
Copyright © 2016 for this paper by its authors. Copying permitted for private and aca-

demic purposes. 

Model-Based Prototype Development to Support  

Early Validation of Cyber-Physical System Specifications 

Jennifer Brings, Philipp Bohn, Torsten Bandyszak, Felix Föcker, and Marian Daun 

paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany 

{jennifer.brings, philipp.bohn, torsten.bandyszak, 

marian.daun}@paluno.uni-due.de 

Abstract. [Motivation] In the engineering of cyber-physical systems, attention 

is given to early validation of requirements artifacts. The use of prototypes is one 

known technique to identify incorrectness and aberrations from the stakeholder 

intentions early. [Problem] Software prototypes of cyber-physical systems’ soft-

ware, however, often need to be adapted to the prototype’s hardware, which may 

differ from the system’s hardware. This leads to differences between the system’s 

and the implemented prototype’s specification, impeding the applicability of val-

idation results to the system’s requirements. [Solution Idea] To support the val-

idation of requirements artifacts for cyber-physical systems, we propose the gen-

eration of an explicit prototype specification. Traceability relations aid the re-

quirements engineer in deciding whether a finding actually corresponds to a de-

fect in the requirements or whether it results from changes due to the prototype’s 

different hardware. [Contribution] In this paper, we propose a model-based pro-

totyping approach for validating requirements artifacts of cyber-physical sys-

tems. The approach relies on the generation of an explicit prototype specification 

and on a categorization scheme for validation results. The latter allows determin-

ing the impact of the validation results on the system’s requirements, and facili-

tates the correction of errors. 

Keywords: Early validation, model-based development, prototype engineering, 

cyber-physical systems 

1 Introduction 

A major challenge in system development is specifying requirements that correctly re-

flect underlying stakeholder needs. Relevant stakeholder intentions are often unclear, 

ambiguous, or simply unknown, which leads to the development of systems that fail to 

fulfill their purposes. The later these problems are discovered, the higher the cost for 

fixing them [1]. Hence, it is important to validate requirements as early as possible [2]. 

One commonly acknowledged technique for validating requirements is the develop-

ment of prototypes (e.g., [3], [4]). Prototypes allow stakeholders to experience and in-

teract with the system, which helps them decide if a property is desired or not.  



To validate existing requirements and elicit further stakeholder intentions by proto-

typing, it is important to evaluate a system’s behavior and its respective functional in-

terdependencies in a sufficiently realistic environment. However, this is often not fea-

sible in the engineering of cyber-physical systems (CPS) software. Since CPS consist 

of software and hardware parts, either the hardware needs to be simulated or the soft-

ware needs to be deployed on some hardware that is different from the hardware that 

the final system will use (e.g., an electronic control unit of a previous version). Hence, 

there may be significant differences between the system’s and the prototype’s hard-

ware, which impedes the use of the prototype for requirements validation. The proto-

type hardware, for example, may not offer a specific sensor that the system needs to 

gain information about its environment. In this case, the required information must be 

obtained from other sources, e.g., by using a combination of different sensors or by 

simulation. This causes a difference between the prototype’s requirements and the re-

quirements for the actual system. Hence, some validation results (e.g., those concerning 

the missing sensor) are only applicable to the prototype but not to the system itself. 

To help determine if a validation result is applicable to the system requirements and, 

consequently, to discover incorrect and missing requirements, we propose a model-

based approach for deriving a prototype specification from the system specification, as 

well as for analyzing and transferring the validation results. To this end, we propose a 

technique and a supporting classification scheme for categorizing validation results, 

which allow for determining, which validation results are applicable to the system spec-

ification. Furthermore, this model-based approach supports the correction of the system 

specification based on a corrected prototype specification. 

This paper is structured as follows: Section 2 introduces our solution concept. Sub-

sequently in Section 3, we demonstrate the solution concept using an avionics collision 

avoidance system as case example. Section 4 discusses related work and Section 5 con-

cludes the paper.  

2 Solution Concept 

Developing prototypes has proven to be an effective way for validating requirements 

(see [5]). Yet the development of prototypes for cyber-physical systems faces several 

challenges due to their typically close interaction with their environment (cf. e.g., [6]). 

To overcome these challenges, we propose a model-based approach for the develop-

ment of prototypes to aid in validating requirements specifications of cyber-physical 

systems. Our approach provides semi-automated support for the early validation of 

cyber-physical systems specifications by providing guidance on deriving prototype 

specifications and analyzing the obtained validation results w.r.t. their applicability to 

the original system. Fig. 1 illustrates the steps and artifacts involved in the approach, 

which are: 

1. A prototype specification is derived from the system specification. While doing so, 

traceability links and rationales for changes are documented. Changes can for in-

stance, result from the use of a hardware component different from the final system’s 

hardware. This step will be explained in more detail in Section 2.1. 



2. The prototype is developed according to the prototype specification in order to ob-

tain an executable prototype of the cyber-physical system. 

3. The prototype is demonstrated so that stakeholders can assess and evaluate its be-

havior. Additionally, common inspection and other validation techniques might be 

applied. Validation results are documented as output of this step (see Section 2.2). 

4. The validation results are checked with respect to their applicability to the system 

specification (further details in Section 2.3). To this end, trace links and rationales 

for identifying differences between system and prototype specification need to be 

considered. 

5. A corrected system specification is created semi-automatically based on the valida-

tion results. Some corrections can be incorporated automatically into the system 

specification while others need to be revised manually (Section 3.5 will give exam-

ples for both cases) 

System 

specification

1. Derive 

prototype 

specification
Prototype

specification
Rationales 

for changes

Traceability links Revised system 

specification

2. Implement prototype 

according to the   

prototype specification

3. Obtain validation 

results from 

stakeholders 

4. Check 

applicability of 

validation results

5. Revise system 

specification

Prototype Validation

results

 

Fig. 1. Solution approach 

In the following subsections, we elaborate on the main parts of our contribution. First, 

we will describe how to derive the prototype specification from the system specification 

and how to document the changes made. Then we elaborate on the validation step of 

our approach, including the attribute scheme, which provides attributes to categorize 

validation results. Last, we explain how this categorization helps determining whether 

a validation result is applicable to the system specification or not.  

2.1 Deriving the Specification of the Prototype 

Due to limited capabilities of the prototype’s hardware, it is often not feasible to imple-

ment the system requirements specification as is and deploy it onto the prototype’s 

hardware. Instead, a specific prototype specification has to be created to ensure struc-

tured prototype development. Our approach relies on the idea to derive this prototype 

specification from the original system specification. In doing so, changes from the sys-

tem specification are incorporated in the prototype specification. These changes take 

the specific capabilities of the prototype’s hardware into account, which most likely 



differs from the originally intended CPS hardware. For example, in the absence of a 

specific sensor, the prototype might estimate context measurements.   

A crucial task that goes along with these changes is the documentation thereof. As 

model-based engineering of cyber-physical systems can be seen as a de-facto standard 

[7], automated traceability techniques can be used to document relationships between 

originating model elements in the system specification and the adaptations in the pro-

totype specification (cf. [8]). Traceability- or trace-links (cf. e.g., [9]) allow for docu-

menting relationships between development artifacts. Typed trace links are used to pro-

vide additional information regarding the type of relationship between two model ele-

ments [10]. Several taxonomies for traceability relationship types have been suggested 

in the literature (cf. e.g., [11], [8]). For documenting changes between the system’s 

requirements specification and the prototype’s requirements specification, we use trace 

links to trace the evolution of software artifacts, such as those suggested by [12], for 

example. In particular, we distinguish different kinds of traceability links (see Table 1) 

to ensure proper documentation of the relation between system specification and pro-

totype specification. At the same time, rationales for the traced changes are documented 

as well. 

Table 1. Traceability link types used to document differences between the system specification 

and the prototype specification 

Traceability  

link type 
Description 

Replaces 

This type of trace link connects one model element from the system specification with one 

model element from the prototype specification if they both specify the same underlying 

functionality, yet some changes had to be made. 

Refines 
This type of trace link connects one model element from the system specification with sev-

eral model elements from the prototype specification, which specify the same functionality. 

Add 
This type of trace link indicates that a model element is added to the prototype specification, 

which does not correspond to any model element in the system specification. 

Delete 
This type of trace link indicates that a model element in the system specification does not 

correspond to any model element in the prototype specification. 

2.2 Validating the Prototype 

For validating the system under development, the stakeholders experience the proto-

type’s behavior and assess each of the intended system’s functionality with respect to 

its presence and correctness in the implemented prototype. In doing so, stakeholders 

determine if a functionality is a necessary feature of the system and if further function-

alities are missing. Each validation result is documented in a structured way and cate-

gorized according to an attribute scheme. 

Our classification of validation results is based on the Orthogonal Defect Classifica-

tion scheme (ODC) [13]; in particular, on the defect qualifier attribute of the ODC. This 

attribute allows for classifying the reasons for defects in software artifacts to support 



requirements document inspections [14]. Table 2 shows the possible values for each 

attribute. For example, a functionality, which is wanted but implemented incorrectly in 

the prototype is classified as present, incorrect, and necessary. While this scheme al-

lows for several combinations of attribute values, some value combinations are not pos-

sible. It is, for instance, impossible to assess the correctness of a functionality that is 

not present at all. 

Table 2. Attribute scheme for validation results 

Attribute Values Description 

Presence present / not present Does the prototype provide the functionality? 

Correctness correct / incorrect Is the functionality implemented correctly in the prototype? 

Relevance/ 

Acceptance 

necessary / arbitrary 

/ unwanted 

Is the functionality necessary (i.e., desired by the stakehold-

ers), arbitrary (i.e., neither desired nor unwanted by the stake-

holders), or unwanted (i.e., it must not implemented)? 

2.3 Applying the Prototype’s Validation Results to the System Specification 

Since the stakeholders can only validate the prototype’s behavior and not the intended 

system’s behavior, each validation result obtained from the stakeholder’s validation 

activities needs to be checked with respect to its applicability to the original system 

specification itself. The previously documented traceability information in combination 

with the classification of validation results determine for which validation results this 

check can be automated, and which validation results have to be checked manually. For 

those validation results that can be checked automatically, defects as well as correct 

functionalities can be identified in the system specification in a fully automated manner.  

Fig. 2 illustrates the steps involved in checking if a validation result is applicable to 

the system specification: (For a coherent example please refer to Section 3) 

 First, for each validation result, the prototype specification is checked if the respec-

tive functionality is documented correctly therein (Step 4.1 in Fig. 2). Whether a 

certain functionality is documented correctly can be assessed from its respective at-

tributes (cf. Section 2.2). Two combinations of attributes indicate a correctly docu-

mented functionality in the prototype specification: 
1. The functionality is necessary or arbitrary, it is correctly implemented w.r.t. the 

stakeholder intentions, and it is present in the prototype specification 
2. The functionality is not necessary and not present in the prototype specification. 

This case, however, is unlikely to be relevant as stakeholders are unlikely to 
identify any non-implemented behavior as unnecessary. 

 If a functionality has been identified as correctly documented in the prototype spec-

ification, the documented traceability information (see Section 2.1) is used to iden-

tify corresponding parts in the system specification. Analyzing respective trace 

links facilitates checking whether functionality is correctly specified in the system 

specification (Step 4.2 in Fig. 2). This check leads to one of the following cases: 



Validation

result

4.1 Check if respective 

functionality is documented 

correctly (i.e. according to the 

stakeholder intentions) in the 

prototype specification

Prototype

specification

No

Rationales

Yes

4.4 Check if 

change was 

necessary  

Change 

necessary?

Yes

No

Functionality 

cannot be 

validated 

automatically

4.2 Check automatically if the 

functionality is documented 

correctly in the system specification 

(i.e., if the system specification 

contains corresponding 

functionality) 

Traceability

links

Valid functionality

identified

Yes No

Fuctionality 

correctly

documented in 

the prototype

specification

4.5 Revise prototype 

specification and 

prototype

Defect in system 

specification identified

4.3 Check manually if functionality 

is documented correctly in the 

system specification

Defect in 

prototype 

specification 

and protoype 

found
Functionality 

documented 

correctly in 

the prototype 

specification?

Functionality 

documented correctly 

in system 

specification?

 

Fig. 2. Applicability check for validation results 

Case 1. The corresponding parts in the system specification can now also be con-
sidered correct with respect to the stakeholder intentions. In this case, a 
valid functionality has been identified. 

Case 2. The system specification contains a defect if the documented traceability 
information shows no corresponding part in the system specification. For 
unwanted functionality, which has been identified, corresponding parts in 
the system specification can be removed automatically and necessary func-
tionality that is missing in the system specification can be added automat-
ically if it is correctly documented in the prototype specification. 

 If a functionality has not been documented correctly in the prototype specification, 
there could be two reasons for this. Either the prototype and its specification contain 
a defect, or the prototype and its specification had to be altered for a specific reason. 
Hence, it is necessary to check if there are reasons for changes (Step 4.4 in Fig. 2). 
Since all alterations, which were made when deriving the prototype specification, 
and the reasons for them were documented, it is easy to determine which of the 
following is the case: 
Case 3. If a functionality is not documented correctly in the prototype specification 

and subsequently not implemented as desired in the prototype because the 
prototype’s hardware is incapable of supporting this functionality, the rea-



son has been documented. Here, automated validation of the system spec-
ification is not possible, and the validation has to be done manually, i.e., 
the correctness of the functionality represented in the system specification 
needs to be checked manually (Step 4.3 in Fig. 2). Nevertheless, the in-
sights gained from the stakeholders during the demonstration of the proto-
type may offer valuable support in these cases as well. 

Case 4. If there is no reason for a functionality not being documented correctly, a 
defect in the prototype, the prototype specification, and thus in the corre-
sponding part of the system specification has been discovered. Instead of 
remedying this defect manually in the system specification and thereby 
risking introducing new defects, a manual correction of the prototype spec-
ification and the prototype (Step 4.5) enables the later validation of the 
correction in another iteration.  

In addition to Fig. 2, Table 3 briefly summarizes these four distinct cases that can be 

identified in applicability checking. As can be seen, the validation results obtained can 

also aid in the correction of the system specification if defects have been discovered. In 

some cases, this correction can even be done automatically.  

Table 3. Cases in applicability checking of validation results according to Fig. 2 

Case 

Functionality 

documented 

correctly? 

No changes 

traceable? 

Rationale doc-

umented? 

Applicable to 

system specifi-

cation? 

Correct? 

1   n/a   

2   n/a  
 

(Automated cor-

rection applicable) 

3  n/a   Manual review 

necessary 

4  n/a  
Revision of prototype and prototype 

specification necessary 

3 Evaluation Example: Avionic Collison Avoidance System 

In this section, we will discuss the application of our approach to an avionic collision 

avoidance system. Therefore, we will provide details on each step of the approach as 

described in Section 2 and outlined in Fig. 1. We evaluated the applicability of the 

approach using an avionic proactive collision avoidance system (PCAS) as a case ex-

ample. The PCAS shall exchange comprehensive flight data (i.e., complete flight 

plans), and propagate these flight information among the different aircraft forming a 

CPS network. This shall allow airplanes to prevent collisions proactively, i.e., long be-

fore a potential collision may occur. Some more details on the PCAS can be found in 

[15]. As hardware for the prototype, a quadcopter was chosen.  

Based on the system specification of the collision avoidance system PCAS, we de-

rived an adapted prototype specification for the chosen technology. Subsequently, we 



implemented and deployed the software prototype to several quadcopters. Hence, mul-

tiple prototypes consisting of hardware and software parts were used to demonstrate the 

behavior of a collision avoidance system in a cyber-physical system network. The 

demonstration of the prototype’s behavior allowed for validating parts of the system 

specification and revealed exemplary defects in other parts of the system specification, 

some of which have been corrected automatically.  

3.1 Step 1: Derivation of the Prototype Specification 

While the collision avoidance system was meant to be deployed in aircraft, the proto-

type was implemented using a quadcopter. These hardware differences necessitated 

several adaptions to the system specification. Fig. 3 shows an excerpt of the system 

specification for the PCAS and the corresponding part from the prototype specification. 

The differences between them are due to the fact that aircraft send out their ID via their 

secondary radar to recognize each other, while quadcopters can only recognize other 

quadcopters via tags using their cameras. For each change, we explicitly documented 

the traceability information using trace links (cf. Section 2.1). 

PCAS Secondary radar

Foreign

aircraft

Own

aircraft identification

Foreign

aircraft identification

Foreign

aircraft identification

alt

Aircraft in

radar range

No aircraft in

radar range

PCAS prototype Primary radar

Foreign

quadcopter

Tag ID

alt

Quadcopter in camera 

viewing area

No quadcopter in 

camera viewing area

Tag

Tag

Own

quadcopter

Tag viewed

opt

opt

<<refine>>

<<replace>>

<<refine>>

<<refine>>

 

Fig. 3. System specification and prototype specification of the PCAS including trace links 

3.2 Step 2: Development of the Prototype 

We developed the prototype for the collision avoidance system according to the proto-

type specification, and tested it extensively to ensure correctness of the prototype w.r.t. 

the prototype specification. Beside the development of the software prototype for the 

collision avoidance system, it was also necessary to develop further software prototypes 

for several other avionic systems, which interact with the PCAS. The collision avoid-

ance system relies on information provided by, e.g., the flight management system and 

the radar. Additionally, the system relies on other avionic systems, such as the flight 

control system to execute necessary flight maneuvers, for example. Hence, these nec-

essary contextual systems had to be prototypically implemented as well, to ensure 

proper functioning of the collision avoidance system prototype.  



The prototype as well as these other systems were implemented using the OSGI 

framework [16]. Fig. 4 illustrates the architecture of the embedded controller, which 

comprises the prototype’s software of the PCAS and the other needed avionic systems, 

and thus simulates these interconnected embedded systems. 

Embedded Controller

Secondary Radar

Flight 

Management 

System

ISecondaryRadar

Proactive 

Collision 

Avoidance System

Autopilot /

Flight Director

IAPFD

Primary Radar

IPrimaryRadar

Flight 

Control System

IFlightControlSystem

SocketREST  

Fig. 4. Architecture of the embedded controller 

Since the software could not be deployed on the quadcopters directly, for each quad-

copter an instance of the embedded controller ran on an ordinary computer, which sends 

commands to their respective quadcopter via Wi-Fi. The control center monitors and 

controls the simulation scenarios. The resulting hardware architecture is depicted in 

Fig. 5.  

AR.Drone 2.0 – 1

„Brutus“

AR.Drone 2.0 – 3

„Lucius“

caesAR

Control Center

caesAR

Embedded

Controller - 1

caesAR

Embedded 

Controller - 3

Wi-Fi

„Colosseum“

Message exchange

Network connection
caesAR

Embedded

Controller - 2

AR.Drone 2.0 – 2

„Cicero“

 

Fig. 5. Network architecture of the prototype system network 

As can be seen, each quadcopter communicates with its own control logic on its em-

bedded controller via Wi-Fi. These embedded controllers are interconnected and simu-

late the communication between the different quadcopters. In case of a detection of 

another quadcopter, the detecting quadcopter informs its embedded controller. Subse-



quently, the embedded controller negotiates adapted routes with the embedded control-

ler of the detected quadcopter. Finally, both embedded controllers inform their quad-

copters about necessary route changes. 

3.3 Step 3: Classification of Validation Results 

The next step is to obtain, document, and categorize results from the validation activi-

ties conducted using the prototype (cf. Section 2.2). An excerpt from the validation 

results obtained from the prototype’s demonstration is shown in Table 4. For example, 

the functionality evaluated in row 1 (Aircraft Identification) shows that the prototype 

is capable of identifying other aircraft (in this case other quadcopters). Hence, this func-

tionality is present in the prototype. Since it is desired for the PCAS to identify aircraft 

in its vicinity, this functionality was furthermore categorized as necessary. However, 

as the prototype does not exchange aircraft IDs via the secondary radar, the stakeholders 

deemed the implementation of this functionality incorrect. 

Table 4. Excerpt from the validation results for the collision avoidance system  

# 
Functional-

ity 

Attribute 

values 
Description 

1 Aircraft 

Identification 

present 

incorrect 

necessary 

The prototype uses cameras and tags for identification. This is in-

correct as the stakeholders desire the aircraft to use the secondary 

radar for identification. This is due on the one hand to the presence 

of secondary radar in all aircraft over a certain size and on the other 

hand to the limitations associated with camera use such as unrelia-

ble results in case of bad visibility. 

2 Collision 

Avoidance 

Trigger 

present 

correct 

necessary 

When the prototypical collision avoidance system identifies an-

other quadcopter (prototype) / aircraft (system), it triggers the col-

lision avoidance procedure, as is desired by the stakeholders.  

3 Priority Pa-

rameter 

(not) pre-

sent 

correct  

necessary 

The exchange of a parameter that determines the right of way be-

tween two potentially colliding quadcopter (prototype) / aircraft 

(system) ensures that the collision avoidance system in both aircraft 

arrive at the same conclusion as to which aircraft will give way.  

 

For another example, the validation result concerning the collision avoidance trigger 

functionality (row 2 in Table 4) was categorized as present, correctly implemented in 

the prototype, and necessary.  

As for the result referring to the functionality of exchanging a Priority Parameter 

(row 3 in Table 4), it became obvious during the development of the prototype that so 

far no decision had been made regarding the course adaptation. In particular, it had not 

been determined which aircraft should have to adapt its course and which could stay its 

course in case of a collision threat. Hence, the exchange of a parameter, which deter-

mines priority and thus right of way, was added to the prototype and its specification. 



Consequently, this added functionality was categorized as present, correct, and neces-

sary, although it is not present in the original system specification. 

3.4 Step 4: Applicability Checking of Validation Results 

To see if a validation result is applicable to the system specification, first it needs to be 

checked if the respective functionality is documented correctly in the prototype speci-

fication (see Section 2.3). If the functionality is documented incorrectly therein, it fur-

ther needs to be checked whether there is a reason that prevents the correct implemen-

tation of the respective functionality in the prototype. 

As can be seen in Table 4, the functionality for validation result 1 (Aircraft Identifi-

cation) is not documented correctly in the prototype specification. However, as this 

functionality is not the same as in the system specification (cf. Fig. 3), but has been 

replaced due to hardware constraints, this does not indicate a defect in the system spec-

ification. Instead, this validation result is not applicable to the system specification and 

this functionality has to be validated manually (cf. Case 3 in Table 3).  

The functionality for validation result 2 (Collision Avoidance Trigger) is docu-

mented correctly in the prototype specification. As there is no documented trace infor-

mation that would indicate a difference between this functionality in the prototype spec-

ification and in the system specification, the documentation of this functionality in the 

system specification can be validated automatically (cf. Case 1 in Table 3). 

The functionality for validation result 3 (Priority Parameter) is documented cor-

rectly as well. However, as previously described, this functionality has been added to 

the prototype specification and does not exist in the system specification. Since it cor-

responds to a functionality that was found to be a valuable extension to the original 

requirements, a defect in the system specification has been discovered here (cf. Case 2 

in Table 3).  

3.5 Step 5: Correction of the System Specification 

The automated correction of the system specification is illustrated in Fig. 6 using the 

missing exchange of a priority parameter defect. To correct this missing functionality, 

the model elements referring to this functionality (highlighted in Fig. 6), which were 

documented in the prototype specification, are added to the system specification. Based 

on a correct prototype specification, this correction can be made automatically using 

model transformation techniques (cf. e.g. [17]). 

4 Related Work 

Since early validation of requirements is commonly considered of vital importance to 

avoid defective software and higher costs later on [1], several validation techniques 

have been proposed. In general, validation in the early phases deals with checking re-

quirements against stakeholder intentions, e.g., to evaluate whether the desires of the 

stakeholders have been sketched correctly, to check whether all assumptions are valid,  



Autopilot PCAS Secondary radar

Foreign

aircraft

Own 

flight schedule Own

map Own

map

Foreign

mapForeign

map

FMS Autopilot PCAS Secondary radar

Foreign

aircraft

Own 

flight schedule

Own

map

Foreign

map
Foreign

map

Priority parameter

FMS Autopilot PCAS Prototype Secondary radar

Foreign air route

Foreign

quadcopter

Priority parameter

Own

priority para.

Foreign

priority para.

... ... ... ... ...

... ... ... ...

... ... ... ... ...

Foreign

priority para.

 

Fig. 6. Correction of the system specification 

and the intended laws and regulations are considered. As automated verification is usu-

ally not applicable in early phases, attention is paid to techniques such as inspections 

[18], simulation [19], and prototyping [10]. 

Rapid prototyping is often suggested for early validation of first drafts and ideas as 

well as for eliciting new requirements (cf. [21], [4]). The latter is of particular im-

portance for requirements engineering as it is well known that knowledge gained from 

the stakeholders (i.e. by experiencing technological possibilities from early system ver-

sions or prototypes) leads to changing requirements and new additional requirements 

[22]. Hence, prototypes can be used to iteratively evolve requirements specifications 



(cf. [21]). Therefore, research was conducted on the use of prototypes for evolution of 

specification artifacts during prototype-based development (e.g., [23], [24], [25]). In 

these existing approaches, not the relationships between two specifications (i.e. the sys-

tem specification and the prototype specification) are under investigation but the rela-

tion between increments of the system specification. While other works focus on the 

use of prototyping for evolution of a specification, the approach proposed in this paper 

uses explicit relations to a dedicated prototype specification for validating and correct-

ing the original specification. 

In general, prototyping aids in the validation of requirements as it enables stakehold-

ers to experience the system’s look and feel and its behavior. Thus, it not only allows 

stakeholders to express their opinions about existing requirements but also to identify 

missing requirements. To support the systematic evaluation of the prototype, pre-deter-

mined usage scenarios can be executed for prototype demonstration (cf. [26], [27]). 

Furthermore, the prototyping approach can be used to complement formal verification 

techniques with user feedback [28]. These kind of works focus on the systematic use of 

prototypes for validation. In doing so, they can complement our proposed solution ap-

proach, which does not guide the review but focuses on the systematic analysis and 

incorporation of review results. 

Although prototyping is a well-known approach for validating requirements [29] it 

is mainly used for evaluating user interfaces of information systems (cf. e.g., [30]). 

Early validation of behavioral requirements for embedded and cyber-physical systems 

often relies on simulation, sometimes also called virtual prototyping (cf., e.g. [5], [31].), 

which not only allows for validating functional requirements, but also certain non-func-

tional requirements, such as timing requirements (cf. e.g. [32]). In contrast to the vali-

dation of physical prototypes (e.g., prototype software for a new engine control unit 

deployed on an older hardware component), simulation does not take the real physical 

environment of the system into account, which is a strong demand for the validation of 

cyber-physical systems. 

5 Discussion & Conclusion 

In this paper, we presented a model-based approach to aid validation of requirements 

artifacts for cyber-physical systems. As shown, validation results for the prototype 

specification can aid in the identification of defects in the system specification. The 

extent to which validation results are applicable to the system specification depends on 

how many changes need to be made to the system specification when deriving the pro-

totype specification due to differences in the technology used. 

We evaluated our approach using a collision avoidance system from the avionics 

domain. For such safety-critical systems a prototypical validation approach is not suf-

ficient on its own. In particular, it is still of utmost importance to validate the system 

itself and not only a prototype of the system. Nevertheless, the prototypical evaluation 

can aid the validation and the exploration of solution options in early phases of devel-

opment. The approach is of particular interest for those domains (like the embedded 



domain) which have a strong interest in early validation to decrease the number devel-

opment cycles for highly complex software.  

Beyond the validation of functional requirements, the prototypical implementation 

provides additional benefits for the development. For example, the prototypical imple-

mentation provided further insights about aspects that are usually not specified in re-

quirements specifications but are important for the system’s development. For instance, 

in the presented case example, the decision needed to be made as to what constitutes a 

collision threat. For quadcopters as well as aircraft, collisions can occur even if their 

flight paths never cross, but they only get too close to each other. Therefore, it was not 

sufficient to check for crossing flight paths and determine when each aircraft will reach 

this intersection. A reasonable safety margin around each aircraft also needed to be 

taken into account. 

Acknowledgements.  

Thanks to Stefan Beck, Arnaud Boyer, and Jürgen Meilinger from Airbus for their sup-

port in application of the approach to an industry example. The research serving as basis 

for this paper was funded by the German Federal Ministry of Education and Research 

(support code: 01IS12005C). 

References 

1. Boehm, B., Basili, V.R.: Software Defect Reduction Top 10 List. Computer 34, 135–137 

(2001) 

2. IEEE Standard Adoption of ISO/IEC 15026-4--Systems and Software Engineering--Sys-

tems and Software Assurance--Part 4: Assurance in the Life Cycle. (2013) 

3. Ogata, S., Matsuura, S., Sakai, R., Sato, H., Kobayashi, T.: Enhancement of Requirements 

Specification Traceability by Model Driven Requirements Analysis Employing Automatic 

Prototype Generation. In: IASTED Int. Conf. on Softw. Eng., pp. 55–63. (2011) 

4. Kordon, F., Luqi: An Introduction to Rapid System Prototyping. IEEE Trans. Softw. Eng. 

28, 817–821 (2002) 

5. Aceituna, D., Do, H., Lee, S.-W.: Interactive Requirements Validation for Reactive Systems 

through Virtual Requirements Prototype. In: MoDRE, pp. 1–10. IEEE (2011). 

6. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 11th IEEE Int. Symp. on Object 

and Component-Oriented Real-Time Distributed Computing, pp. 363–369. IEEE (2008) 

7. Jedlitschka, A., Jung, J., Lampasona, C.: Evaluation Summary. In: Model-Based Engineer-

ing of Embedded Systems. The SPES 2020 Methodology, pp. 231–239. Springer (2012) 

8. Spanoudakis, G., Zisman, A.: Software Traceability: A Roadmap. In: Handbook of Software 

Engineering and Knowledge Engineering, pp. 395–428. World Scientific Publishing (2004) 

9. ISO/IEC/IEEE: Systems and software engineering—Vocabulary. (2010) 

10. Gotel, O.C.Z., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grünbacher, P., 

Dekhtyar, A., Antoniol, G., Maletic, J., Mäder, P.: Traceability Fundamentals. In: Software 

and Systems Traceability, pp. 3–22. Springer (2012) 

11. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Trans. 

Softw. Eng. 27, 58–93 (2001) 



12. Cote, I., Heisel, M.: A UML Profile and Tool Support for Evolutionary Requirements Engi-

neering. In: 15th European Conf. on Software Maintenance and Reengineering (CSMR), pp. 

161–170. IEEE (2011) 

13. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong, 

M.-Y.: Orthogonal Defect Classification - A Concept for In-Process Measurements. IEEE 

Trans. Softw. Eng. 18, 943–956 (1992) 

14. Freimut, B., Denger, C.: A Defect Classification Scheme for the Inspection of QUASAR 

Requirements Documents. IESE-Report No. 076.03/E, Version 1.0. Fraunhofer IESE (2003) 

15. Daun, M., Brings, J., Bandyszak, T., Bohn, P., Weyer, T.: Collaborating Multiple System 

Instances of Smart Cyber-physical Systems: A Problem Situation, Solution Idea, and Re-

maining Research Challenges. In: IEEE/ACM 1st Int. WS on Softw. Eng. for Smart Cyber-

Physical Systems (SEsCPS), pp. 48–51. IEEE (2015) 

16. Specifications – OSGi™ Alliance, https://www.osgi.org/developer/specifications/ 

17. Milicev, D.: Automatic Model Transformations Using Extended UML Object Diagrams in 

Modeling Environments. IEEE Trans. Softw. Eng. 28, 413–431 (2002) 

18. Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM 

Syst. J. 15, 182–211 (1976) 

19. Brandstetter, V., Froese, A., Tenbergen, B., Vogelsang, A., Wehrstedt, J.C., Weyer, T.: 

Early Validation of Automation Plant Control Software using Simulation Based on Assump-

tion Modeling and Validation Use Cases. CSIMQ 4, 50–65 (2015) 

20. Andrews, B.A., Goeddel, W.C.: Using Rapid Prototypes for Early Requirements Validation. 

In: 13th AIAA/IEEE Digital Avionics Systems Conference, pp. 70–75. IEEE (1994) 

21. Luqi: Software Evolution Through Rapid Prototyping. Computer 22, 13–25 (1989) 

22. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34, 115–119 

(2001) 

23. Berzins, V., Luqi, Yehudai, A.: Using Transformations in Specification-Based Prototyping. 

IEEE Trans. Softw. Eng. 19, 436–452 (1993) 

24. Berzins, V.: Recombining changes to software specifications. Journal of Systems and Soft-

ware 42, 165–174 (1998) 

25. Luqi, Chang, C.K., Zhu, H.: Specifications in software prototyping. J. of Syst. and Softw. 

42, 125–140 (1998) 

26. Sutcliffe, A.: A Technique Combination Approach to Requirements Engineering. In: 3rd 

IEEE International Symposium on Requirements Engineering, pp. 65–74. IEEE (1997) 

27. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. John 

Wiley & Sons; J. Wiley (1998) 

28. Siddiqi, J., Morrey, I, Hibberd, R., Buckberry, G.: Towards a System for the Construction, 

Clarification, Discovery and Formalisation of Requirements. 1st Int. Conf. on Requirements 

Eng., pp. 230–238. IEEE (1994) 

29. Andriole, S.J.: Fast, cheap requirements prototype, or else! IEEE Softw. 11, 85–87 (1994) 

30. Kamalrudin, M., Grundy, J.: Generating Essential User Interface Prototypes to Validate Re-

quirements. In: 26th IEEE/ACM Int. Conf. on Automated Softw. Eng. (ASE), pp. 564–567. 

IEEE (2011) 

31. Thompson, J.M., Heimdahl, Mats P. E., Miller, S.P.: Specification-Based Prototyping for 

Embedded Systems. In: ESEC/FSE '99, LNCS, vol. 1687, pp. 163–179. Springer (1999) 

32. Zimmermann, J., Stattelmann, S., Viehl, A., Bringmann, O., Rosenstiel, W.: Model-Driven 

Virtual Prototyping for Real-Time Simulation of Distributed Embedded Systems. In: 7th 

IEEE Int. Symp. on Industrial Embedded Systems (SIES'12), pp. 201–210. IEEE (2012) 

 

https://www.osgi.org/developer/specifications/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2979

