
Compact convolutional neural network cascade

for face detection

I.A. Kalinovskii, V.G. Spitsyn

Tomsk Polytechnic University

This paper presents a new solution to the frontal face detection problem based on a compact

convolutional neural networks cascade. Test results on an FDDB dataset show that it is able

to compete with state-of-the-art algorithms. This proposed detector is implemented using

three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and

OpenCL. The detection speed of our approach exceeds considerably all the existing CPU-

based and GPU-based algorithms. Thanks to its high computational efficiency, our detector

can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while

searching objects with a dimension of 60×60 pixels or higher. At the same time, its pro-

cessing speed is almost independent of the background and the number of objects in a sce-

ne. This is achieved by asynchronous computation of stages in the cascade.

Keywords: face detection, cascade classifiers, convolutional neural networks, deep learning.

1. Introduction

The need to identify people in millions of photos uploaded daily to social services has led to sig-

nificant progress in the solution of the problem of detecting faces. New methods are distinguished by

invariance with respect to the pose and face expression. Moreover, they are also capable of operating

in conditions of complex illumination and strong occlusion. However, many algorithms that demon-

strate outstanding performance on a face detection benchmark have very high computational complex-

ity. This circumstance prevents their use for video analysis.

The object of our interest is megapixel video analytics systems that require fast and accurate face

detection algorithms. Such systems run on equipment whose computing power is often greatly limited

due to the increasing demands for a compact form factor and a lower cost. Because of this, the in-

crease of frame rate or frame resolution is often carried out at the expense of the performance of detec-

tion (such as large size objects search only, frames skipping, etc.). Moreover, the use of cameras capa-

ble of shooting video with a 4K Ultra HD resolution increases the amount of generated data by several

times. In conditions when it is impossible to reduce the search area (for example, by motion analysis),

even optimized detectors based on Viola-Jones method are unable to operate effectively at such a vid-

eo stream resolution.

Despite the fact that the development of modern face detection methods is progressing towards an

increased invariance with respect to the head position and the occlusion, we are considering here only

a particular problem of frontal faces detection. Our goal is to achieve a high performance of detection

at a low computational complexity of the detector, which is difficult to achieve when dealing with this

task in the framework of the most general definition of the problem. At the same time, the frontal posi-

tion of a person in relation to the camera is natural for many scenarios of using video analytics sys-

tems. That is why these detectors are so popular in practical applications.

In this paper, we present a frontal face detector based on a cascade of a convolutional neural net-

work (CNN) [12] with a very small number of parameters. Due to the natural parallelism, a small

number of cascade stages and a low-level optimization, it is capable of processing a real-time 4K Ultra

HD video stream on mobile GPU when searching for faces of 60×60 pixels or higher, and, at the same

time, it is 9 times faster than the detector based on Viola-Jones algorithm in the OpenCV implementa-

tion (http://opencv.org). Despite the compact CNN architecture, test results on a Face Detection Data

Set and Benchmark (FDDB) dataset [8] show that the performance of our CNN cascade is comparable

to that of some state-of-the-art frontal face detectors, and its speed surpasses that of any existing CPU

and GPU algorithms.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

375

2. Related work

It is not possible to build a simple and rapid detector with a high precision and response to all the

possible face image variations because of the big interclass variance, the variety of ambient light con-

ditions, and the complex structure of the background. The standard approach to solving this problem is

to use different models for each pose of the head [19, 32, 35]. It has been shown recently that, thanks

to their strong generalization capability, deep CNNs can study the whole variety of two-dimensional

projections of a face within the limits of a single model [3, 16]. However, the fact that the proposed

CNN architectures contain several millions of parameters makes them unsuitable for use in low-power

computing devices. Methods based on deformable part models [19, 33], template comparison based

models [15], and 3D face models [1] are also unable to work with HD video streams in real time, even

to solve the problem of frontal faces search only. Detectors that use manually designed features to de-

scribe objects and cascades of boosting classifiers to detect them remain the best solution in terms of

processing speed [26].

Many different descriptors were proposed to describe facial features. The most famous ones are

rectangular Haar-like features [30] which have shown to be effective for building frontal face detectors

and to have a high extraction rate achieved by means of using the integral image. Textural MCT [4,

27] and LBP [29] features, which code pixel intensity in the local domains, have invariance with re-

spect to monotonic light change. LBP in combination with HOG features [24] demonstrated good gen-

eralizing properties, and they are able to process complex non-facial images better than the Haar-like

features. B. Jun et al. [10] proposed LGP and BHOG features built on the principles of LBP. LGPs are

resistant to local changes of light along the borders of the objects, and BHOGs are resistant to local

pose changes.

Multidimensional SURF descriptors [17] in combination with the logistic regression make it pos-

sible to prepare cascades containing only a few hundreds of weak classifiers. Because of this, SURF

cascades exceed the speed of Haar cascades which typically consist of thousands of weak classifiers.

A simple comparison of pixel intensities can also be used for faces detection [2, 18]. The detector pro-

posed in [18] has a high execution speed since it does not require any additional processing, including

the construction of the image pyramid.

Usually, boosting cascades are trained using grayscale images for the solution of face detection

problem. M. Mathias et al. [19] and B. Yang et al. [35] used combinations of different channels (gray-

scale, RGB, HSV, HOG descriptors and other) for the training of classifiers. The taking into account

of both color and geometric information allowed improving the performance of face detection on a

complex background.

Recently, H. Li et al. [16] have built a CNN cascade whose speed is the highest among the multi-

view face detectors. Similarly to Viola-Jones algorithm, a simple CNN was used for coarse image

scanning, while more complex models estimated carefully each selected region. However, despite the

significant reduction of the computational complexity (in comparison with the single CNN model [3]),

this detector is still incapable of processing an HD video stream even on a powerful GPU.

It will be shown further that, with a view to solving the frontal faces detection problem, our CNN

cascade may surpass boosting cascades not only in performance but also in speed. The CNN densely

extracts high-level features directly from raw data, without requiring any preliminary processing apart

from building the image pyramid. Besides, the CNN calculation algorithm can be easily vectorized

using SIMD instructions of CPU, and it can be adapted perfectly to the massively parallel architecture

of GPU.

3. Compact convolutional neural network cascade

Similarly to [16], we use a CNN to build a cascade detector of frontal faces. This work is based on

the following key ideas:

1) A small number of cascade stages. Our CNN cascade has only 3 stages. For example, the

shortest boosting cascade consists of 4 stages and uses MCT descriptors for the extraction of facial

features [4].

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

376

2) The compact design of the CNN architectures. The total number of feature maps in all the

CNNs is 355 (in [16] it amounts to 1,949); however, a sample with a smaller variation of face images

was used for training the model.

3) Asynchronous execution of the stages. A particular design of the detector makes it possible to

execute the second and the third stages of the cascade in parallel with the first one on different pro-

cessing units. Due to the fact that 99.99% of sliding window positions are rejected already at the first

operation stage, in this mode the detector is capable of processing video frames in constant time, re-

gardless of the content of the image.

4) Optimization. During the implementation of the detector, three technologies were used: SIMD

extension of CPU, CUDA, and OpenCL. The SIMD (CPU) and CUDA implementations of the CNN

were optimized for each of the network architectures used. The giving up on the traditional approach

of the CNN calculation through the organization of a stack of layers, combined with optimization at

the assembler level, made it possible to achieve the code execution performance which was close to

the peak performance of hardware.

3.1 CNN structures

The CNN architectures composing our cascade are shown in Figure 1. Each CNN solves the prob-

lem of a background/face binary classification and contains 797 (CNN1), 1,819 (CNN2) and 2,923

(CNN3) parameters. Similarly to the Convolutional Face Finder [5] architecture, the lack of fully-

connected layer gives a 50% increase in the speed of the forward propagation procedure. The convolu-

tion stride is 1 pixel, and the pooling stride is 2 pixels. Rational approximation of a hyperbolic tangent

is used as an activation function:

 

   
2 4

2
1.7159 tanh ,

3

1
tanh sgn 1 .

1 1.41645

f x x

y y
y y y

 
   

 

 
       

 (1)

The relative error of the following approximation does not exceed 1.8% on the entire number axis,

and only 11 instructions are required to calculate it. Popular ReLU functions turned out to be less effi-

cient in our experiments. It should be noted that CNN1 contains the smallest number of filters in com-

parison with previously proposed network architectures for face detection [3, 5, 16, 23].

conv ×4 4

conv × 3 3

conv × 5 6

max × 2 2

max × 2 2

input 27×31

conv 1 1 ×

output × 1 1

conv 1 1 ×

CNN ()1 stage 1

CNN3 ()stage 3

conv × 4 4

conv × 3 3

conv × 7 8

average × 2 2

average × 2 2

input 36 40 ×
CNN2 ()stage 2

conv 1 1 ×

output × 1 1

conv 1 1 ×

Fig. 1. CNN structures

3.2 Training process

For the CNN training, aligned face images were taken from YouTube Faces Database [31]. This

dataset contains face tracks of 1,595 people cut out from 3,425 videos (Fig. 2). Background images

were selected from random YouTube videos in several stages during the preparation of models. Face

areas (such as eyes, nose, etc.) were also added to the negatives. The total volume of the training set

consisted of slightly more than one million grayscale images (433 thousand of positive examples and

585 thousand of negative ones).

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

377

The experiments were carried out with simple models which have a small number of parameters.

We aimed to find the minimal configuration of a CNN which would be able to classify the test set with

an error below 0.5%. For the CNN training, a Levenberg-Marquardt algorithm was used [36].

Fig. 2. Example images from the training set

3.3 Detector design

The detector design is shown in Figure 3. The first CNN densely scans, in series, each image of

the pyramid. The responses in the output network layer correspond to the positions of the scanning

window with a size of 27×31 pixels during its uniform motion with a 4-pixel step. The coordinates of

the windows where the CNN response exceeded the predetermined threshold T1 are transmitted to the

selective unit for a further analysis of these regions of the image. Even when T1 = 0, more than 99.99%

of the total number of positions of the window at all pyramid levels are rejected at this stage. For com-

parison, the first-stage of a Haar cascade of Viola-Jones [30] is able to reject only 50% of negative

samples, an MCT cascade [4] – 99%, a SURF cascade [17] – 95%, and a CNN cascade [16] – 92%.

The pre-processing and classification of an image region are carried out in the selective unit, after

which the final decision about their belonging to a faces class is made. At the step of pre-processing,

the analyzed region is read from the original grayscale image together with a certain neighborhood and

is scaled to 51×55 pixels. Then, the equalization of its histogram and mirror reflection with respect to

the vertical axis are carried out. Illumination alignment enhances the response of the CNN on shaded

faces and effectively suppresses false detections. The use of mirror reflection also reduces the re-

sponse to complex non-facial images.

During the second step, the second and third stages of the cascade perform region classification.

The output of each CNN is a response map of a 5×5 size. Additional classification in the region neigh-

borhood is necessary to prevent the loss of response due to an incorrect positioning of the face in the

scanning window. The decision about the type of the region is made on the basis of the number of re-

sponses Knn of each classifier that exceeds the predetermined threshold T2:

   2 3 2 3
0 0 ,

1,
decision rule .

0,

CNN CNN CNN CNN

nn nn nn nn nn nn
K T K K K T

face

no face

        

 
 

 

 (2)

The discrete parameter Tnn makes it possible to control the number of detector false alarms more

robustly as compared to thresholds T1 and T2. If the response of the CNN2 does not agree with the de-

cision rule, further analysis of the region stops.

The last stage of the pipeline detector is the Non-Maximum Suppression (NMS) algorithm which

aggregates the detected regions to form the resulting areas of faces localization.

NMS decision rule

selective unit

equalize
mirror

reflection

CNN3CNN2

resize region
grayscale image

image pyramid

CNN1

selective unit

Fig. 3. Detector design

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

378

3.4 Implementation

The detector has been implemented using three technologies: SIMD extension of x86 processor

family (for each of three instructions sets – SSE, AVX, AVX2 – supported by microarchitectures of

Intel Sandy/Ivy Bridge and Haswell/Broadwell processors), Nvidia CUDA, and OpenCL. The calcula-

tions are carried out using single precision, and the precision-recall characteristic is identical for all

implementations.

Thus, the implementations of all stages of the pipeline detector (except for NMS) are presented in

several versions of a manually vectorized code. We used vector intrinsic functions (which are directly

translated into the appropriate assembly instructions by the compiler), took into account the limited

number of logical registers, and minimized the number of queries to the memory. At the same time,

the SSE code can be ported to the ARM platform since all the SSE instructions used have analogs in

the NEON set of instructions. The Scalar C++ code and OpenCL allow running the detector on most

devices though at a lower execution speed.

Figure 4 shows the comparison of our convolution implementation to its implementation in the In-

tel IPP, Nvidia NPP and cuDNN, and ArrayFire libraries. Time measurements were made for the first

CNN1 convolution layer calculation (Fig. 1) on an image with a 4K Ultra HD resolution and were av-

eraged over 103 launches. When implementing the convolution for GPU, we used the method pro-

posed by F.N. Iandola et al. [7]. Due to the fine code optimization for each CNN architecture, the

speed of layers calculation is higher than when using more universal functions from the respective li-

braries.

78 74 68 60

114

6

67

47

15 9 11
1

0

30

60

90

120

ms

CPU PC1 CPU PC2 GPU2 PC1 GPU PC2

Fig. 4. Comparison of the calculation speed of the first convolution layer for CNN1 for an image with a 4K Ultra

HD resolution (equipment specifications are listed in section 4)

In order to provide continuous GPU load, the scanning of several levels of the image pyramid (3

by default) is executed simultaneously in different streams (concurrent kernels). However, a kernel

computation start is synchronized between streams as they use common pointers to texture memory.

Also, we implemented several solutions to improve the detection speed.

3.4.1 Asynchronous mode

Typically, face images occupy only a small area of the image. The main advantage of cascade de-

tectors is the ability to rapidly reject the majority of background regions as early as during the first

stages. However, complex non-facial images may be rejected only during the later stages. If there is a

large number of stages, the speed of detector becomes strongly dependent on the structure of the back-

ground and the number of the objects in the scene. At the same time, the non-uniform distribution of

the processing load over the image area negatively affects the runtime efficiency of GPU implementa-

tions.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

379

In order to solve this problem, we proposed the asynchronous mode of cascade execution. In this

mode, the first stage which is run on GPU scans each level of the image pyramid sequentially. Coordi-

nates of detected regions are transmitted to CPU which operates as a selective unit. CNN1 proceeds to

the scanning of the next level of the pyramid regardless of whether the analysis of the detected regions

on CPU has been finished or not.

Due to the low-level optimization, the selective unit carries out a single region analysis in 0.1 ms

on a single core processor (CPU PC2, for AVX code). Since only 0.01% (on average) of all window

positions passes through CNN1, by the time the scanning of the last level of the image pyramid is

complete, the majority of the detected regions will have already been processed on CPU. A similar

situation is possible under the condition of asynchronous execution of the cascade on different CPU

cores. Thus, the CNN cascade is able to provide a constant frame processing time dependent only on

frame resolution and the productivity of the first stage execution.

3.4.2 Hybrid mode

The effectiveness of GPU in image processing is significantly higher than that of CPU. However,

if small images (less than 0.01 megapixels) are considered, the calculation time is limited by delays in

the running of kernels. In order to improve the search speed of large size faces, we made it possible to

run the first stage of the cascade on CPU and GPU simultaneously. In the hybrid mode, CPU begins

scanning the image pyramid from the upper level, while GPU processes a high-resolution image on the

lower level. Also, it is possible to use the asynchronous mode. A similar technique was used in [21].

3.4.3 Patchwork mode

In order to reduce the kernel launch delays to a minimum, it is possible to use a patchwork tech-

nique [6]. We applied the Floor-ceiling no rotation (FCNR) algorithm [20] for the purposes of dense

image pyramid packing into a semi-infinite strip of a predetermined width. Thus, the scanning of all

image scales at the same time is carried out in a single run of CNN1. However, it is not possible to use

the asynchronous mode. In this case, the second stage of the cascade is also performed on GPU by

means of scanning all the detected regions in a single pass. Usually the asynchronous mode is more

effective than the patchwork mode, but the latter improves the low-resolution image processing per-

formance.

4. Experiments

In this section, the results of the proposed detector testing on two public face detection bench-

marks – FDDB [8] and AFW [37] – are shown. Since the detector was designed for a frontal face

search only, it is obvious that it cannot surpass the multi-view face detectors with these complex da-

tasets. However, it is comparable to the state-of-the-art frontal face detectors on the FDDB bench-

mark.

In addition, we tested several face detectors whose source code or demo versions are in open ac-

cess. In order to compare the performance and speed of algorithms for video processing tasks, tests

were carried out on the annotated video.

This section also provides execution speed of all detector implementations for different video

stream resolutions and asynchronous mode demonstration. The test results show that the CNN cascade

provides a very high data processing speed on both GPU and CPU, outperforming all previously pro-

posed algorithms.

Specification of the equipment used:

 PC1 (laptop): Intel Core i7-3610QM CPU (2.3 GHz, Turbo Boost disabled), Intel HD

Graphics 4000 GPU1 (GT2, 16 core, 1,100 MHz) and Nvidia GeForce GT 640M GPU2 (GK107, 384

core, 709 MHz);

 PC2 (desktop): Intel Core i5-3470 CPU (3.2 GHz, 3.6 GHz with Turbo Boost) and Nvidia Ge-

Force GTX 960 GPU (GM206, 1,024 core, 1,228 MHz).

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

380

4.1 Face Detection Data Set and Benchmark

The FDDB [8] benchmark consists of 2,845 pictures (no more than 0.25 megapixels), and it has

elliptical shape annotations for 5,171 faces. The authors provide a standardized algorithm for the

automatic ROC curves construction based on the detector operation results. The algorithm calculates

two types of evaluations: the discrete score and continuous score. ROC curve for the discrete scores

reflects the dependence of the detected faces fraction on the number of false alarms by varying the

threshold of the decision rule. The detection is considered to be positive if the Intersection-over-Union

(IoU) ratio of detection and annotation areas exceeds 0.5. Only one detection can be matched with an

annotation. Continuous score reflects the quality of face localization, i.e. the average IoU ratio.

The result of the offered detector evaluation is shown in Figure 5. The following search settings

were used: the minimum object size (minSize) was 15×15 pixels, the scale factor for the image

pyramid construction (scaleFactor) was 1.05, T1 = 0, T2 = 0, and Tnn = 1. Since the detector localizes

rectangular areas, in some cases this leads to errors when they are matched with elliptical shape

annotations. For a correct evaluation, we manually modified 105 received bounding boxes (Fig. 6) so

that their IoU ratio would exceed a predetermined threshold.

Based on the adjusted evaluation, the performance of our detector exceeds the performance of

SURF [17], PEP-Adapt [14], and Pico [18] frontal detectors, approaching the multi-view SURF [17]

detector performance. Table 1 shows the average number of the sliding window positions selected by

each CNN cascade stage on the images from the FDDB collection. Even when T1 = 0, more than

99.99% of window positions were rejected already at the first stage. This is substantially better than

the result obtained in [16].

0 300 600 900 1200 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Disc scorerete

Ours

Ours (corrected)
Faceness-Net

CascadeCNN
HeadHunter

SURF−multiview
SURF−frontal

PEP−Adapt
Pico

Jain et al.
Viola Jones

0 300 600 900 1200 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Continuous score

Ours
Ours (corrected)

Faceness-Net
CascadeCNN

HeadHunter
SURF−multiview

SURF−frontal
PEP−Adapt

Pico
Jain et al.

Viola Jones

Fig. 5. Discrete score ROC curves and Continuous score ROC curves for different methods on the FDDB

dataset, including: our CNN cascade, Faceness-Net [34], CascadeCNN [16], HeadHunter [19], SURF [17], PEP-

Adapt [14], Pico [18], Jain et al. [9], and Viola Jones (OpenCV)

Fig. 6. Manually corrected detections received by the compact CNN cascade on the FDDB benchmark

Table 1. Statistics of the CNN cascade operation on the FDDB. It shows the number of detections averaged over

all images made by each cascade stage and the percentage of rejected windows

stages
number of

windows

rejected

windows, %

sliding window 2 724 768.2

stage 1 132.7 99.995

stage 2 57.0 57.019

stage 3 43.3 24.036

NMS 1.9

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

381

4.2 Annotated Faces in the Wild

The Annotated Faces in the Wild (AFW) [37] benchmark consists of 205 large-scale (0.5-5 mega-

pixels) images and contains rectangular annotations for 468 faces.

This benchmark was developed relatively recently and is mainly used for multi-view detectors

evaluation. Because of this, we additionally tested 7 frontal face detectors, including: two Haar cas-

cades (OpenCV-default, OpenCV-alt) and an LBP cascade (OpenCV-lbp) from the OpenCV library; a

Haar cascade [25] (OpenCV-Pham) and an LBP cascade [11] (OpenCV-Köstinger) trained by the

OpenCV object detection framework; an SURF cascade [17] (SURF-frontal, not the same model as for

the FDDB); and a cascade of decision trees using the pixels intensity comparison [18] (Pico).

For each detector, precision and recall scores were calculated for different values of minNeigh-

bors = {1, 2, 3} (a parameter specifying how many neighbors each candidate rectangle should have to

retain it), and the mean value of F1 measure. MinNeighbors parameter is used in the OpenCV and

SURF detectors and is equivalent to Tnn (2) for our detector. In Pico implementation, the level of false

alarms is regulated by the threshold of the decision rule which in this test was assumed to be equal to

minNeighbors + 2.

Comparison of the detectors was carried out with the following search settings: minSize = 80×80

pixels and scaleFactor = 1.1. The SURF and OpenCV-Köstinger detectors localize a smaller face area

in comparison with other detectors, which is why their minSize value was reduced by 25%. The con-

figuration of the detectors was as follows:

 OpenCV: version 3.0.0, useOptimized = 1;

 SURF: modelType = 0, fast = 1, step = 1;

 Pico: strideFactor = 0.1.

A standard IoU ratio with a threshold of 0.5 was used to evaluate the detections. Moreover, 44

bounding boxes were additionally generated for each annotation by scaling it with a factor from 0.9 to

1.2 (Fig. 7). Such a multiple check of detections made it possible to take into account differences in

the size of areas localized by detectors and to eliminate errors appearing during matching.

The test results are presented in Figure 8. The proposed detector (F1 = 0.75) holds the second po-

sition in terms of F1 measure value. It is second to the OpenCV-Köstinger detector (F1 = 0.78) due to

producing more false alarms. However, on this benchmark, modern multi-view detectors show signifi-

cantly better results, but they cannot work in real-time mode. For example, the Faceness-Net [34] de-

tector requires 50 ms for image analysis with VGA resolution on Nvidia Titan Black GPU, which is

about 200 times longer than the working time of our CNN cascade.

Fig. 7. AFW annotations modification

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

Ours (0.75)

Pico (0.67)

SURF−frontal (0.64)

OpenCV−Pham (0.71)

OpenCV−Koestinger (0.78)

OpenCV−default (0.46)

OpenCV−alt (0.72)

OpenCV−lbp (0.53)

Faceness−Net

Fig. 8. Test results of the frontal face detectors on the AFW benchmark. The numbers in parentheses are mean

values of the F1-measure for detectors

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

382

4.3 Video data

During the last test, the performance of detectors was evaluated on a high-resolution video se-

quence. We annotated the first 12,000 frames of the 12th episode from the 5th season of «How I Met

Your Mother» TV series in HD resolution. This video segment comprises 10 different scenes, and the

number of faces in a frame varies from 1 to 88 (39,976 faces in total).

For testing, we used the same detector parameters as for the AFW benchmark, except the minSize

parameter which was equal to 40×40 pixels. Also, in this test the parameter T2 for our detector was

equal to 1.7. All detectors were running on CPU PC1 in a single-threaded mode.

The proposed detector also ranks second in terms of F1 measure value (F1 = 0.61, 10.6 fps), yield-

ing to OpenCV-Köstinger (F1 = 0.65, 1.7 fps), but it is superior to all the detectors in terms of speed

(Fig. 10). Thus, the CNN cascade provides the best performance/speed ratio in comparison with boost-

ing cascades.

A greater level of recall, with a significantly reduced precision, can be achieved by using a weak-

er decision rule in the selective unit:

2 3CNN CNN

nn nn nn nn
K T K T     (3)

A higher level of precision can be achieved by performing an additional validation of detections

with a Haar cascade OpenCV-alt. A Haar cascade was used only after the NMS algorithm, and the

detections were pre-scaled to the size of 80×80 pixels. This made it possible to keep the high speed of

video processing.

The results of the evaluations of detectors with the use of the AFW and video data allow drawing

the following conclusions. Frontal detectors whose processing speed (on CPU) is comparable to that

of a compact CNN cascade achieve a significantly lower recall and precision of detection. Detectors

whose recall is comparable to that of a CNN cascade have a processing speed which is several times

lower. Thus, we have shown that CNNs (even classic ones) allow building a frontal faces detector with

better characteristics than it can be achieved using the modern modifications of Viola-Jones algorithm.

Fig. 9. Examples of video frame annotations

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

Ours (0.61), 10.6 fps

Ours−weak (0.59), 9.3 fps

Ours−weak+OpenCV−alt (0.63), 9.1 fps

Pico (0.59), 9.2 fps

SURF−frontal (0.6), 8 fps

OpenCV−Pham (0.59), 4 fps

OpenCV−Koestinger (0.65), 1.7 fps

OpenCV−default (0.43), 1.2 fps

OpenCV−alt (0.61), 1.1 fps

OpenCV−lbp (0.47), 4.1 fps

Fig. 10. Test results of the frontal face detectors on HD video. The numbers in parentheses are mean values of

the F1-measure for detectors

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

383

4.4 Runtime efficiency

The runtime efficiency was the key priority at all stages of the proposed detector development.

Our CNN cascade turned out to be from 2.6 to 10 times faster than Haar and LBP cascades from the

speed-optimized OpenCV 3.0 library when processing HD video on CPU PC1 (Fig. 10). Meanwhile,

the computing complexity of our CNN cascade is comparable to that of Haar-like cascades. In case

with the search parameters from Section 4.3 C++ code (without auto-vectorization), it reaches 1.2 fps,

whereas the Haar-like classifier from the OpenCV-alt reaches only 1.1 fps.

Among other open source projects (for example, http://libccv.org and http://dlib.net), we do not

know a CPU-based algorithm faster than Pico [18] (integer, it does not require the construction of an

image pyramid) and a SURF cascade [17] (5 stages, SIMD optimization is used). However, despite the

higher computational complexity, the speed of the CNN cascade execution exceeds the speed of these

detectors due to the code vectorization and the efficient use of the processor’s cache memory.

Figure 11 shows the dependence of the speed of various detectors on the content of the scene for

the first 4,000 frames of the annotated video. When using the asynchronous mode, the CNN cascade

provides nearly constant processing time on both CPU and GPU even when there is a significant in-

crease in the number of faces in the scene (88 faces in frames from 1,771 to 1,834). This property is

important for video analytics systems as it makes it possible to predict more precisely the speed of the

system in different use cases.

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

150

200

250

300

frames

m
s

Processing speed

OpenCV−lbp CPU()

Pico CPU()

SURF−frontal CPU()

Ours CPU()

Ours CPU async mode(,)

Ours GPU(2)

Ours GPU async mode(,)2

Ours GPU +CPU()2

Fig. 11. Dependence of detector operation speed on the scene content during HD video processing (search set-

tings are the same as in section 4.3, single-threaded execution on PC1)

For algorithms that have been tested on the FDDB benchmark, the authors reported the following

data on the detection speed of frontal faces for images with VGA resolution: NPD1 [13] – 178 fps

(40×40, 1.2, i5-2400 CPU, 4 threads); ACF [35] – 95 fps (i7 CPU, 4 threads); SURF [17] – 91 fps

(40×40, 1.2, i5-2400 CPU, 4 threads); Joint Cascade [2] – 35 fps (80×80, 2.93 GHz CPU, 1 thread);

Pico [18] – 417 fps (100×100, i7-2600 CPU, 1 thread); Fast DMP [33] – 42 fps (Intel X5650 CPU, 6

threads). The speed of other detectors does not exceed 10 fps. Only methods based on the CNN [3, 16,

34] and HeadHunter [19] support GPU. For typical search settings (minSize = 40×40 pixels, scaleFac-

tor = 1.2), a CNN cascade guarantees 85 fps for a single-threaded and 148 fps for a multi-threaded

execution on CPU PC2, 171 fps on GPU2 PC1, and 313 fps on GPU PC2 (used hybrid mode).

The CNN cascade proposed by H. Li et al. [16] processes a VGA image in 110 ms on CPU

(80×80, 1.414, Intel Xeon E5-2620, 1 thread) and in 10 ms on GPU (Nvidia GeForce GTX TITAN

Black, 2,880 CUDA core). With similar search settings, our CNN cascade finishes its operation in

2.5 ms on a single core CPU PC1 and 2 ms on GPU2 PC1.

1 just 39 fps when processing our annotated video (scaled to the VGA resolution) for multi-threaded execution

on CPU PC1.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

384

Many investigations are focused on the optimization of Viola-Jones algorithm for GPU with the

purpose of increasing the processing speed of a Full HD video stream: D. Oro et al. [22] – 35 fps for

Haar cascade (24×24, 1.1, Nvidia GTX470 GPU); S.C. Tek and M. Gokmen [28] – 35 fps for MCT

cascade (24×24, 1.15, Nvidia GTX580 GPU); C. Oh et al. [21] – 29 fps for LBP cascade (30×30, 1.2,

Nvidia Tegra K1 GPU + Cortex-A15 CPU). Using the same search parameters, the CNN cascade

speed reaches up to 75, 98, and 108 fps respectively when it runs in the hybrid mode on PC2. Thus,

the proposed detector provides a higher runtime efficiency on GPU in comparison with Viola-Jones

cascade detectors.

Figure 12 shows the diagram of an average video frame rate in 4 standard resolutions which can

be reached with different detector implementations optimized for CPU and GPU. Testing was con-

ducted on first 4,000 frames of the annotated video that was scaled to the size of the appropriate reso-

lution. The results indicate that the CNN cascade copes even with the extreme task of real-time pro-

cessing of the video stream with a 4K Ultra HD resolution. For example, the speed of an LBP cascade

face detector from the OpenCV library reaches 3 fps only on GPU2 PC1 with the same search settings.

VGA HD Full HD 4K Ultra HD
0

50

100

150

200

250

300

350

400

1
2
6

3
9

1
7

4

1
9
8

6
1

2
6

6
.4

5
9

2
5

1
3

3
.6

1
6
7

1
11

7
5

2
3

2
8
5

1
9
2

1
3
1

4
6

2
2
9

1
3
6

9
0

2
7

3
5
9

2
0
7

1
4
8

5
6

F
P

S

1 core CPU PC2, SSE−optimized

1 core CPU PC2, AVX−optimized

GPU1 PC1, OpenCL (not optimal)

GPU PC2, CUDA−optimized

GPU + CPU PC2 (hybrid mode)

GPU PC , CUDA−optimized 1

GPU + CPU PC (hybrid mode)1

2

2

Fig. 12. Processing speed of different frontal face detector implementations based on the compact CNN cascade

(minSize = 60×60 pixels, scaleFactor = 1.2, minNeighbors = 2)

5. Conclusion

In this paper, we proposed a cascade of compact CNNs for a rapid detection of frontal faces in an

HD video stream. The first stage of the cascade is capable of rejecting 99.99% of windows containing

background. In combination with the asynchronous execution mode, this factor substantially reduces

the dependence of the detector speed on image content.

The CNN cascade performance is comparable with that of the best frontal face detectors on the

FDDB benchmark, but it surpasses them in speed on both CPU and GPU. Thus, the proposed algo-

rithm establishes a new level of performance/speed ratio for the frontal face detection problem and

makes it possible to reach acceptable processing speed even on low-power computing devices.

References

1. Barbu A., Lay N., Gramajo G. Face Detection with a 3D Model. arXiv preprint. 2014. URL:

http://arxiv.org/pdf/1404.3596.pdf (accessed: 14.02.2016).

2. Chen D., Ren S., Wei Y., et al. Joint cascade face detection and alignment // In European Confer-

ence on Computer Vision. 2014. P. 109-122.

3. Farfade S.S., Saberian M., Li L.-J. Multi-view face detection using deep convolutional neural

networks. arXiv preprint. 2015. URL: http://arxiv.org/pdf/1502.02766.pdf (accessed: 14.02.2016).

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

385

4. Froba B., Ernst A. Face detection with the modified census transform // In IEEE International

Conference on Automatic Face and Gesture Recognition. 2004. P. 91-96.

5. Garcia C., Delakis M. Convolutional face finder: A neural architecture for fast and robust face

detection // In IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004. P. 1408-

1423.

6. Iandola F.N., Moskewicz M.W., Karayev S., et al. Densenet: Implementing efficient convnet de-

scriptor pyramids. arXiv preprint. 2014. URL: http://arxiv.org/pdf/1404.1869.pdf (accessed:

14.02.2016).

7. Iandola F.N., Sheffield D., Anderson M.J., et al. Communication-minimizing 2D convolution in

GPU registers // In IEEE International Conference on Image Processing. 2013. P. 2116-2120.

8. Jain V., Learned-Miller E. Fddb: A benchmark for face detection in unconstrained settings. Tech-

nical Report UMCS-2010-009. University of Massachusetts. 2010. URL: http://vis-

www.cs.umass.edu/fddb/fddb.pdf (accessed: 14.02.2016).

9. Jain V., Learned-Miller E. Online domain adaptation of a pre-trained cascade of classifiers // In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011. P. 577-

584.

10. Jun B., Choi I., Kim D. Local transform features and hybridization for accurate face and human

detection // In Pattern Analysis and Machine Intelligence. 2013. P. 1423-1436.

11. Köstinger M. Efficient metric learning for real-world face recognition // Graz University of Tech-

nology, PhD thesis. 2013.

12. LeCun Y., Bengio Y. Convolutional networks for images, speech, and time series // The handbook

of brain theory and neural networks. 1995. P. 255-258.

13. Liao S., Jain A.K., Li S.Z. A fast and accurate unconstrained face detector // In IEEE Transactions

on Pattern Analysis and Machine Intelligence. 2015. P. 211-223.

14. Li H., Hua G., Lin Z., et al. Probabilistic elastic part model for unsupervised face detector adapta-

tion // In Proceedings IEEE International Conference on Computer Vision Workshops. 2013. P.

793-800.

15. Li H., Lin Z., Brandt J., et al. Efficient boosted exemplar-based face detection // In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2014. P. 1843-1850.

16. Li H., Lin Z., Shen X., et al. A convolutional neural network cascade for face detection // In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. P. 5325-

5334.

17. Li J., Zhang Y. Learning SURF cascade for fast and accurate object detection // In Computer Vi-

sion and Pattern Recognition. 2013. P. 3468-3475.

18. Markuš N., Frljak M., Pandžić I.S., et al. Object detection with pixel intensity comparisons orga-

nized in decision trees. arXiv preprint. 2013. URL: http://arxiv.org/pdf/1305.4537.pdf (accessed:

14.02.2016).

19. Mathias M., Benenson R., Pedersoli M., et al. Face detection without bells and whistles // In Pro-

ceedings of ECCV. 2014. P. 720-735.

20. Ntene N., Van Vuuren J.H. A survey and comparison of guillotine heuristics for the 2D oriented

offline strip packing problem // Discrete Optimization. 2009. P. 174-188.

21. Oh C., Yi S., Yi Y. Real-time face detection in Full HD images exploiting both embedded CPU

and GPU // In IEEE International Conference on Multimedia and Expo. 2015. P. 1-6.

22. Oro D., Fernández C., Saeta J.R., et al. Real-time GPU-based Face Detection in HD Video Se-

quences // In IEEE International Conference on Computer Vision Workshops. 2011. P. 530-537.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

386

23. Osadchy M., LeCun Y., Miller M. Synergistic face detection and pose estimation with energy-

based models // Journal of Machine Learning Research. 2007. P. 196-206.

24. Paisitkriangkrai S., Shen C., Zhang J. Face detection with effective feature extraction. arXiv pre-

print. 2010. URL: http://arxiv.org/pdf/1009.5758.pdf (accessed: 14.02.2016).

25. Pham M.T., Cham T.J. Fast training and selection and Haar features using statistics in boosting-

based face detection // In IEEE International Conference on Computer Vision. 2007. P. 1-7.

26. Saberian M.J., Vasconcelos N. Boosting classifier cascades // In Proceedings of the 24th Annual

Conference on Neural Information Processing Systems. 2010. P. 7-9.

27. Subburaman V., Marcel S. Fast bounding box estimation based face detection // In European Con-

ference on Computer Vision. Workshop on Face Detection. 2010. P. 1-14.

28. Tek S.C., Gokmen M. GPU accelerated real-time object detection on high resolution videos using

modified census transform // In VISAPP. 2012. P. 685-688.

29. Trefny J., Matas J. Extended set of local binary patterns for rapid object detection // In Computer

Vision Winter Workshop. 2010. P. 1-7.

30. Viola P.A., Jones M.J. Robust real-time face detection // In International Journal of Computer Vi-

sion, 2004. P. 137-154.

31. Wolf L., Hassner T., Maoz I. Face recognition in unconstrained videos with matched background

similarity // In Computer Vision and Pattern Recognition. 2011. P. 529-534.

32. Wu B., Ai H., Huang C., et al. Fast rotation invariant multi-view face detection based on real ada-

boost // In IEEE International Conference on Automatic Face and Gesture Recognition. 2004. P.

79-84.

33. Yan J., Lei Z., Wen L., et al. The fastest deformable part model for object detection // In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014. P. 2497-2504.

34. Yang S., Luo P., Loy C.C., et al. From facial parts responses to face detection: A Deep Learning

Approach. arXiv preprint. 2015. URL: http://arxiv.org/pdf/1509.06451.pdf (accessed: 14.02.2016).

35. Yang B., Yan J., Lei Z., et al. Aggregate channel features for multi-view face detection. arXiv

preprint. 2014. URL: http://arxiv.org/pdf/1407.4023.pdf (accessed: 14.02.2016).

36. Zayani R., Bouallegue R., Raviras D. Levenberg-Marquardt learning neural network for adaptive

pre-distortion for time varying HPA with memory in OFDM systems // In European Signal Pro-

cessing Conference. 2008. P. 1-5.

37. Zhu X., Ramanan D. Face detection, pose estimation, and landmark localization in the wild // In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012. P. 1-8.

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

387

