
ENGINEERING QUALITY REQUIREMENTS IN

LARGE SCALE DISTRIBUTED AGILE

ENVIRONMENT

Wasim Alsaqaf

University of Twente, the Netherlands,

w.h.a.alsaqaf@utwente.nl

Abstract. Agile software development methods have become increasingly pop-

ular in the last years. However, agile methods don’t specify explicitly how to

deal with the quality requirements. Moreover there is little known about how

organizations currently deal with this shortcoming. Based on several case stud-

ies this research will investigate real-world large-scale distributed agile projects

to understand the challenges agile teams face regarding quality requirements

and the approach they are currently using to cope with these challenges. After

that a set of good practices will be introduced to exp licitly integrate quality re-

quirements in agile processes. Other case studies will be conducted to validate

the suggested good practices.

Keywords: Agile requirements engineering, quality requirements, non-

functional requirements, empirical research method.

1 Introduction and Motivation

Agile software development methods have become increasingly popular in the last

years. The agile parad igm is a reaction to the traditional plan-driven software devel-

opment methods such as Waterfall. The 2013 report by the Standish group [1] indi-

cates a remarkable increase in agile pro jects and a decrease in waterfall projects. As

literature indicates [2], the traditional approach of developing the software has prede-

fined sequential steps that have to be followed in order to deliver the software. These

steps are usually documentation driven and heavyweight software development. Be-

cause of this nature, traditional software development methods don’t give an appro-

priate answer to rapid change in business environments [3].

A characterizing aspect of the traditional approach is a significant up -front Re-

quirements Engineering (RE) effort. Usually, this is a process in which the software

requirements should be fully elicited and documented prior to proceed to the next

phase (the software design process). Although this process might seem logical, it is

difficult and nearly impossible [4] to achieve due to the following reasons:

 The requirements tend to change quickly and become outdated even before the

project is completed [4][5].

mailto:w.h.a.alsaqaf@utwente.nl

 Pre-specified requirements may become irrelevant as the project progresses. New

requirements may arise, and old requirements may become irrelevant with a better

understanding of the mission [4].

 The rapid change of the surrounding environment such as stakeholder preferences,

technology, and time- to-market [4][5].

Responding to change is one of the agile alliance values s tated in the agile manifes-

to [6]. Based on these values agile pract ices have been developed to increase the in-

volvement of the customers and to deliver software products faster. The agile practic-

es includes short iterations that end up with delivering a new incremental release,

gathering as many requirements as needed to start an iteration, simple incremental

design that will be evolved during the iterations and peer reviews [7].

Despite the fact that being agile is a success factor for software p rojects [1], the ag-

ile approach is still facing challenges that might cause the failure of a software pro-

ject. The study of Ramesh et al. has identified seven challenges posed by agile prac-

tices [8], including the neglect of quality requirements (QRs). The neglect of QRs in

agile projects may result in deliveries that don’t satisfy the user expectations. In small

co-located projects, this can be repaired relatively easily by adapting the next batch of

requirements and repairing the part of the product already delivered. This is however

not possible in large projects where the team is necessarily distributed over space and

there is no possible of ad-hoc coordination and communication among team members

and with clients. Hence, this doctoral research proposed in this paper addresses the

problem of engineering QRs in large scale agile p rojects in a distributed organizat io n-

al context and how these organizations cope with it. The research will also suggest a

set of good practices as possible solution practices. Our expectation is that solution

for large-scale agile p rojects will also be useful for smaller -scale agile projects. We

will check this expectation later on after we identified solutions for large-scale pro-

jects.

2 Background on Quality Requirements in Agile Projects and

Related Work

QRs are those requirements that describe the qualities of the system [9]. While the

functional requirements specify what the system should do in response to specific

action from the environment, the QRs describe how the system should perform these

actions. Examples of the QRs are: Performance, Security, Maintainability, Testability,

Usability, Portability and Reusability. The term non-functional is used in many stud-

ies to point to those requirements. However, this term in this case is passive, unfortu-

nate and doesn’t give the impression that these requirements are important [9][10].

Boehm used the term “quality requirements (QRs)” instead of non-Functional re-

quirements [11], which in my opinion describes better the nature of those require-

ments. Therefore, throughout this work the term “quality requirements” is used to

refer to the requirements that describe how the system should perform the desired

actions.

In the RE literature, there is a consensus that the success or failure of a system is

not only decided by the correct implementation of the right functional requirements. If

the response time of the system for example doesn’t meet the customer expectations,

we can’t say that the system deliver quality [10]. Besides that, high quality software

architecture is intimately connected to the achievement of the QRs [12]. A software

architecture that provides a high security and an acceptable performance is not the

same as the software architecture that maximizes the performance and guarantees a

certain level of security. However, since it is impossible to maximize the implementa-

tion of all QRs [13], it is necessary to define the desired level o f each quality require-

ment to implement the most appropriate software architecture that delivers the e x-

pected business value.

A recent systematic literature review on agile requirements engineering practices

and challenges [14] reported that neglecting QRs is a problem for agile requirements

engineering processes. The same review reported that until 2013 there was just one

study that comes up with a literature solution proposal (NORMATIC) [15]. This study

has addressed the problem of the QRs in agile practices and developed a Java-based

simulation tool for modelling QRs for semi-automatic ag ile processes. Although this

study is directly related to our study, it differentiates form our study in the following

aspects:

 NORMATIC’s problem investigation is a literature research while our investiga-

tion will be done empirically.

 NORMATIC hadn’t the focus on distributed agile environments and due to this

nature; the challenges of being distributed and their effect on the QRs weren’t tak-

en in consideration.

 The results of the NORMATIC research weren’t validated in real-world agile de-

velopment projects and the effect iveness of the suggested tool in modelling QRs in

agile projects weren’t measured.

In 2015, Darshan Domah and Frank Mitropoulos developed the NERV Methodol-

ogy [16]. Similarly to NORMATIC, NERV addresses the non-functional require-

ments in ag ile software development based on literature study while our research as

mentioned before is an empirical research.

3 Research Goal and Research Questions

The main goal of this research is to define a framework to identify, model and test

QRs in a large scale pro ject of a distributed agile environment. Based on this objec-

tive, the central research question (RQ) of this study is:

How to identify, implement and test the QRs in a large scale distributed agile pro-

ject?

To meet the research goal, the main RQ is elaborated in the following sub-questions:

1. What are the primary challenges to agile teams when working with QRs in a d is-

tributed agile environment?

2. How do agile teams currently handle those challenges in a distributed agile envi-

ronment?

3. Are there any gaps between the practices the agile teams use and the expected ou t-

comes of deploying these practices?

4. What is important for agile teams to improve in their current way of handling QRs?

5. What improvements could be done?

6. Do the improvements work in practice?

4 Research Method

A lack of empirical research on agile software development and QRs was observed

in recent studies [17]. Particu larly, in agile literature, much of the work is focused on

validating the applicability and usefulness of practices in ag ile development methods.

Beyond a few high v isibility case studies the current literature does not provide much

insight on actual practices used in agile and their effect iveness in support ing RE activ-

ities [8]. To respond to the lack of empirical evidence, this project will adopt case

study research method [18] for the purpose of problem analysis, solution design and

solution evaluation (or validation).

Fig. 1. Design and engineering cycle used in this research (Wieringa, 2014)

The design and engineering cycles consist of two mainly stages, each of which has

its own set of tasks (Fig.1). The first stage “the design cycle” is decomposed into

three tasks, namely, p roblem investigation, treatment design, and treatment validation.

These tasks are multiple t imes iteratively implemented to develop a complete and

useful design. The results of this stage are transferred to the real world in the second

stage “The engineering cycle” which decomposed into two tasks, namely, treatment

implementation, and implementation evaluation.

4.1 The implementation of the design and engineering cycles

First, we will carry out observational case studies at agile client organizations and

software development organizat ions which will help to carry out a proper problem

analysis. We assume the problems from a vendor and client perspectives would be

different. Also, large government organizat ions that embark on agile might exper i-

ence a different set of problems compared to private mid-size companies using agile.

Furthermore, case studies will be used to understand which treatments companies are

currently using to cope with the identified problems. Studying whether the treatments

are useful and whether they meet the expectations of companies will be also part of

the case studies.

The first four sub-questions of our research are corresponding with the problem in-

vestigation tasks of the design cycle (Fig.1). Answering those questions will allow us

to drive a proper treatment design (good practices) to deal with the identified prob-

lems. W ith the design of the good practices the fifth sub-question of our research will

be answered.

Once the good practices are developed, the plan is to validate and evaluate their

utility and usefulness in follow-up case studies with practitioners working on agile

projects [19]. We will use two methods to validate the framework, namely, Expert

opinion and Technical Action Research (TAR). The developed good practices are

useful if the identified problems can be solved using them.

4.2 Work Process and Collaboration with Companies

The PhD research pro ject will follow an iterative work process based on the fo l-

lowing work principles:

 The case studies will be part of each iteration to ensure better analytical results.

 Feedback loops will be part of the interactions between industry partners and re-

searchers to ensure the relevancy of the researched subjects.

 Refinements and improvements of our good practices and solution method will be

done incrementally on step-by-step basis. In this approach, case studies are essen-

tial to ensure the practical applicability of the research for agile software business-

es in the Netherlands.

5 Expected Outcome and Contribution

The main expected outcome of this research is the good practices that can be used

to identify, implement and test the QRs in large-scale distributed agile projects. The

contribution of this research is in four specific aspects: (1) Giv ing insight in the cur-

rent challenges agile teams meet regarding QRs in large scale distributed projects. (2)

The current way of working to cope with those challenges . (3) The evaluation of the

current way of working and 4) The good practices and the improvement that could be

applied to real-life pro jects that use those practices. Although there have been several

proposals in scientific literature on how to treat QRs in agile projects, we found no

proposal to be empirically evaluated and used in real-life settings.

6 Reflection and Progress of the Research

The PhD research is started on May 2015 and expected to be fin ished in 2020.

However as a software engineer with a solid experience of developing software using

different software development processes I faced the challenge of neglecting the QRs

in almost all the agile software projects I was part of. This motivated me to dive into

the literatures searching for an appropriate solution to deal with QRs in agile context.

The search process resulted in nothing sufficient. Thereafter I started to visit semi-

nars and workshops provided by different software companies in the Netherland to

find an answer to my question. I found out that each company I spoke to, had its own

not validated practice to deal with the QRs. One of those companies introduced a non-

official scrum term “Sprint zero”. In th is sprint they define the overall software arch i-

tecture. This approach explicitly opposes the agile spirit which emphasizes the emer-

gence of the software architecture during the development cycle. Another company

defined the QRs as constrains within user stories. Constrains are simply another type

of requirements such as QRs but they are not the same. Constrains are not just a mat-

ter of opin ion. Any solution that does not meet the specified constraints is simp ly

unacceptable [20]. In contrast to QRs constrains are not negotiable.

The next step in this doctoral research is to conduct a Systematic Literature Review

(SLR) [21] to answer the following questions:

 What are the existing agile practices used for engineering QRs?

 What are the challenges created by the use or absence of those practices?

 What are the existing solutions according to published empirical studies?

Answering these questions will g ive us insight in State of Art o f QRs within an ag-

ile context.

7 References

1. The Standish Group.: CHAOS MANIFESTO 2013: Think Big, Act Small.

Standish Gr. Int. 1–52 (2013).

2. De Lucia, A., Qusef, A.: Requirements engineering in agile software devel-

opment. J. Emerg. Technol. Web Intell. 2, 212–220 (2010).

3. Helmy, W., Kamel, A., Hegazy, O.: Requirements engineering methodology

in agile environment. Int. J. Comput. Sci. Issues. 9, 293–300 (2012).

4. Boehm, B.: Requirements that handle IKIWISI, COTS, and rapid change.

Computer (Long. Beach. Calif). 33, 99–102 (2000).

5. Cao, L., Ramesh, B.: Agile requirements engineering practices: An empirical

study. IEEE Softw. 25, 60–67 (2008).

6. Agile Alliance.: Manifesto for Agile software development. (2001).

7. Shore, J., Shane, W.: The Art of Agile Development. O’Reilly Media, Inc

(2007).

8. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practic-

es and challenges: an empirical study. Inf. Syst. J. 20, 449–480 (2010).

9. Lauesen, S.: Software Requirements: Style and Techniques. Addison-Wesley

Professional (2002).

10. Blaine, J.D., Cleland-Huang, J.: Software quality requirements: How to bal-

ance competing priorities. IEEE Softw. 25, 22–24 (2008).

11. Boehm, B., In, H.: Identifying Quality-Requirement Conflicts. 30602 (1996).

12. Kazman, R., Bass, L.: Toward Deriving Software Architectures From Quality

Attributes. Engineering. 1–44 (1994).

13. Haigh, M.: Software quality, non-functional software requirements and IT-

business alignment. Softw. Qual. J. 18, 361–385 (2010).

14. Inayat, I., Salwah, S., Marczak, S., Daneva, M., Shamshirband, S.: A system-

atic literature review on agile requirements engineering practices and chal-

lenges. Comput. Human Behav. (2014).

15. Farid, W.M., Mitropoulos, F.J.: NORMATIC: A visual tool for modeling

Non-Functional Requirements in agile processes. 2012 Proc. IEEE South-

eastcon. 1–8 (2012).

16. Domah, D., Mitropoulos, F.J.: The NERV Methodology : A Lightweight Pro-

cess for Addressing Non-functional Requirements in Agile Software Devel-

opment. (2015).

17. Daneva, M., Van Der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R.,

Ajmeri, N., Ramteerthkar, U., W ieringa, R.: Agile requirements prioritization

in large-scale outsourced system projects: An empirical study. J. Syst. Softw.

86, 1333–1353 (2013).

18. Wieringa, R.: Empirical research methods for technology validation: Scaling

up to practice. J. Syst. Softw. 95, 19–31 (2014).

19. Wieringa, R., Daneva, M.: Six strategies for generalizing software engineer-

ing theories. Sci. Comput. Program. 101, 136–152 (2015).

20. Robertson, B.S., Robertson, J.: Mastering the Requirements Process. Addison

Wesley Professional (2006).

21. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature

Reviews in Software Engineering. Engineering. 2, 1051 (2007).

