implemented on top of Apache

Spark to facilitate incremental computations, as illustrated



in the architectural diagram presented in Figure 2. In this
section we describe the details of how the framework loads
and stores intermediate state in a computation, as well as
how this state is merged with new inputs. In the context of
three-line modeling, the framework provides the following
features:

• An abstraction of incremental storage that supports
the automated loading and saving of intermediate val-
ues, on which developers may implement any data
combination and transformation logics. Insparq main-
tains the intermediate state using an off-the-shelf dis-
tributed file system.

• An abstraction of linear regression, and an implemen-
tation of the incremental version of the least squares
technique.

• An abstraction of dataset representation inside of In-
sparq that encapsulates a plain list or Spark Resilient
Distributed Dataset (RDD) in an incremental data
structure. Multiple datasets may be represented in the
form of IncrementalDataProvider that distinguishes be-
tween the base and incremented data of a particular
list.

Figure 2: Architectural diagram of Insparq.

3.1 Design Details
Before we dive into the implementation details, we first

discuss various open source projects incorporated in our sys-
tem, as well as the rationale for their use.

• Zookeeper [12] is a distributed coordination service.
In our design, Zookeeper is used to implement a Read-
Write lock for file operations that ensures only one file
is written to the file system among distributed nodes,
and that files are read only in the absence of writers.

• Parquet [2] is a columnar storage format for Hadoop
that supports schema projection and column filtering.
It has the flexibility to read a particular column of
data without touching the rest of the file stored in a
distributed file system, which can be used to reduce re-
dundant I/O operations by reading only the relevant

portion of the data. Parquet also provides native sup-
port for data compression, which is helpful for large
data sets.

• Spark [26] is a scalable fault-tolerant cluster comput-
ing framework that augments the capabilities of the
MapReduce framework by introducing distributed data
sets that can be used for caching intermediate results
in iterative computations. It also supports a richer
set of data operators and a powerful pipelining mech-
anism. Insparq uses Spark as the underlying compu-
tation framework, and is naturally capable of a wide
variety of computations.

• Avro [1] is a data serialization system that supports
the automatic generation of schema from structured
text files and materialized class files in different lan-
guages. It is used in Insparq to integrate with Parquet
by defining the underlying data representation.

3.1.1 Caching
Caching is the most important part of the system, refer-

ring in this context to the storage of intermediate state in
the form of files. We adopt HDFS as the underlying file
system, but other distributed file systems should work in
theory as long as proper APIs are provided.

In the Insparq storage layer, we use simple hierarchies
to organize data. Intermediate results of different compu-
tations are stored in different directories, under the root
directory /cache/. Each intermediate file is stored with the
hash code of the corresponding dataset as its filename. Such
a design eliminates the requirement for an additional lookup
operation in a separate data structure. Instead, Insparq di-
rectly issues a query to the filesystem that checks for the
existence of the file, which speeds up the lookup process. As
a concrete example, if Insparq would like to get the result
of computation A on dataset B, it directly queries the file
system for a path of the form /cache/name(A)/hashcode(B).

Intermediate results are persisted to the file system when-
ever a calculation successfully finishes, and are loaded back
to facilitate incremental computation whenever an interme-
diate value exists for the particular dataset.

3.1.2 Parquet Columnar Format
All files are saved in the Parquet file format due to the fact

that some calculations only require a small fraction of the
entire dataset. Parquet provides native support for schema
projection and column filtering, which makes data access
extremely flexible.

Parquet files are essentially HDFS files, with a particular
binary format to define the data as tables with columns of
various names and types. The schema of a parquet file can
be determined by using a data serialization framework, in
our case, Avro. Parquet supports schema projection and
column filters when reading a file. One can specify a set of
columns of interest to read a portion of the file, or define a
filter to only read in data that satisfy a set of predicates.

3.1.3 Incremental Computation
We model incremental computation as follows. Assume

that we have two datasets, A and B, where A is the base
dataset, and B is the increment. An incremental computa-
tion is such that one only needs to compute over the incre-
ment, i.e., dataset B, without recomputing the base dataset



A, but using intermediate state generated in the processing
of A, and produces the same results as if the computation
was carried out from scratch over A ∪B.

When a computation is first initiated on dataset A, In-
sparq calculates a unique hash code for A, and queries the
global file system for the existence of cached intermediate
results. If the global filesystem returns false, indicating that
such a calculation has not been performed, Insparq will pro-
cess A and save intermediate results to the distributed file
system using the naming scheme described earlier. When
Insparq subsequently performs a computation over dataset
A∪B, it first queries the file system to see if the cached re-
sult exists for dataset A, then loads this intermediate result
back, and queries the filesystem for the cached result of B,
for which the filesystem returns false. At this point Insparq
does a complete computation on dataset B and combines it
with the cached result of A.

This mechanism works perfectly for our purpose except
when there exist race conditions in writing and reading the
files. For example, such conditions occur if two machines
are working on the same dataset and try to query a cached
file, fail to find it, then both perform a computation and try
to save the newly created intermediate state. In this case
an exception will be thrown in the absence of appropriate
synchronization, indicating that the file already exists. Or,
if one process is trying to access a cached file while it is be-
ing saved by another process, it may observe the contexts of
the file as malformed (a parquet file is either healthy or mal-
formed). Although such exceptions may be properly handled
in application code, in our experience this greatly stalls the
execution of the entire program. As a remedy, we imple-
ment a distributed file ReadWrite lock using ZooKeeper to
coordinate concurrent accesses to cached files, ensuring that
only one writer is permitted, and that a file is only read in
the absence of writers.

3.2 Implementation
We implemented the three-line modeling process with both

Spark and Insparq to enable a comparative evaluation of the
benefits of incremental processing over conventional batch
processing. In both cases, the input is stored as one or more
comma-delimited text files, with each record indicating one
smart meter reading for a particular household. The output
is a collection of three-line models, one for each household
provided in the input.

3.2.1 Basic Three-line Modeling on Spark
The basic or non-incremental three-line modeling algo-

rithm is implemented in several steps, which are presented
as pseudo-code in Figure 3. We group these steps conceptu-
ally into two phases: Phase 1 comprises steps 1-3, which are
responsible for grouping the data points. This entails a se-
ries of map and reduce operations Spark. Phase 2 comprises
step 4 and involves arithmetic followed by output.

In step 1, the input text file is read from HDFS, and each
record is mapped to a KeyValue pair, with houseId as the
key and the record as the value. A reduceByKey operation
is then applied in step 2 to group the records by houseId
so that energy data for each household can be modeled in-
dependently, which enables parallelism at scale. This oper-
ation involves a shuffle of the data set across the network,
which is known to be a major performance overhead [8,15].

Step 3 marks the beginning of the model computation for

each household. The RDD obtained in step 2 is transformed
using the reduceByKey operator, which maps each KeyValue
pair in the input to another KeyValue pair with the same key
(houseId) by applying a function to the value. Specifically,
the value is transformed by grouping the energy-temperature
readings according to temperature into corresponding bins,
as well as by computing the required percentiles for energy
consumption. This step does not require a costly shuffle
because the transformation preserves the key of each Key-
Value pair and hence the partitioning of data among Spark
workers.

In step 4, the three-line model for each household is fi-
nally constructed by applying regression calculations to the
energy-temperature data prepared in earlier steps. Although
the linear regression and adjustments are implemented se-
quentially for each household, Spark parallelizes the execu-
tion automatically at the granularity of different households.

// 1. Map record to houseId -record pair
rdd1 <- record => [{houseId , record }]

// 2. reduce by houseId
rdd2 <- rdd1.reduceBykey ()

// 3. map to bins
rdd3 <- rdd2 => [{houseId , [bins ]}]

// 4. compute 3-line models for each household
rdd3 => [3-line models]

Figure 3: High-level structure of three-line model
implementation in Spark.

3.2.2 Incremental Three-line Modeling
We recognize that the most time-consuming parts of the

three-line modeling algorithm are the I/O-intensive opera-
tions of reading data from HDFS and shuffling RDD par-
titions across the network, as a result of the loading and
binning process. Therefore, our incremental version keeps
track of the history of each binning computation, and per-
sists a set of intermediate representations to HDFS that can
be loaded for Phase 2 computation to reduce the cost. We
store this intermediate representation, which is a collection
of temperature bins for each household, as parquet files in
HDFS, which were discussed earlier in Section 2. We use
an Avro schema to define the structure of a Parquet ta-
ble, which records houseId, temperature of the bin, a list of
readings in ascending order, along with the percentiles. The
schema is presented in detail in Figure 4.

For each input file, we save the bins that have been com-
puted to HDFS, along with a list for each bin of the cor-
responding energy readings in increasing order, and mark
the input file as processed. If the program input contains
previously processed files, we skip the loading and binning
computations of those particular files, and instead load those
bins from HDFS instead. All bins, whether computed from
scratch or loaded from HDFS, are later combined using the
union operator in Spark, to update the energy consumption
percentiles. For each temperature bin, if multiple instances
exist from different input files (e.g., past and new), we merge
the sorted lists of energy readings efficiently in linear time
and recompute the percentiles. The pseudo-code for the en-
tire computation is presented in Figure 5.



{
"type": "record",
"name": "Bin",
"fields ":[

{"name": "houseId", "type": "string"},
{"name": "temp", "type": "double"},
{"name": "tenthPercentile", "type": "

double"},
{"name": "median", "type": "double"},
{"name": "nintiethPercentile", "type": "

double"},
{"name": "readings", "type": {"type": "

array", "items": "double "}}
]

}

Figure 4: Avro schema for a temperature bin.

To further reduce the I/O overhead associated with read-
ing cached bins from HDFS, we store them using the Par-
quet [2] columnar format. This not only avoids storing du-
plicated fields, as in the original plain text format, but it also
enables compression using the Snappy codec [3]. Snappy a
portable library developed at Google for fast lossless com-
pression and decompression.

// Phase 1. for each file to process
for each file:

// 1.1. if file already processed
if file_processed:

bins <- load from cache

// 1.2. if not processed
else:

record <- load from file
// 1.2.1. Map record to houseId -record pair
rdd1 <- record => [{houseId , record }]
// 1.2.2. reduce by houseId
rdd2 <- rdd1.reduceBykey ()
// 1.2.3. map to bins
bins <- rdd2 => [{houseId , [bins ]}]

// 2.3. union bins
all_bins <- all_bins.union(bins)

// Phase 2. compute 3-line models for each
household

all_bins => [3-line models]

Figure 5: Pseudo-code for incremental computation
of the three-line model.

4. EVALUATION

4.1 Dataset Synthesis
We used synthetic data to evaluate our system. The

dataset consists of multiple comma separated text files, with
each line representing a tuple in the form of (Date, Hour,
Reading, Temp, HouseId). There are 32,000 households in
total, each providing a year’s worth of hourly energy read-
ings. In plain text format, the dataset occupies 8 GB. We
split the dataset conceptually into four quarters, referred to
as Q1-Q4 in later sections, and perform incremental compu-
tation at intervals of one or more quarters. As we explain

later on, the trends in our experimental results suggest that
shorter increments tend to yield greater performance bene-
fits compared to non-incremental batch processing.

4.2 Hardware and Software Environment
We evaluate Insparq with three-line modeling on a cluster

of seven commodity machines. Each machine is equipped
with dual 2.40GHz Intel Xeon E5-2620 CPUs, supporting a
total of 24 hyperthreads per server, as well as 64 GB of main
memory and a 1Gbps NIC. All servers run Ubuntu Server
14.04.3 LTS 64-bit with kernel version 3.13.0-65-generic. In
our experiments we use Spark 1.5.1 and Hadoop 2.6. We
use a dedicated server for the Spark master and HDFS name
node, while having one Spark slave and HDFS data node on
each of the other six servers.

We set up each Spark slave to use 8 cores and 32 GB
of memory on each of the nodes. Spark has a default be-
havior that only uses a small fraction of memory alloca-
tions for shuffle storage, and spills exceeding shuffling data
to hard disk, greatly stalling the execution with growing size
of dataset. We manually configure Spark to disable shuffle
spilling and use as much memory for shuffling as possible.
HDFS is set up to have a replication factor of 3.

4.3 Experiments & Results
We evaluated our incremental three-line modeling on In-

sparq against a non-incremental version on Spark in terms
of runtime performance and multi-core scalability. Due to
the excessive amount of memory on the servers, aggressive
file system caching prevents our experimental results from
reflecting the actual performance. To avoid the interference
of OS-level caching mechanisms, we restart Spark and HDFS
processes and drop all pagecache, dentries and inodes (using
“echo 3 > /proc/sys/vm/drop_caches”) before each set of
experiments.

4.3.1 Incremental Execution
We evaluate the performance of three-line modeling with

our synthetic dataset to assess the practical benefits of in-
cremental processing. Although it is clear that incremental
computation can avoid redundant I/O and arithmetic com-
putations, the benefit comes at the cost of maintaining inter-
mediate state in the distributed file system. Thus, a careful
analysis is necessary to determine the range of parameters
for which performance gains are feasible.

In our experiment, we first execute the program with the
base dataset of 32 GB, comprising four years of data for
32,000 households sampled every hour. On top of that, we
increase the dataset by one quarter, which corresponds to
2 GB of data, and compute the three-line models over the
union. The result of this incremental computation is shown
in Figure 6. The x-axis indicates the size of datasets as
A+B GB, with A being the size of a base dataset, and B
being the size of the increments. For an incremental run
the framework uses intermediate results from previous ex-
ecutions, while for the non-incremental case a batch com-
putation is conducted from scratch over A+B. The y-axis
shows the running time in seconds. Each run is repeated
five times starting with a clean cache to ensure that results
are reproducible.

The running time for the non-incremental version on Spark
is up to roughly 250 seconds on data sets up to 48 GB, while
the incremental version always finishes in less than 150 sec-



Figure 6: Running time comparison of three-line
modeling with and without incremental execution,
using 2 GB increments.
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onds to process a 2 GB increment. The running time of
the non-incremental implementation grows with the size of
the data set, whereas the incremental algorithm performs
steadily with a slight upward trend.

We further show the benefit of incremental three-line mod-
eling with one year’s worth of data as the increment, cor-
responding to 8 GB of data, as shown in Figure 7. While
the average run time of non-incremental runs increases by
roughly 30 seconds per 8 GB increment, the incremental ver-
sion finishes in 160 seconds with a dataset of 64 GB in total,
2x faster than the non-incremental version.

Thus, the results demonstrate a clear advantage of incre-
mental execution when the increment is small relative to the
base data set.

Figure 7: Running time comparison of three-line
modeling with and without incremental execution,
using 8 GB increments.
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4.3.2 Multi-core scalability
To show the multi-core scalability of incremental and non-

incremental three-line modeling on Spark, we evaluate run-
ning time speedups with a varying number of cores used by
each node, ranging from 1 to 5. We use the –executor-cores
option in Spark to control the number of cores actually used
by the workers. Speedups are calculated assuming the ac-
tual runtime is T1 with 1 core per node, and Tn with n cores
per node, using the following formula:

Speedup with n cores =
T1

Tn
(1)

For this experiment we use two 1-year datasets sized to
8 GB each as input. The non-incremental version computes
over the entire 16 GB dataset, while the incremental version
takes one as base, and the other as increment.

Figure 8 shows the scalability of three-line modeling on
Spark with and without incremental execution. The x-axis
indicates the number of cores used by each Spark worker,
and the y-axis indicates its corresponding speedup compared
to using only 1 core per worker.

Results show that Spark scales poorly. For non-incremental
computations it achieves a speedup of only 1.8x with five
cores per node compared to one core, while incremental
modeling achieves 2.3x speedup. We attribute this to the
expensive I/O overhead caused by a large amount of file
system read/write operations and network shuffles. Incre-
mental modeling achieves slightly better scalability since we
reduced the amount of HDFS read/write operations and the
size of RDDs to shuffle across the network.

Figure 8: Speedup comparisons for incremental and
non-incremental modeling with varying number of
cores.
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5. RELATED WORK
Large-scale data processing techniques related to smart

grid analytics roughly fall into four categories, which we
discuss briefly below.

Classical data-parallel abstractions. MapReduce [9]
and Dryad [13] are massively scalable fault-tolerant frame-
works for parallelizing and distributing task execution across
commodity servers. MapReduce divides each task into a



map phase, which transforms a set of key/value pairs to a
set of intermediate outputs, and a reduce phase that merges
or summarizes the intermediate outputs. Dryad supports
more general fine-grained data flows represented using a di-
rected acyclic graph (DAG), and is extended with support
for language-integrated queries [24].

Abstractions for iterative computations. Despite
their wide adoption in industry, implementations of classic
abstractions are fundamentally inefficient in terms of I/O for
iterative computations, such as in ranking the importance
of web pages, or in machine learning. Spark [26] addresses
this problem by introducing a new data-parallel abstraction,
resilient distributed datasets (RDDs) [25], which enables ef-
ficient pipelining and caching intermediate results between
iterations. Spark is used for non-iterative map-reduce com-
putations over energy data in the benchmarking study of Liu
et al. [15], which we discuss later on in this section, as well as
in an earlier study by Cheah [8]. Naiad [19] introduces a new
computation abstraction, timely data flow, that represents
data flows using directed graphs similarly to Dryad but with
cycles representing data reuse in iterative computations.

Abstractions for incremental computations. In an
effort to accommodate dynamic data sets, data-parallel sys-
tems are starting to provide abstractions for incremental
computations. DryadInc [21] extends Dryad [13] to auto-
matically identify redundant computations within the same
job by caching previously executed tasks. Percolator [20] is
a system that provides distributed transactions and notifi-
cations for processing small, independent updates to a large
data set such as Google’s web indexing system. Continuous
bulk processing (CBP) [18] is an architecture for stateful
computation over disk-resident data using a novel group-
wise operator. Incoop [6] extends the Hadoop framework—
an open source implementation of MapReduce—with an in-
cremental distributed file system, an additional contraction
phase, and a memoization-aware scheduler. Hourglass [10]
provides an accumulator-based interface on top of Hadoop
for programmers to store and reuse state across successive
runs. Itchy [22] is a framework that executes incremental
jobs by processing only relevant parts of the original input,
together with the incremented input. It uses novel tech-
niques to store provenance information, intermediate data,
and output data of a MapReduce job.

Analytic databases and data warehouses. Analytic
computations can be implemented inside a database or data
warehousing system using a combination of SQL and user-
defined functions. HP Vertica [14] is a scalable analytics
platform that was evaluated on 727 TB of energy data in
the benchmarking study of Arlitt et al. [5] for fundamen-
tal tasks such as computing peak power consumption, con-
sumption time series, top consumers, and time of usage
billing. Hive [23] is a scalable data warehousing solution
on top of Hadoop, and is compared on data sets of up to
1TB against Spark in the benchmarking study of Liu et
al. [15] on four workloads: disaggregating energy data us-
ing the 3-line model [7], extracting daily energy consump-
tion trends independently of outdoor temperature using pe-
riodic autoregression (PAR), building histograms to pro-
file hourly energy consumption, and searching for similar-
ity between customers in terms of their energy usage pro-
files. Both Spark and Hive are shown to scale well and
perform comparably for the first three workloads, in which
each customer is processed independently of others. Spark

outperforms Hive for similarity search, which requires com-
parisons between pairs of customers. In the latter case the
performance difference is attributed to Hive generating a
sub-optimal query plan compared to the one coded manu-
ally in the Spark implementation, which leverages efficient
map-side joins. SMAS [16] is a system for analyzing and
visualizing smart meter data, and is implemented on top of
PostgreSQL using the MADlib [11] analytics library, which
provides multi-core parallelism but does not scale automati-
cally across servers. The system implements three of the an-
alytic computations discussed in [15]: 3-line model, periodic
autoregression, and histograms. Real-time stream ingestion
for SMAS is discussed in a follow-up paper [17].

6. CONCLUSION
In this paper, we present Insparq, a framework for effi-

cient incremental computation over large data sets. Our
experimental evaluation highlights the performance benefits
of Insparq compared to Spark, on which our framework is
built, in the context of analyzing energy data from smart
electricity meters. Specifically, we demonstrate that Insparq
improves runtime performance substantially through incre-
mental execution, and outperforms Spark even in the ab-
sence of intermediate data prior to an execution, due to the
fact that Insparq makes use of intermediate values for each
computation step within an execution. In future work we
plan to implement and evaluate additional analytic tasks
using our framework, such as the computation of energy con-
sumption histograms and periodic auto-regression, as well as
to define a benchmark for incremental energy analytics.
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