
MELOGRAPH: Multi-Engine WorkfLOw Graph Processing

Camelia Elena Ciolac
∗

Chalmers University of Technology
Gothenburg, Sweden

camelia@chalmers.se

ABSTRACT
This paper introduces MELOGRAPH, a new system that
exposes in the front-end a domain specific language(DSL)
for graph processing tasks and in the back-end identifies,
ranks and generates source code for the top-N ranked en-
gines. This approach lets the specialized MELOGRAPH be
part of a more general multi-engine workflow optimizer. The
candidate execution engines are chosen from the contempo-
raneous Big Data ecosystem: graph databases (e.g. Neo4j,
TitanDB, OrientDB, Sparksee/DEX) and robust graph pro-
cessing frameworks with Java API or packaged libraries of
algorithms (e.g. Giraph, Okapi, Flink Gelly, Hama, Grem-
lin). As MELOGRAPH is work in progress, our current
paper stresses upon the state of the art in this field, pro-
vides a general architecture and some early implementation
insights.

Keywords
Big Data ecosystem; multi-engine workflow; graph process-
ing tasks

1. STATE OF THE ART
The multitude of frameworks and datastores in the Big

Data ecosystem, with their different data models, libraries
of implemented algorithms, available connectors and perfor-
mance profiles, make it challenging to select the right tools
when building a Big Data storage and processing architec-
ture. Instead, one can benefit from the open-source licenses
and community editions to set up a polyvalent architecture,
with polyglot persistence and multiple processing engines.

On the data management side, with the emergence of
NoSQL datastores that usually complement relational data-
bases in the enterprise data architecture, there has been a
continuous interest for polyglot persistence (also referred to
as ”multiparadigm data storage” [7]). Besides explaining
this data strategy as a specialization in data representation

∗Big Data @ Chalmers, ICT Area of Advance

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

to better reflect the application data types, [7] highlighted
the necessity of multiparadigm programming with Big data.
At that time, in 2010, this collocation defined the lack of an
unified query language among NoSQL datastores and the
need develop an integration layer using the programming
languages (e.g. Java, Python) in which these datastores
provided query APIs.

This research topic remained an open challenge and few
robust solutions have been provided to this date. From
the industry, we cite Oracle Big Data SQL [13] with its
”Query Franchising” strategy of unifying queries over Or-
acle databases, Hadoop and NoSQL datastores. From the
open source community, we highlight the efforts of the Cas-
cading Lingual project [1] which uses Apache Calcite (for-
merly named Optiq) to support SQL over a variety of data
providers, by pushing as much as possible of the query pro-
cessing to the datastores that manage the data. In the sci-
entific community, the most recent and remarkable develop-
ment in this field is the BigDAWG polystore[4] [6], promot-
ing the ”islands of information”, each with its query language
that finally maps to the underlying storage engines’ native
language through ”shims” acting as translators.

Perhaps even more challenging than with storing and query-
ing Big Data, developing complex analytics workflows needs
choosing among the plethora of candidate frameworks. Sev-
eral Big Data architecture patterns were promoted (e.g. [9]),
in which scripting or a workflow manager orchestrates tasks
on pre-established engines. Apache Oozie, Azkaban, Luigi
are the most popular workflow managers in Hadoop, yet af-
ter inspecting their set of supported engines we conclude
that they were rather designed for ETL pipelines, not com-
plex analytics workflows. Let us underline that out-of-the-
box they don’t support scheduling on specialized graph pro-
cessing frameworks.

A more mature approach to tackle the complexity of the
problem is to enhance a workflow manager with some ”in-
telligence”, with the ability to decide between several frame-
works and to generate all necessary ETLs between the cho-
sen execution engines. Therefore nowadays an increasing
focus is put on designing multi-engine workflows [17], ad-
dressing the various facets of this problem: process mod-
elling and detail abstracting of execution, data formats, data
sources [11]; execution engine selection modelled as a global
optimization problem [12]; dynamic scheduling and resource
management [3].

A couple of publications present prototypes of systems
that address all these dimensions: QoX [14], IReS [3], Mus-
keteer [8]. Common to all of them is the decoupling of

the front-end from the back-end engine, yet each one has
its specific approach; for example QoX exposes an XML-
based ”proprietary flow metadata language” (xLM) at the
front-end and in the back-end uses a library of operations
[14], while Musketeer exposes a SQL-like query language
and a ”Gather-Apply-Scatter style”domain specific language
(DSL) for graph processing in the front-end and generates
code based on code templates in the back-end [8]. Also,
all three aforementioned systems use cost-based optimiza-
tion, with specific search space and search algorithms for
single- or multi- engine optimal scheduling of the workflow.
Case studies and demonstrations of some of the aforemen-
tioned systems are anchored in the contemporaneous Big
Data ecosystem: IReS with a practical demonstration over
{ Hadoop, Hama, Spark, PostgreSQL with HDFS, HBase,
Elasticsearch} [3], Musketeer with an evaluation over {Spark,
Hadoop MapReduce, GraphChi, PowerGraph, GraphLINQ}
[8]. These proofs of concept did address graph processing
tasks to a limited extent, without the intention to include
a larger inventory of options currently available in the Big
Data ecosystem.

Except from these studies, few practical results of inte-
grating graph analytics in larger workflows are reported (e.g.
graph processing and NLP [5]). In an extensive review of
the current state of the art of graph processing on Big Data
[2], the conclusion is that nowadays ”most of the large scale
graph processing platforms have the limitation that they are
not able to connect their graph processing capabilities with
the vast ecosystem of other analytics systems”.They cite the
industrial pioneering work of Teradata Aster 6.0 that ”have
started to tackle this challenge by extending its analytics ca-
pabilities with a multi-engine processing architecture”[2]. A
deeper investigation into this system [15] reveals that graphs
” can be derived, or projected, from many sources and types
of business data” and that a ”graph analytics program, or
graph function, is modeled as a polymorphic table operator
like Aster’s existing SQL-MR analytics functions”, making
it possible to be invoked even from SQL queries.

Finally, let us highlight some differences between MEL-
OGRAPH and the aforementioned systems. Compared to
Aster’s SQL-GR, MELOGRAPH not only aims to support a
variety of data sources as input, but also to support various
execution engines for each task; however MELOGRAPH’s
DSL doesn’t make it embeddable in SQL queries. Compared
to the other systems we innovate in the following aspects:
1) MELOGRAPH addresses specific graph processing tasks,
the suitability of storing data in a graph database prior to
processing, possible optimizations in cascaded graph tasks;
2) MELOGRAPH generates Java source code on-the-fly and
does not treat operators as black boxes; 3) MELOGRAPH
does not need any syntax validation since this is already
enforced by the MPS editor (based on the DSL structure).

2. SOME MOTIVATING EXAMPLES
Before diving in the discussion about MELOGRAPH, let

us first depict some examples of workflows containing graph
processing tasks. In a first example, from the citations net-
work in Computer Science we firstly retain a subgraph hav-
ing in nodes only publications cited at least k times, then
among them find communities based on papers’ co-citation
and lastly evaluate how close is each community to a clique
structure. In this case we have a sequence of three graph
processing tasks in the workflow: a k-core graph processing

task, a label propagation (or other epidemics-based iden-
tification of network structure) and finally aggregations to
compute local clustering coefficients.

Secondly, a use case from the entertainment industry, where
one can use YouTube Data API to extract the network of
videos (retaining video’s unique identifier, metadata about
its channel/user, video title, description) and their related-
to relationships (a search for relatedToVideoId). Once the
graph is obtained, two processing tasks are launched se-
quentially: a pattern matching query over the graph and a
text semantic analysis over the resulting subgraphs video’s
description in order to extract entities (entity recognition
task).

We end by presenting an example from [15]: a workflow
from the marketing domain, where a PageRank graph analy-
sis task identifies the most influential customers, a different
task performs sentiment analysis of customers’ reviews to
discover the satisfied ones, and finally a join of the two re-
sultsets is performed.

3. AN OVERVIEW OF MELOGRAPH
The main components that build up the MELOGRAPH

internals are: the DSL kneaded in a language workbench,
the Candidate Solutions Assembler, the Ranker and the So-
lution Packager. Now let us present some details for each
component.

Our domain specific language, MELOGRAPHy, is designed
and built to facilitate the definition of graph processing tasks
in a manner agnostic to the execution engine. In a first
stage, MELOGRAPHy supports functionality only based on
the inventory of algorithms and queries available in the en-
gines. However, in a second stage we want to extend the
language to allow custom vertex-centric iterations using the
Bulk Synchronous Parallel Model. We give some insights
into our DSL in section 4 of the paper.

Based on the inventory of engines and on a set of patterns,
the Candidate Solutions Assembler (CSA) builds the possi-
ble pipelines for solving the graph processing task. The CSA
is concerned with the feasibility of the solution, not with its
optimality, therefore some of the candidate solutions it pro-
duces may exhibit weak performance at runtime.

It is the role of the Ranker component to reward or to pe-
nalize candidate solutions based on a set of heuristics. Ide-
ally, a cost-based model should be employed by the Ranker
to build its final ranking of the candidate solutions; we’ll
address this aspect in a future study. From the cost per-
spective, for the moment we can anticipate adopting the ap-
proach to treat execution engines as black boxes; this idea
already won consensus among both Big data management
researchers (e.g. ” A ’black box’ approach makes a lot more
sense when coping with disparate underlying engines” [16])
and multi-engine workflows researchers (e.g. [3] present an
optimization of the workflow scheduling which is ”orthog-
onal to (and in fact enhanced by) any optimization effort
within a single engine”).

Finally, the Solution Packager prepares all the necessary
shell scripts to launch in execution the various tools found
in each of the top-N ranked candidate solutions. Therefore,
the final result of MELOGRAPH consists in a number of N
folders in the local file system, each folder storing:

• the file containing the code source generated by the
language workbench at compilation time;

• additional ETL scripts/programs to convert inputs to
required format or to load data in a graph database;

• a driver script that orchestrates all the tools in that
solution.

The next section presents how MELOGRAPH works, from
receiving the input task to packaging a set of alternative so-
lutions.

4. MELOGRAPH IN ACTION
Before presenting the processing workflow of MELOGRAPH,

in current version, let us first provide some insights into ba-
sic MELOGRAPHy domain specific language.

Regarding the DSL development environment we opted
for the JetBrains MPS metaprogramming system[10] and
made use of its model-to-model transformation approach to
code generation. JetBrains MPS separates language devel-
opment concerns into:

• structure (types of nodes in the Abstract Syntax Tree
and their relationships), made of concepts organized
in hierarchies;

• editor in charge of visualization of syntax from the
user’s perspective, optionally exhibiting some customized
behaviour;

• generator which ”defines the denotational semantics for
the concepts in the language”[10].

The root concept in MELOGRAPHy’s structure is the Task.
For this concept, Figure 1 presents the three aforementioned
concerns. Let us briefly make some comments.

Firstly, we highlight our choice to use the GraphAlgorithm
concept to abstract both queries (e.g. pattern matching) and
graph analytics (e.g. PageRank).

Secondly, in terms of data sources, the minimal informa-
tion needed to build and to analyze the graph is its struc-
ture, which is given by the edges together with their inci-
dent vertices identifiers. This is why dataSourceEdgeInfo
is mandatory, whereas dataSourceV ertexInfo is optional.
We realize that this approach misses out the isolated nodes,
but the user still has the option to load both the edges and

Figure 1: Insights into MELOGRAPHy DSL

Figure 2: Illustration of edge and vertex data source
concepts in MELOGRAPHy

the vertices data sets and hence include isolated vertices too.
Besides eliminating unnecessary data loads, our approach
has a more subtle benefit: it easily accommodates polyglot
persistence, where vertex information is stored in a separate
datastore than the information from which we build edges.
One final comment is that we take into consideration adding
one more child to the Task’s aforementioned structure, with
the scope of empowering the user to suggest his/her pre-
ferred execution engine.

Figure 2 depicts the structure of concepts that extend
EdgeDataSourceType and V ertexDataSourceType for the
specific case of table data source (e.g. in Hive; but also in a
relational database in Oracle or MySQL). In a brief paren-
thesis we comment that given a relational database table
as data source, MELOGRAPH will automatically include
Sqoop in all candidate solutions pipelines and thus the ac-
tual input to the graph algorithm will be the HDFS file
obtained after loading the data. Thus, in the source code
generation templates we use file input directly in such cases.

Let us also remark that except from the case of graph
databases (where this information is native), for the rest of
the data sources it is mandatory to specify the means of
accessing edges’ endpoints. In the illustrated case of a table
data source locators are column names, similarly in the case
of a CSV file locators are field indices and in the case of
HBase locators are fully qualified columns names from some
column family.

We advance now to the MELOGRAPH workflow. As
shown in Figure 1, the use of mapping configurations makes
it possible to generate code for multiple engines at the same
time according to a set of Java code templates developed by
us. Details of this architecture are given in Figure 3.

Along with engines-specific code, we generate the class
MELOGRAPHclass that uses the functionality of all MEL-
OGRAPH components discussed in the overview section of
this paper. However, the ranking of the solutions can be
obtained only when this Java program is run, consequently
some of the heuristics need to be implemented in the model-
to-model transformers, too.

With the data sources and the algorithm specified, MEL-

Figure 3: MELOGRAPH generating multi-engine
source code for a Task at runtime

OGRAPH’s Candidate Solutions Assembler will emit all fea-
sible pipelines to accomplish the task. This involves assem-
bling tools based on predefined patterns. Except from the
data movement scripts that MELOGRAPH will eventually
generate, we need to embed these patterns in the model-
to-model transformer for each individual engine too. This
approach is required by the fact that all source files are gen-
erated at once and need to be consistent among them. MEL-
OGRAPH’s Ranker will then rank the solutions and output
a list of the top-N solutions.

5. CONCLUSIONS
The current state of the art in multi-engine processing

workflows on Big Data displays increasing interest in tack-
ling the practical challenges raised by the contemporaneous
Big Data ecosystem. We join this emerging research move-
ment and present in this paper the first bricks that we’ve
put in developing MELOGRAPH.

MELOGRAPH is specialized in graph processing tasks
which are generally part of ampler workflows; however, the
whole workflow needs to be developed in JetBrains MPS,
too. In the design of MELOGRAPH we address hetero-
geneity at all levels, from the data sources, execution engines
and runtime computing environment (through the heuristics
used in ranking candidate solutions).

6. REFERENCES
[1] Cascading lingual,

http://www.cascading.org/projects/lingual/.

[2] F. Bajaber, S. Sakr, O. Batarfi, A. Altalhi,
R. Elshawi, and A. Barnawi. Big data processing
systems: State-of-the-art and open challenges. In
Proceedings of the ICCC 2015, pages 1–8, April 2015.

[3] K. Doka, N. Papailiou, D. Tsoumakos, C. Mantas, and
N. Koziris. Ires: Intelligent, multi-engine resource
scheduler for big data analytics workflows. In
Proceedings of the 2015 ACM SIGMOD, SIGMOD ’15,
pages 1451–1456, New York, NY, USA, 2015. ACM.

[4] J. Duggan, A. J. Elmore, M. Stonebraker,
M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. Zdonik. The bigdawg
polystore system. SIGMOD Rec., 44(2):11–16, Aug.
2015.

[5] D. Ediger, S. Appling, E. Briscoe, R. McColl, and
J. Poovey. Real-time streaming intelligence:
Integrating graph and nlp analytics. In Proceedings of
IEEE HPEC, 2014, pages 1–6, Sept 2014.

[6] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska,
U. Cetintemel, V. Gadepally, J. Heer, B. Howe,
J. Kepner, T. Kraska, S. Madden, D. Maier,
T. Mattson, S. Papadopoulos, J. Parkhurst,
N. Tatbul, M. Vartak, and S. Zdonik. A
demonstration of the bigdawg polystore system.
Proceedings of the PVLDB Endow., 8(12), 2015.

[7] D. Ghosh. Multiparadigm data storage for enterprise
applications. IEEE Softw., 27(5):57–60, Sept. 2010.

[8] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor,
A. Clement, and S. Hand. Musketeer: All for one, one
for all in data processing systems. In Proceedings of
the EuroSys ’15, pages 2:1–2:16, New York, NY, USA,
2015. ACM.

[9] M. Grover, T. Malaska, J. Seidman, and G. Shapira.
Hadoop Application Architectures. O’Reilly, Beijing,
2015.

[10] JetBrains. Mps user’s guide,
https://confluence.jetbrains.com/display/mpsd32/mps+user

[11] V. Kantere and M. Filatov. Modelling processes of big
data analytics. In J. e. a. Wang, editor, WISE (1),
volume 9418 of Lecture Notes in Computer Science,
pages 309–322. Springer, 2015.

[12] G. Kougka, A. Gounaris, and K. Tsichlas. Practical
algorithms for execution engine selection in data flows.
Future Generation Computer Systems,
45(Complete):133–148, 2015.

[13] ORACLE. Unified query for big data management
systems integrating big data systems with enterprise
data warehouses. Technical report, ORACLE,
ORACLE, Jan. 2015.

[14] A. Simitsis, K. Wilkinson, M. Castellanos, and
U. Dayal. Optimizing analytic data flows for multiple
execution engines. In Proceedings of the 2012 ACM
SIGMOD, pages 829–840, New York, NY, USA, 2012.
ACM.

[15] D. Simmen, K. Schnaitter, J. Davis, Y. He,
S. Lohariwala, A. Mysore, V. Shenoi, M. Tan, and
Y. Xiao. Large-scale graph analytics in aster 6:
Bringing context to big data discovery. Proc. VLDB
Endow., 7(13):1405–1416, Aug. 2014.

[16] M. Stonebraker. The case for polystores,
http://wp.sigmod.org/?p=1629, July 2015.

[17] D. Tsoumakos and C. Mantas. The case for
multi-engine data analytics. In D. e. a. an Mey, editor,
Euro-Par 2013: Parallel Processing Workshops,
volume 8374 of Lecture Notes in Computer Science,
pages 406–415. Springer Berlin Heidelberg, 2014.

