
Optimizing, Planning and Executing Analytics Workflows
over Multiple Engines

Katerina Doka ?, Maxim Filatov #, Victor Giannakouris ?, Verena Kantere #, Nectarios Koziris ?,
Christos Mantas ?, Nikolaos Papailiou ?, Vassilis Papaioannou ?, Dimitrios Tsoumakos ♦

?National Technical University of Athens, Greece
#University of Geneva, Switzerland

♦Ionian University, Greece

ABSTRACT
Big data analytics have become a necessity to businesses
worldwide. The complexity of the tasks they execute is ever
increasing due to the surge in data and task heterogene-
ity. Current analytics platforms, while successful in har-
nessing multiple aspects of this “data deluge”, bind their
efficacy to a single data and compute model and often de-
pend on proprietary systems. However, no single execution
engine is suitable for all types of computation and no single
data store is suitable for all types of data. To this end, we
present and demonstrate a platform that designs, optimizes,
plans and executes complex analytics workflows over multi-
ple engines. Our system enables users to create workflows of
variable detail concerning the execution semantics, depend-
ing on their level of expertise and interest. The workflows
are then analysed in order to determine missing execution
semantics. Through the modelling of the cost and perfor-
mance of the required tasks over the available platforms, the
system is able to match distinct workflow parts to the ex-
ecution and/or storage engine among the available ones in
order to optimize with respect to a user-defined policy.

1. INTRODUCTION
Big data analytics have become indispensable for the ma-

jority of industries, enabling engineers, analytics experts
and scientists alike to tap the potential of vast amounts of
business-critical data. Such data analysis demands a high
degree of parallelism in both storage and computation and
has given rise to diverse execution engines and data stores
that target specific data and computation types. Perfor-
mance optimizations thereof assume strictly single-engine
environments, thus considering specific data formats and
query/analytics task types [9, 14].

However, modern workflows have become increasingly long
and complex and may include multiple data types such as
relational, key-value, graph, etc., as well as greatly diverse
operators, ranging from simple Select-Project-Join (SPJ)

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

and data movement to complex NLP-, graph- or custom
business-related operations. What is more, they are exe-
cuted under varying constraints and policies (e.g., optimize
performance or cost, etc.). There currently exists no single
platform that can optimize for this complexity [17].

Sensing this trend, companies now offer cloud software dis-
tributions that incorporate different processing frameworks,
data stores and libraries to alleviate the burden of multi-
ple installations and configurations [1, 2]. Yet, such multi-
engine environments lack a meta-scheduler that could au-
tomatically match tasks to the right engine(s) according to
multiple criteria, deploy and run them without manual in-
tervention.

To address multi-engine analytics workflow optimization
we demonstrate an integrated, open source platform for cre-
ating, managing, executing and monitoring complex analyt-
ics workflows1. Its goal is twofold: (a) To allow the user
to design workflows that span multiple engines and data
stores by either giving specific details on execution seman-
tics of tasks and data stores or leaving the platform to deter-
mine them through an automated workflow analysis phase.
Then, the workflow goes through an automated optimization
phase, before being sent for execution. (b) To provide cost-
based and customizable resource management of the diverse
execution and storage engines available by adaptively choos-
ing to execute each sub-part of the workflow to a (possibly
different) deployed engine in order to enhance performance

Towards this direction, our system supports the most preva-
lent open-source execution models (e.g., Map-Reduce, Bulk
Synchronous Parallel) as well as state-of-the-art centralized
and distributed storage engines (RDBMSs, NoSQL, distributed
file-systems, etc.) and is able to optimize workflows consist-
ing of tasks that range from simple group-by, aggregation
or complex joins between different data sources to machine-
learning tasks.

Our demonstration will showcase our system’s ability to i)
model operator performance according to different engines
and their resources and ii) adaptively decide on which oper-
ator version to run based on the optimization policy and the
available engines. The demonstration platform will integrate
Hadoop [4], Spark [5], PostgreSQL [3] and HDFS and oper-
ate upon real-life and synthetic workflows chosen to include
diverse datasets and computation types. The participants
will have a rich interaction with the platform, controlling

1The presented system is part of the ASAP (Adaptive, highly
Scalable Analytics Platform) EU-funded project. ASAP en-
visions a unified, open-source execution framework for scal-
able data analytics. http://www.asap-fp7.eu/



 m
o

n
ito

rin
g

Enforcer

Model DB

processing 
engines

data stores

Decision 
Making

Modeling 

Planner

IReS Platform

O
p

ti
m

iz
er

Ex
ec

u
to

r

Model 
refinement

Profiling

Interface

parse refine

match validate

O
p

ti
m

iz
er

A
n

al
yz

er
PAW

workflow user policy

Operator
lib

Figure 1: System architecture

policy and input aspects, while being able to evaluate the
advantages of multi-engine optimization by inspecting gen-
erated plans and output.

2. SYSTEM ARCHITECTURE
The system integrates two core components of the ASAP

project, namely PAW (Platform for Analytics Workflows),
which acts as the workflow management tool of ASAP and
IReS (Intelligent Resource Scheduler) [7], which creates the
optimal plan and executes it. The two components collab-
orate with the IReS platform for the creation, optimization
and execution of user workflows. Figure 1 depicts the archi-
tecture of the integrated system to be demonstrated.

The components of PAW communicate using the internal
workflow representation and are:

• Interface. The interface enables users to interactively
create and/or modify a workflow.

• Analyzer. The analyzer parses the workflow, identifies
operators and data stores and maps them to existing oper-
ator implementations, generates metadata of edges, finds
edges where the data conversion should be applied and
adds the appropriate conversions. The operator imple-
mentations reside in the IReS operator library. The op-
erators are classified as, either analytics operators, which
perform the core analytics jobs over the data, or the asso-
ciative operators, which serve as ‘glue’ between different
engines and perform move and transformation operations.

• Optimizer. The optimizer generates a functionally equiv-
alent workflow, optimized for performance objective.

After the generation of the optimized workflow, PAW hands
it to the IReS platform for further cost-based optimization
according to the use-defined policy, planning and execution.
IReS receives from PAW the input that is necessary for its
operations and identifies execution artifacts such as opera-
tors, data, their dependencies and accompanying metadata.
Moreover, it validates the user-defined policy. All this infor-
mation must be robustly identified, structured in a depen-
dency graph and stored.

IReS is decomposed in two layers, the cost-based optimizer
and the executor layer:

• The cost-based optimizer layer is responsible for opti-
mizing the execution of an analytics workflow with respect
to the policy provided by the user. The core component
of the optimizer is the Decision Making module, which
determines the optimal execution plan in real-time. This
entails deciding on where each subtask is to be run, under
what amount of resources provisioned, the plan for mov-
ing data to/from their current locations and between run-
times (if more than one is chosen) and defining the output
destinations. Such a decision must rely on the character-
istics of the analytics task in hand and the models of all
possible engines. These models are produced by the Mod-
eling module and stored in a database called Model DB.
The initial model of an engine results from profiling and
benchmarking operations in an offline manner, through
the Profiling module. This module directly interacts with
the pool of physical resources and the monitoring layer
in-between. While the workflow is being executed, the ini-
tial models are refined in an online manner by the Model
refinement module, using monitoring information of the
actual run. Such monitoring information is kept in the
IReS DB and is utilized by the decision making module
as well, to enable real-time, dynamic adjustments of the
execution plan based on the most up-to-date knowledge.

• The executor layer is the layer that enforces the optimal
plan over the physical infrastructure. It includes methods
and tools that translate high level “start runtime under x
amount of resources”, “move data from site Y to Z” type
of commands to a workflow of primitives as understood
by the specific runtimes and storage engines. Moreover, it
is responsible for ensuring fault tolerance and robustness
through real-time monitoring.

Both PAW and IReS are open source2. The interface of
PAW is a web application in Jade [10] and CoffeeScript [6],
and Grunt [8] compiles it in HTML and JavaScript, respec-
tively. It communicates with other modules using Nginx
web server [15] and PHP-FPM [16]. The analysis and opti-
misation modules of PAW are implemented in Python. The
IReS platform modules are implemented in Java. The en-

2https://github.com/project-asap



forcer module relies on YARN [18] and extends Cloudera
Kitten [13], a framework that allows the definition of oper-
ator execution on top of YARN.

3. DEMONSTRATION DESCRIPTION
The demonstration shows how PAW and IReS collabo-

rate in order to optimize an analytics workflow, produce an
execution plan that conforms to a user-defined policy and
enforce it. We show that the system can be used by users
with different level of expertise in order to create workflows.
The tool implements a novel workflow language [11, 12] that
allows the design of a workflow that spans multiple engines
and data stores by either giving specific details on execution
semantics of tasks and data stores or leaving the platform to
determine the execution semantics and data stores, through
an automated workflow analysis phase. The analysed work-
flow then goes through a decision making phase, where the
execution plan that optimizes user-defined parameters (e.g.,
performance, cost, etc.) is produced based on the operator
models. Finally, the optimized workflow is sent for execu-
tion.

The system is controlled by a comprehensive web-based
GUI that attendees will utilize. The GUI controls a cloud-
based deployment of several runtime engines and data stores
over 16 virtual machines of an Openstack cluster.

The users will be able to test the system either using one
of our predefined workflows or assembling their own, using
operators from the ASAP operator library. A diverse set of
operations of varying complexity is covered including basic
SQL queries (selections, projections, joins) and ML algo-
rithms (classification and clustering).

The predefined workflows represent real use cases driven
by business needs. These cover complex data manipulations
in the areas of business analytics on telecommunication data
and web data analytics, provided by a large telecommunica-
tions company and a well-known web archiving organization
respectively. The input datasets for these workflows consist
of anonymized telecommunication traces and web content
data (WARC files). Subsets of those datasets can be used
for each of the available workflows.

4. USE CASE EXAMPLE
This example shows the telecommunication use case of

ASAP. This workflow detects peaks representing an event,
by comparing the density of population within a region in a
given moment against the expected density for that area at
that hour of the day. It involves processing of anonymized
Call Detail Records (CDR) data (residing in an RDBMS)
via clustering along time and space in order to detect peaks
in load according to a set of criteria. The dataset of peaks is
used to discover clusters of calls that occur with or without
regularity. Figure 2 displays the workflow.

The first steps of the process, data prep and convert ts,
consist of call aggregation by user id and extraction of time
periods (for instance, days) and smaller time slots (for in-
stance, hours). The regions table contains links of tower
ids and regions. Time slots and regions of analysis, which
are used in filter region, are parameters provided by the
user. These two parameters, then, allow defining a spatio-
temporal grid, and each observation of an input dataset can
be assigned to one of its cells. The number of observations
that fall in a cell defines its density. The input data is par-

Figure 2: Workflow for the detection of peaks

titioned into two sets: a training dataset (for instance, 1st
month) and a test dataset (for instance, left time period),
two filters following after convert ts produce them. For both
datasets the spatiotemporal grid of densities is computed.
The first is used to compute the densities of a typical pe-
riod for each region. The second dataset is then compared
against such typical period in order to detect significant de-
viations. Based on the densities obtained for each region
and each time slot over the training dataset, an expected
density value is computed for each region, by averaging the
densities (week aggration) measured at the same time slot of
all the periods in the time window covered by the dataset.
For instance, we might obtain an expected density for each
pair (region, hour of the day), i.e., 24 values for each re-
gion, assuming 24 one-hour time-slots. Then, for each region
and each time-slot, the corresponding density is compared
against its expected value (join and calc ration): if the dif-
ference is significant (filter peaks), an event of form (region,
weight, time slot) is produced (events), representing its spa-
tiotemporal slot and a discretized measure (weight) of how
strong was the deviation.

Figure 3 displays the optimized workflow produced by
PAW’s Optimizer. In this there are tasks pushed closer to
the start of the workflow and merged in a single node, these
tasks are in the original nodes join, filter region and regions
dataset. This optimization has been done accordingly to a
heuristic that moves restrictive operators (in this case filter
region) to the root of the workflow. Furthermore the Opti-
mizer of PAW checks that this rearrangement and merging
can be performed.

This workflow is then handed to the IReS platform, where
the conceptual workflow operators are matched with imple-
mentations that exist in the operator library, creating all
alternative execution paths. After consulting the cost mod-
els of the implemented operators, the platform chooses the
plan and decides on the exact engines and their setup in
order to optimize the workflow in terms of the user-defined
policy. In our running example, if the input dataset is large
the decision making module opts for a plan that contains dis-
tributed implementations of the operators in Spark rather



Figure 3: Optimised workflow for the detection of
peaks

than centralized ones in PostgreSQL. This choice entails the
transfer of the dataset from PostgreSQL (where it originally
resides) to HDFS, thus an auxiliary move operator is added
to the workflow. Moreover, assuming the user only cares to
minimize execution time, IReS decides to utilize all available
nodes of the cluster.

Acknowledgements
This work has been supported by the European Commission
in terms of the ASAP FP7 ICT Project under grant agree-
ment no 619706. Nikolaos Papailiou has received funding
from IKY fellowships of excellence for postgraduate studies
in Greece - SIEMENS program.

5. REFERENCES
[1] Cloudera Distribution CDH 5.2.0.

http://www.cloudera.com/content/cloudera/en/
downloads/cdh/cdh-5-2-0.html.

[2] Hortonworks Sandbox 2.1.
http://hortonworks.com/products/hortonworks-
sandbox/.

[3] Postgresql. http://www.postgresql.org/.

[4] The Apache Software Foundation: Apache Hadoop.
http://hadoop.apache.org/.

[5] The Apache Software Foundation: Apache Spark.
https://spark.apache.org/.

[6] Coffeescript. http://coffeescript.org/.

[7] K. Doka, N. Papailiou, D. Tsoumakos, C. Mantas, and
N. Koziris. Ires: Intelligent, multi-engine resource
scheduler for big data analytics workflows. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1451–1456.
ACM, 2015.

[8] Grunt - the javascript task runner.
http://gruntjs.com/.

[9] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A Self-tuning
System for Big Data Analytics. In CIDR, volume 11,
pages 261–272, 2011.

[10] Jade - template engine. http://jade-lang.com/.

[11] V. Kantere and M. Filatov. A framework for big data
analytics. In C3S2E, 2015.

[12] V. Kantere and F. Maxim. Modelling processes of big
data analytics. In WISE, 2015.

[13] Cloudera kitten. https://github.com/cloudera/kitten.

[14] H. Lim, H. Herodotou, and S. Babu. Stubby: A
Transformation-based Optimizer for Mapreduce
Workflows. Proceedings of the VLDB Endowment,
5(11):1196–1207, 2012.

[15] Nginx. http://nginx.org/.

[16] Php-fpm (fastcgi process manager).
http://php-fpm.org/.

[17] D. Tsoumakos and C. Mantas. The Case for
Multi-Engine Data Analytics. In Euro-Par 2013:
Parallel Processing Workshops, pages 406–415.
Springer, 2014.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al. Apache hadoop yarn: Yet
another resource negotiator. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 5.
ACM, 2013.


