
A Study of Android Malware Detection Techniques and Machine Learning

Balaji Baskaran and Anca Ralescu
EECS Department

University of Cincinnati
Cincinnati, OH 45221 - 0030

baskarbi@mail.uc.edu, anca.ralescu@uc.edu

Abstract
Android OS is one of the widely used mobile Operat-
ing Systems. The number of malicious applications and
adwares are increasing constantly on par with the num-
ber of mobile devices. A great number of commercial
signature based tools are available on the market which
prevent to an extent the penetration and distribution of
malicious applications. Numerous researches have been
conducted which claims that traditional signature based
detection system work well up to certain level and mal-
ware authors use numerous techniques to evade these
tools. So given this state of affairs, there is an increas-
ing need for an alternative, really tough malware de-
tection system to complement and rectify the signature
based system. Recent substantial research focused on
machine learning algorithms that analyze features from
malicious application and use those features to classify
and detect unknown malicious applications. This study
summarizes the evolution of malware detection tech-
niques based on machine learning algorithms focused
on the Android OS.

Introduction
According to a 2014 research study (RiskIQ(2014)), ma-
licious applications in Google Play Store have increased
388% between 2011 and 2013.

As the initial part of our research, we conducted an ex-
tensive study where we analyze the current trends and ap-
proaches on detecting the malwares on Android Systems us-
ing Machine Learning techniques. The overall goal of this
study is to identify the research so far on Android Mal-
ware detections using Machine Leaning Techniques. With
this analysis we can formulate a defense mechanism specif-
ically to counteract the Update attack, the most difficult in-
trusion technique to detect and eliminate.

Update Attack: In Android update attack is defined as
the benign application installed in the system downloads
malicious payloads while updating itself or downloads third
party malicious applications and installs in the system. This
type of attack is very hard to detect because the original ap-
plication is benign. Unless we track the installed previous
versions and the application after the update we cannot de-
tect the malicious activity. We aim to give a brief approach
on counteracting the update attack with the survey on recent
trends on Malware detection.

Based on the current attack trends and anal-
ysis of the present literatures, (Raveendranath
et al.(2014)Raveendranath, Rajamani, Babu, and Datta) lists
the types of malwares as follows:

1. Information Extraction
Compromises the device and steals personal information
such as IMEI number, user’s personal information, etc.

2. Automatic Calls and SMS
User’s phone bill is increased by making calls and sending
SMS to some premium numbers

3. Root Exploits
The malware will gain system root privileges and takes
control of the system and modifies the information.

4. Search Engine Optimizations
Artificially search for a term and simulates clicks on tar-
geted websites in order to increase the revenue of a search
engine or increase the traffic on a website.

5. Dynamically Downloaded code
An installed benign application downloads a malicious
code and deploys it in the mobile devices.

6. Covert channel
A vulnerability in the devices that facilitates the informa-
tion leak between the processes that are not supposed to
share the information.

7. Botnets
A network of compromised mobile devices with a Bot-
Master which is controlled by Command and Control
servers (C&C). Carry out Spam delivery, DDDos attacks
on the host devices.

From this point on, the structure of the paper is as follows.
Section is a general overview of current security deployed
by play-store. Classification of various methods used in de-
tecting malwares in Android systems is presented in Section
. The paper concludes in Section

Overview of Android System Security
Google Play Store uses an in-house malicious applica-
tion detection system called Bouncer. But researchers have
proved that Bouncer’s ability to detect the malicious applica-
tion is minimal and they could successfully publish a proto-
type malicious application in play-store. Android Play-Store

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

15

uses application’s meta data such as user’s rating and user’s
comments to flag a malicious application. But by the time
the malicious application is detected, it could have made
enough damage to the affected mobile system.

Malware authors use many techniques to evade the detec-
tion such as (a) code obfuscation technique, (b) encryption,
(c) including permissions which are not needed by the appli-
cation, (d) requesting for unwanted hardwares, (e) download
or update attack in which a benign application updates itself
or another application now with malicious payload, which
is very tough to detect. This also encourages the need for
new researches on the detection techniques, including ma-
chine learning based techniques. Many studies have shown
that machine learning algorithms to detect the malicious ac-
tivities are successful in detecting them with very high accu-
racy.

Android Malware Detection
Based on the features used to classify an application, we can
categorize the analysis as Static and Dynamic. Static anal-
ysis is done without running an application. Examples of
static features include, (a) permissions, (b) API calls which
can be extracted from the AndroidManifest.xml file. Dy-
namic analysis deals with features that were extracted from
the application while running, including (a) network traffic,
(b) battery usage, (c) IP address, etc. The third type of anal-
ysis is hybrid analysis which combines the features from
static and dynamic techniques. The rest of this section de-
scribes the features extracted from the application and ma-
chine learning algorithm used.

Static Analysis
In static analysis, the features are extracted from the appli-
cation file without executing the application. This method-
ology is resource and time efficient as the application is not
executed. But at the same time, this analysis suffers from
code obfuscation techniques the Malware authors employ to
evade from static detection techniques. One of very popular
evasion technique is the Update Attack: a benign applica-
tion is installed on the mobile device and when the appli-
cation gets an update, the malicious content is downloaded
and installed as part of the update. This cannot be detected
by static analysis techniques which will scan only the benign
application.

The most commonly used static features are the Permis-
sion and API calls. Since these are extracted from the appli-
cation AndroidManifest.xml and influence the malware de-
tection rate to a high extent, extensive research has been
made with these as features as well as combined with other
features extracted from meta-data available in Google Play-
Store such as version name, version no., author’s name, last
updated time, etc.,

(Sahs and Khan(2012)) used permissions and Control
Flow Graphs(CFG) as features and used One-class Support
Vector Machine(SVM). The most of training data are benign
applications and the classifier will classify a sample as mali-
cious only if it is sufficiently different from the benign class.

(Shabtai et al.(2010)Shabtai, Fledel, and Elovici) used

permission, framework methods and framework classes for
their classification system.

(Sanz et al.(2012)Sanz, Santos, Laorden, Ugarte-Pedrero,
and Bringas) extracted the strings in the application, permis-
sions, user rating, number of ratings, size of the application
and used Bayesian Networks, J48 Decision Tree and Ran-
dom Forest, SVM with SMO kernel. A total of 820 samples
were used to test and the authors concluded that they could
achieve a very high accuracy with less false positive rate.

(Ghorbanzadeh et al.(2013)Ghorbanzadeh, Chen, Ma,
Clancy, and McGwier) used Neural Networks to detect an
application’s category from permissions by means of multi
layered feed forward networks. A feed forward Neural Net-
work is built with two layers each containing 10 neurons.
The hidden layer contains sigmoid transfer function and the
output linear transfer functions was deployed. The suthoud
assumed that the permissions declared in the manifest file
may be manipulated by the malware authors and they may
misrepresent the categories declared in the manifest. So to
simulate this property, the authors permuted permissions of
50% of the test data and fed into the network.

(Yerima et al.(2013)Yerima, Sezer, McWilliams, and
Muttik) used 2000 applications with 1000 malicious and
1000 benign applications. They extracted features like Per-
missions, API calls, Native Linux System commands and
various features from manifest and class files. The mal-
ware authors embed native linux commads such as chnown,
mount, remount, etc., and run them in the Android system
when the application is launched. Mutual information (en-
tropy) is used to rank the features and then a Bayesian Clas-
sifier is used for classification.

(Samra et al.(2013)Samra, Yim, and Ghanem) extracted
features from AndroidManifest.xml such as count of xml el-
ements, application specific information such as name, cat-
egory, description, rating, package info, description, rating
values, rating counts and price. The information from 18174
android application with 4612 business category and 13535
tools were extracted by using web crawlers. They were clus-
tered using K-Means clustering.

(Peiravian and Zhu(2013)) utilized permission, API calls
and the combination of both as features. The two types of
permissions in Android, requested permission and required
permission are used to express an application as a binary
vector where Pi = 1 iff the Manifest.xml has the i

th per-
mission. Same as permission, API calls are also expressed
as a binary vector with APIi = 1 iff there is the API call
made in the application. These two features are concatenated
and the third feature is formed. A total of 2510 samples in-
cluding 1260 are malicious and 1250 benign are used. The
authors concluded that Bagging, an ensemble classification
method has the best performance in classifying all created
datasets.

(Liu(2013)) investigated three specific types of malware:
SMS-related, control-related and spy-related. An applica-
tion’s permission and ¡uses-feature¿ xml tag which requests
the necessary hardware devices needed to run the applica-
tion, is extracted and used as features. Information Gain is
used to select important features and SVM with the basic
classifier is used to detect the malicious application. The au-

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

16

thors could detect Spy-related applications with an accuracy
of 81%, SMS-related with malicious applications with an
accuracy of 97% and Control-related malicious applications
with an 100% accuracy and could detect benign applications
with an accuracy of 88%.

(Glodek and Harang(2013)) constructed five Random
Forests with 5-fold cross validation and compared their per-
formance in detecting malicious applications. They have
used 500 malicious and 500 benign from North Carolina
State University’s malware project. Permission, broadcast
receivers and native code embedded in the application are
used as features and they concluded that their method out-
performs a lot of commercial anti virus detection tools.

(Jerome et al.(2014)Jerome, Allix, State, and Engel) ex-
tracted the opcodes from class.dex file and translated into
opcode sequences, binary sequences of k-grams that charac-
terize the least functionalities required by a program. They
trained their model with Gnome Project dataset and ran-
domly picked 1246 applications from the Google Play Store.
The test dataset consists of 25,476 malware samples, 15670
benign applications from VirusTotal. Information Gain was
used to select important features among the available ones.
The author used a linear implementation of SVM to clas-
sify application samples. The results were compared with
the detection rate of 25 anti virus tools. The study release an
interesting signature patterns of Malware, Goodware, False
Positives and False Negatives of their classifier. The false
negatives were found out to be adwares and they were also
considered a threat by the tool.

(Pehlivan et al.(2014)Pehlivan, Baltaci, Acarturk, and
Baykal) used 3748 application packages, developed C#
scripts to automatically extract about 182 attributes that in-
clude Permissions, version no and version name of the appli-
cations. The study compared feature selection methods such
as Gain Ratio Attribute Evaluator, Relief Attribute Evalua-
tor, Control Flow Subset Evaluator, and Consistency Subset
Evaluator and machine learning algorithms Bayesian clas-
sification, Classification and Regression Tree (CART), J48
DT, RF, SMO. Using the feature selection methods, they
came up with 97 features that could represent the whole
dataset. Finally the authors conclude that, with just 25 fea-
tures, the Control Flow Subset Evaluator selection gave a
good performance and Random forest and J48 performed
better than Bayesian classifier.

(Chan and Song(2014)) analyzed 796 benign and 175 ma-
licious applications for their study. Permissions used from
the manifest.xml file and API call info from the classes.dex
file are extracted and with Information Gain they selected
a set of 19 relevant API calls. They compared the results
obtained by machine learning algorithms such as Naive
Bayes, SVM with SMO algorithm, RBF Network, Multi
Layer Perceptron, Liblinear, J48 decision tree and Random
Forests.The authors concluded that the were able to get 90%
of the accuracy by using the API calls and permission com-
bined than using the individual features alone.

(Liu and Liu(2014)) combined the two types of permis-
sions, required permission and requested permission and de-
signed a two layer approach with these features and em-
ployed machine learning algorithms to detect the malicious

applications. A total of 28,548 benign applications and 1,536
malicious applications and permission pairs i.e., combina-
tion of any two requested permission are analyzed. The two
layered approach helped to balance the detection accuracy
and detection speed of the classifier. In Phase 1, requested
permissions and the J48 Decision Tree algorithm is used in
detection and in Phase 2, requested permission pairs and the
J48 Decision Tree is used for detection. If there is any con-
tradiction in the results obtained from both the phases, used
permission pairs and J48 is used to classify again. The au-
thors achieved a good result with this approach and recom-
mended using the permission in component level than the
application level for better detection of malicious activities.

(Ideses and Neuberger(2014)) used permission, broadcast
receivers and activities, byte code fragments, system-calls
as features and trained SVM with the training dataset. The
researchers tested their proposed Malware detection system
with a security tester for benchmarking where their system
was tested with 7,000 samples. They conclude that their sys-
tem could achieve about 99.3% positive rate with just 0.14%
false alarm rate.

(Yerima et al.(2014a)Yerima, Sezer, and McWilliams)
presented and analyzed three Bayesian classification ap-
proaches for detecting Android malwares. Permissions and
code based properties such as API calls, both Java system
based and Android system based, Linux and Android system
commands are also extracted from the sample applications.
A list of top 20 permissions and top 25 API calls used by
benign and malicious applications are presented.

(Fazeen and Dantu(2014)) used combines Intentions of
the applications esp., Task Intentions with permission as fea-
ture in developing their model. At first the requested per-
missions are extracted and a histogram is constructed for
that task-intention category. Normalizing this results in an
I shaped PMF. This shape is used to compare and detect the
unknown applications as benign or malicious based on their
Task Intentions. The system works as follows:
• Phase I trains and uses machine learning algorithms to

find the task intentions of the sample applications.
• Phase II uses the knowledge from Phase I to find the task

intention of an unknown application and classify as be-
nign or malicious. The I shape is compared with the re-
quested permission by using a using a matching ratio, that
is generated by a machine learning algorithm. If the ratio
is in a threshold, then the application is potentially safe.
The authors used Naive Bayes, Multi Layered Perceptron
and Random Forests and compared their performances.
(Xiaoyan et al.(2014)Xiaoyan, Juan, and Xiujuan) ex-

tracted permissions from the manifest and represented as a
binary vector. Then Principle Component Analysis (PCA)
is performed to select the best features. A linear SVM is
trained to classify the app samples. The author compares the
result with other classifiers such as J48 Decision Tree, Naive
Bayes, BayesNet, CART, RandomForest and concludes that
SVM gives a better performance.

(Yerima et al.(2014b)Yerima, Sezer, and Muttik) came
up with a parallel implementation of their system to detect
malicious android applications. They used application re-

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

17

lated feature such as permissions, Standard OS and android
framework commands. They developed parallel implemen-
tation of Logistic function based classifier, Naive Bayes
- probabilistic method and PART, RIDOR which are rule
based classifier. with the features extracted, the classification
is performed with the individual algorithms and then paral-
lel implementation is carried out. The maximum probability
scheme fetched an accuracy of 97.5%.

(Idrees and Rajarajan(2014)) combines permissions and
Intents and used 292 applications for training and 340 for
testing their model. The study describes some usage statis-
tics of benign and malicious applications with regards to
intents and permissions and developed Naive Bayes, Kstar,
Prism to detect the maliciuos applications from benign ap-
plications.

(Munoz et al.(2015)Munoz, Martin, Guzman, and Her-
nandez) The authors collected the information from Google
Play meta-data such as intrinsic application features, Appli-
cation category, Developer related feature, certificate related
feature, social related feature. They concluded that certifi-
cate and developer information, intrinsic application feature
are the most promising feature to determine a malware with
just meta data.

(Westyarian et al.(2015)Westyarian, Rosmansyah, and
Dabarsyah) used 205 benign and 207 malicious applica-
tion files and extracted API calls that are only related to
the permission declared in ¡used-permission¿ label in man-
ifest.xml file. The study concluded that 97% of the mal-
ware requests telephonyManager and connectivityManager
are the most important features. Random forest classifica-
tion obtains 92.4% with cross validation as feature selection
algorithm and SVM obtain 91.4% with percentage split as
feature selection algorithm.

(Chuang and Wang(2015)) collected API calls from be-
nign application separately and API calls from malicious
applications separately and used these as features for clas-
sifying an unknown sample. The APIs in the unknown are
ranked according to their difference in the number of occur-
rences in benign and number of occurrences in malicious ap-
plications. Then they deploy single a model approach where
they will combine the two feature sets into a single vector.
In Malicious model approach only the hypothesis from Ma-
licious tended APIs is used for classification. The Hybrid ap-
proach combines two separately trained SVM models. These
results are then compared to predict whether the unknown
sample is malicious. The Hybrid model behaved much bet-
ter than the Malicious model but the single model obtained
from combined features outperformed the Malicious model.

Table 1 shows the top frequent used features in static anal-
ysis. Table 2 summarizes the top features that are combined
with other features to produce better detection rate. By ob-
serving the table 1 and table 2, it can be clearly seen that
Permission and API calls, the two features extracted from
Manifest file and .dex file produces higher detection rate and
inorder to make them more fail safe these can be combined
with other features such as mate-data collected from Google
Play Store or the features extracted from the XML elements.

Table 1: Topmost used features in static analysis

Sl. No. Feature
1 Permission
2 API calls
3 Strings extracted
4 Native commands
5 XML elements
6 Meta data
7 Opcodes from .dex file
8 Task Intents

Table 2: Top features combined with other features in static
analysis

Feature Combined With

Permissions

Broadcast receivers
Uses-feature tag

Android OS commands
API calls
meta-data
opcodes

Features extracted from
manifest files and class
files

API calls

Dynamic Analysis
(Wei et al.(2012)Wei, Mao, Jeng, Lee, Wang, and Wu) used
Droidbox, a tool to monitor the application real time, to dy-
namically analyze the behavior of android applications. IP
address of the source is extracted from the network traffic
after then application is run in a sandbox environment. The
research concentrated only on the network characteristics of
the malwares leveraging the fact that they will find their next
target soon. The extracted IP address is used to find the spa-
tial address using external services and to determine the uni-
formity of geographic distribution of the hosts because in-
fected hosts will be distributed worldwide. After extracting
the features, a MxN APP-GEO Matrix is constructed with
M representing the android applications(rows) and N net-
work features. ICA (Independent Component Analysis) to
extract the latent concept or sparse from the noisy spamming
data. The researchers used Weka and FastICA, the two open
source libraries to evaluate their model. A total of 310 mal-
ware samples were used and they could achieve about 93%
accuracy rate.

(Ham and Choi(2013)) used 30 normal apps and 5 mal-
ware samples (GoldDream, PJApps, DroidKungFu2, Snake
and Angry Birds Rio Unlocker) in this study. The allocated
resources when the app starts are monitored and the behav-
ioral pattern is extracted. hese resource data are stored within
the device and are converted into feature vectors. Each fea-
ture is subdivided to 7 categories, 1. Network, SMS, CPU,
and power usage, Process (like ID, Name , running pro-
cess), memory Native, Dalvik and other and Virtual Mem-
ory.32 features are related to malware detection and applied

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

18

Information Gain to select features. They used Naive Bayes,
Random Forest LR, SVM with 10 fold cross validation.

The authors concluded that Naive Bayes/LRs confusion
matrix are irregular in distribution with these features. SVM
correctly classified normal type data almost 100% but falsely
detected malicious applications as benign. Random Forests
outperformed all the algorithms and correctly classifies the
majority of normal and malware applications.

(Lu et al.(2013)Lu, Zulie, Jingju, and Yi) compared
Bayesian method alone and Bayesian method combined
with Chi Square feature selection method results are com-
pared to evaluate the performance of the two ML algo-
rithms. The study concluded that Bayesian method with Chi
Squared yielded an accuracy of 89% while Bayesian method
alone yielded 80%.

(Tenenboim-Chekina et al.(2013)Tenenboim-Chekina,
Barad, Shabtai, Mimran, Rokach, Shapira, and Elovici) used
5 to 10 self-written Trojan malware with two versions of the
malware, one benign and other malicious which is repacked
version of the benign with malicious code. While the ap-
plication is running, Many network based features are ex-
tracted. The self-written applications are installed in the de-
vices and their behavior was collected and analyzed. This
helps the traffic patterns distinguishable from benign and
malicious. Feature measurements are performed at fixed
time intervals and then aggregation functions are computed
over these measurements. Cross feature analysis is used
to explore the correlation between features. The deviations
caused by abnormal activities from normal activities are ob-
served. With labeled samples a threshold of deviation is ob-
tained during the algorithm formulation. The study could
successfully detect the repacked malicious applications us-
ing the network features learned.

(Alam and Vuong(2013)) rooted the mobile device to get
the details such as, data being sent by applications, IP ad-
dress being communicated, number of active communica-
tions, the system calls and used Random forest with 1330
malicious and 407 benign applications. The authors con-
cluded that with more trees and less feature per tree in the
Random Forest, they could achieve an accuracy of 99%.

(Mas’ud et al.(2014)Mas’ud, Sahib, Abdollah, Selamat,
and Yusof) monitored the system call of 30 normal appli-
cations and 30 malicious applications. The study compares
5 feature selection methods and 5 Machine Learning classi-
fiers KNN, Decision Tree, Multi Layer Perceptron (MLP),
Random Forests, Naive Bayes. The applications are run in
real devices and are monitored for system calls generated by
Strace, an application used to log various system activities in
android systems. Then the features are selected by Informa-
tion Gain and Chi-Square. A set of 5 feature sets are devised
and used to compare the efficiency of 5 Machine Learning
algorithms. The study concluded that the MLP achieves a
highest accuracy and True Positive rate for one feature set
while J48 Decision Tree achieves high performance rate for
another feature set.

(Ng and Hwang(2014)) also used Strace to monitor the
application for 60 secs. The features taken into account were
Strace logged ProcessID, system calls, returned values and
times between consecutive system calls. The no of times

each invoked call is counted. PCA is used in selecting the
important feature and then the classifier classifies the appli-
cation sample malicious or benign based on anomaly score
obtained by the input. The author compared their system’s
performance with classifiers such as Naive Bayes, J48 De-
cision Tree and SVM and claims that they could achieve
98.4% detection rate.

(Kim and Choi(2014)) Linux based features are extracted
from the Android Os and used as feature to detect malicious
applications. There were 59 features obtained like, Mem-
ory, CPU, Network, etc. 6 malwares were run on the system
and the system is monitored to collect the above said fea-
tures. Every 10 seconds the data is collected and sent over
to a server and the server does the classification. Out of 59
features, 36 are selected and the results are compared be-
fore and after applying feature selection. It has been said
that the feature selection improves the accuracy and reduces
the False Positive Rate of the classification.

(Kurniawan et al.(2015)Kurniawan, Rosmansyah, and
Dabarsyah) used Logger, a default application which is in-
built in Android was used to extract the sum of Internet
traffic, percentage of battery used and battery temperature
for every minute. These information collected as set of fea-
tures and is fed into weka, a open source learning library
for testing and training with Naive Bayes, J48 decision tree
and Random Forest algorithms. The author concluded that
Random Forest has high accuracy of 85.6% with these fea-
tures and proposes other features that can be combined with
existing system to improve the accuracy.

Table 3 summarizes the most frequently used features in
Dynamic analysis. As seen, Network traffic which includes
data packets sent, and other behavioral patterns can lead to
quick detection of malicious activity. Tracing the IP address
can help us to get the geographical landscape of the attack
surface. Other than this, SMS, information logged by Log-
ger and Strace is very much helpful in achieving a higher
detection rate.

Hybrid Analysis
The hybrid methodology involves combining static and dy-
namic features collected from analyzing the application and
extracting information while the application is running, re-
spectively. Though it could increase the accuracy of the de-
tection rate, it makes the system cumbersome and the analy-
sis process time consuming.

(Shabtai(2010)) extracted opcodes from the executable
and proposed a framework that monitors the device state at
every instant such as CPU usage, number of packets sent
over network, number of running process, battery level. Ap-
plications are downloaded from play store. The authors ex-
amine the applicability of Knowledge Based Temporal Ab-
straction (KBTA) which helps continuously monitor and
measure events on a mobile system. The study was con-
cluded with 94% detection rate with the feasibility of run-
ning such a system with just 3% power consumption. The
authors also recommend the implementation of SELinux to
enhance the security mechanisms of Android. Efficiency of
Machine Learning algorithms such as Decision Trees, Naive

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

19

Table 3: Top features used in Dynamic analysis
Sl.
No.

Feature Machine Learning Algorithm

1 Network, SMS, Power Usage, CPU, Process info, Native
and Dalvik Memory

Naive Bayes, Random Forest, SVM with
SMO algorithm

2 Data packets being sent, IP address, No. of active com-
munications, System calls

Random Forest

3 Process id, System calls collected by Strace, Returned
values, Times between consecutive calls

Naive Bayes, Decision Trees, SVM

4 Network Traffic - Destination IP address Classification
5 System calls collected Strace, Logs of System activities J48 Decision Trees, KNN, ST, Multi Layer

Perceptron
6 Data collected by Logger, Internet traffic, Battery per-

centage, Temperature collected every minute
Naive Bayes, J48 Decision Trees

Bayes, BayesNet, K-Means, Histogram and Logistic Re-
gression are compared and evaluated.

(Xu et al.(2013)Xu, Yu, Chen, Cao, Dong, Guo, and
Cao) proposes a system, MobSafe that combines the dy-
namic (Android Security Evaluation Framework - ASEF)
and static (Static Android Analysis Framework - SAAF)
analysis methods. They used 100,000 active android appli-
cations from AppChina. Static features include the informa-
tion from apk files and decoded smali files were analyzed
to extract the permissions, heuristic patterns, and program
slicing for functions of interest NO ML: analyzing takes
within 2mins and For dynamic analysis ADB logging and
TCP DUMP were used. The application is launched on a
Virtual Machine and subjected to human level interaction
simulation. This is then compared with a CVE library and
its Internet activity with Google Safe Browser API to check
the URLS the app requested is malicious or not.

(Wei et al.(2013)Wei, Zhang, Ge, and Hardy) analyzed 96
benign applications and 92 malware samples to extract static
features such as software profiles. Strace is used to record
system calls along with the process ID while the application
is running for dynamic features. These information are col-
lected and applied over Support Vector Machones and Naive
Bayes.

(Feldman et al.(2014)Feldman, Stadther, and Wang) pro-
poses a system, Manilyzer which uses requested permis-
sions, High Prior receivers, Low version numbers and
abused services as features and test their model with 617
applications 307 malicious 310 benign applications. Effi-
ciency of Naive Bayes, SVM, K-Nearest Neighbours, J48
Decision Trees are compared and concluded with saying the
most number of malware were labelled with 1.x application
version number. And also that high priority intent filter were
closely associated with SMS malware as 88% of the appli-
cations with this characteristics were malicious. Manilyzer
is less effective but can be enhanced with other features as-
sociated with permissions such as API calls. Manilyzer is
effectively used to detect adware spywae and SMS malware.

(Hsieh et al.(2015)Hsieh, Wu, and Kao) studies and sum-
marizes the threat from malware on handheld devices, how
malware writers evade the anti virus detection on mobile de-
vices and the techniques that were used to deliver the ma-

licious payload onto the mobile systems. The authors con-
clude the research by giving out the analysis methodologies
in detecting the malwares.

(Lindorfer et al.(2015)Lindorfer, Neugschwandtner, and
Platzer) proposes a system MARVIN with large-scale An-
droid malware analysis sandbox ANDRUBIS to provide
users with a risk assessment for an application. They devel-
oped an end user app into which users will submit their app
and receive the score that tells the users how malicious the
application is. MARVIN has 98.24% accuracy with less than
0.04% false positives. Static features such as permission,
API Calls based on used-permission, reflection API, cryp-
tographic API, dynamic loading of code are combined with
dynamic features such as File operations, Network opera-
tions, Phone events, Data leaks, Dynamically loaded code,
dynamically registered broadcast receivers. SVM with a lin-
ear classifier is used as a model of classification. The au-
thors made use of labeled data set obtained from play-store,
gnome project and used their system to classify samples
from VirusTotal.

Table 4 summarizes the static an dynamic features com-
bined and used as part of hybrid analysis. As seen from Ta-
ble 1, Permissions is used mostly as a feature along with
dynamic features like Logged information, API call traces
and Network Traffics.

Future Goals on Counteracting the Update
Attack

With this analysis, it can be seen that only very few re-
searches have been conducted which deals with counteract-
ing the update attack. As discussed in the previous section,
the update attack is so hard to detect because with the previ-
ous version installed on the device is benign and it is not sure
when the malicious activity os performed. The key to detect
update attack is to keep track of the functions of the pre-
vious benign applications that are installed on the android
devices. When the application is updated we can find the
difference between the old and recent versions of the appli-
cation and with combining the machine learning techniques
and the acquired knowledge from malicious malware files,
we can easily detect the update attack and the malicious in-

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

20

Table 4: Top features used in Hybrid analysis
Sl.
No.

Feature Machine Learning Algorithm

1 CPU Usage, No. of packets sent, No. of running process,
Battery level

Naive Bayes, Decision trees, Random For-
est,BayesNet, K-Means, Logistic Regres-
sion

2 Static: Information from apk, Decoded smali files Dy-
namic: ADB Logging, TCP Dump

Random Forest

3 Static: Static: Software profile Dynamic: Strace - system
calls and process id,

Naive Bayes, SVM

4 Static: Permission, High priority receivers, version num-
bers

Naive Bayes, SVM, K-NN, J48 Decision
Trees

5 Static: Permission, API Calls based on used-permission,
reflection API, cryptographic API, Dynamic: loading,
File operations, Network operations, Phone events, Data
leaks, Dynamically loaded code, dynamically registered
broadcast receivers

SVM with linear function

tent of the malware author.

Figure 1: Counteracting the update attack

Conclusion
This study summarizes recent developments in android mal-
ware detection using machine learning algorithms. Detec-
tion techniques and systems that uses static, dynamic and
hybrid approaches are discussed and highlighted. A method
that could lead to potential counteracting the update attack
is discussed. The unavailability of a larger android malware
dataset remains a great problem in evaluating various ap-
proaches. With a proper dataset shared among researchers, a
system that learns a new malware and share that knowledge
to all the mobile devices, so that they can protect themselves
from future attacks, could be developed.

References
M.S. Alam and S.T. Vuong. Random forest classifica-
tion for detecting android malware. In Green Computing
and Communications (GreenCom), 2013 IEEE and Inter-
net of Things (iThings/CPSCom), IEEE International Con-
ference on and IEEE Cyber, Physical and Social Comput-
ing, pages 663–669, Aug 2013. doi: 10.1109/GreenCom-
iThings-CPSCom.2013.122.

P.P.K. Chan and Wen-Kai Song. Static detection of an-
droid malware by using permissions and api calls. In Ma-
chine Learning and Cybernetics (ICMLC), 2014 Interna-
tional Conference on, volume 1, pages 82–87, July 2014.
doi: 10.1109/ICMLC.2014.7009096.
Hsin-Yu Chuang and Sheng-De Wang. Machine learning
based hybrid behavior models for android malware analy-
sis. In Software Quality, Reliability and Security (QRS),
2015 IEEE International Conference on, pages 201–206,
Aug 2015. doi: 10.1109/QRS.2015.37.
M. Fazeen and R. Dantu. Another free app: Does it have
the right intentions? In Privacy, Security and Trust (PST),
2014 Twelfth Annual International Conference on, pages
282–289, July 2014. doi: 10.1109/PST.2014.6890950.
S. Feldman, D. Stadther, and Bing Wang. Manilyzer: Auto-
mated android malware detection through manifest analysis.
In Mobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE
11th International Conference on, pages 767–772, Oct 2014.
doi: 10.1109/MASS.2014.65.
M. Ghorbanzadeh, Yang Chen, Zhongmin Ma, T.C. Clancy,
and R. McGwier. A neural network approach to category
validation of android applications. In Computing, Network-
ing and Communications (ICNC), 2013 International Con-
ference on, pages 740–744, Jan 2013. doi: 10.1109/IC-
CNC.2013.6504180.
W. Glodek and R. Harang. Rapid permissions-based de-
tection and analysis of mobile malware using random deci-
sion forests. In Military Communications Conference, MIL-
COM 2013 - 2013 IEEE, pages 980–985, Nov 2013. doi:
10.1109/MILCOM.2013.170.
Hyo-Sik Ham and Mi-Jung Choi. Analysis of android
malware detection performance using machine learning
classifiers. In ICT Convergence (ICTC), 2013 Interna-
tional Conference on, pages 490–495, Oct 2013. doi:
10.1109/ICTC.2013.6675404.
Wan-Chen Hsieh, Chuan-Chi Wu, and Yung-Wei Kao. A
study of android malware detection technology evolution.

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

21

In Security Technology (ICCST), 2015 International Car-
nahan Conference on, pages 135–140, Sept 2015. doi:
10.1109/CCST.2015.7389671.
I. Ideses and A. Neuberger. Adware detection and privacy
control in mobile devices. In Electrical Electronics En-
gineers in Israel (IEEEI), 2014 IEEE 28th Convention of,
pages 1–5, Dec 2014. doi: 10.1109/EEEI.2014.7005849.
F. Idrees and M. Rajarajan. Investigating the android intents
and permissions for malware detection. In Wireless and Mo-
bile Computing, Networking and Communications (WiMob),
2014 IEEE 10th International Conference on, pages 354–
358, Oct 2014. doi: 10.1109/WiMOB.2014.6962194.
Q. Jerome, K. Allix, R. State, and T. Engel. Us-
ing opcode-sequences to detect malicious android appli-
cations. In Communications (ICC), 2014 IEEE Interna-
tional Conference on, pages 914–919, June 2014. doi:
10.1109/ICC.2014.6883436.
Hwan-Hee Kim and Mi-Jung Choi. Linux kernel-based fea-
ture selection for android malware detection. In Network
Operations and Management Symposium (APNOMS), 2014
16th Asia-Pacific, pages 1–4, Sept 2014. doi: 10.1109/AP-
NOMS.2014.6996540.
H. Kurniawan, Y. Rosmansyah, and B. Dabarsyah. Android
anomaly detection system using machine learning classifi-
cation. In Electrical Engineering and Informatics (ICEEI),
2015 International Conference on, pages 288–293, Aug
2015. doi: 10.1109/ICEEI.2015.7352512.
M. Lindorfer, M. Neugschwandtner, and C. Platzer. Mar-
vin: Efficient and comprehensive mobile app classification
through static and dynamic analysis. In Computer Soft-
ware and Applications Conference (COMPSAC), 2015 IEEE
39th Annual, volume 2, pages 422–433, July 2015. doi:
10.1109/COMPSAC.2015.103.
Wen Liu. Mutiple classifier system based android malware
detection. In Machine Learning and Cybernetics (ICMLC),
2013 International Conference on, volume 01, pages 57–62,
July 2013. doi: 10.1109/ICMLC.2013.6890444.
Xing Liu and Jiqiang Liu. A two-layered permission-based
android malware detection scheme. In Mobile Cloud Com-
puting, Services, and Engineering (MobileCloud), 2014 2nd
IEEE International Conference on, pages 142–148, April
2014. doi: 10.1109/MobileCloud.2014.22.
Yu Lu, Pan Zulie, Liu Jingju, and Shen Yi. Android mal-
ware detection technology based on improved bayesian clas-
sification. In Instrumentation, Measurement, Computer,
Communication and Control (IMCCC), 2013 Third Interna-
tional Conference on, pages 1338–1341, Sept 2013. doi:
10.1109/IMCCC.2013.297.
M.Z. Mas’ud, S. Sahib, M.F. Abdollah, S.R. Selamat, and
R. Yusof. Analysis of features selection and machine
learning classifier in android malware detection. In In-
formation Science and Applications (ICISA), 2014 Inter-
national Conference on, pages 1–5, May 2014. doi:
10.1109/ICISA.2014.6847364.
A. Munoz, I. Martin, A. Guzman, and J.A. Hernandez. An-
droid malware detection from google play meta-data: Selec-

tion of important features. In Communications and Network
Security (CNS), 2015 IEEE Conference on, pages 701–702,
Sept 2015. doi: 10.1109/CNS.2015.7346893.
D.V. Ng and J.-I.G. Hwang. Android malware detection
using the dendritic cell algorithm. In Machine Learn-
ing and Cybernetics (ICMLC), 2014 International Con-
ference on, volume 1, pages 257–262, July 2014. doi:
10.1109/ICMLC.2014.7009126.
U. Pehlivan, N. Baltaci, C. Acarturk, and N. Baykal. The
analysis of feature selection methods and classification al-
gorithms in permission based android malware detection. In
Computational Intelligence in Cyber Security (CICS), 2014
IEEE Symposium on, pages 1–8, Dec 2014. doi: 10.1109/CI-
CYBS.2014.7013371.
N. Peiravian and Xingquan Zhu. Machine learning for an-
droid malware detection using permission and api calls. In
Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on, pages 300–305, Nov 2013.
doi: 10.1109/ICTAI.2013.53.
R. Raveendranath, V. Rajamani, A.J. Babu, and S.K. Datta.
Android malware attacks and countermeasures: Current and
future directions. In Control, Instrumentation, Communica-
tion and Computational Technologies (ICCICCT), 2014 In-
ternational Conference on, pages 137–143, July 2014. doi:
10.1109/ICCICCT.2014.6992944.
RiskIQ. Android malware attacks and countermeasures:
Current and future directions. June 2014.
J. Sahs and L. Khan. A machine learning approach to an-
droid malware detection. In Intelligence and Security Infor-
matics Conference (EISIC), 2012 European, pages 141–147,
Aug 2012. doi: 10.1109/EISIC.2012.34.
A.A.A. Samra, Kangbin Yim, and O.A. Ghanem. Analysis
of clustering technique in android malware detection. In In-
novative Mobile and Internet Services in Ubiquitous Com-
puting (IMIS), 2013 Seventh International Conference on,
pages 729–733, July 2013. doi: 10.1109/IMIS.2013.111.
B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P.G.
Bringas. On the automatic categorisation of android applica-
tions. In Consumer Communications and Networking Con-
ference (CCNC), 2012 IEEE, pages 149–153, Jan 2012. doi:
10.1109/CCNC.2012.6181075.
A. Shabtai. Malware detection on mobile devices. In
Mobile Data Management (MDM), 2010 Eleventh Inter-
national Conference on, pages 289–290, May 2010. doi:
10.1109/MDM.2010.28.
A. Shabtai, Y. Fledel, and Y. Elovici. Automated static
code analysis for classifying android applications using ma-
chine learning. In Computational Intelligence and Security
(CIS), 2010 International Conference on, pages 329–333,
Dec 2010. doi: 10.1109/CIS.2010.77.
L. Tenenboim-Chekina, O. Barad, A. Shabtai, D. Mimran,
L. Rokach, B. Shapira, and Y. Elovici. Detecting applica-
tion update attack on mobile devices through network fea-
tur. In Computer Communications Workshops (INFOCOM
WKSHPS), 2013 IEEE Conference on, pages 91–92, April
2013. doi: 10.1109/INFCOMW.2013.6970755.

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

22

Te-En Wei, Ching-Hao Mao, A.B. Jeng, Hahn-Ming Lee,
Horng-Tzer Wang, and Dong-Jie Wu. Android malware de-
tection via a latent network behavior analysis. In Trust, Secu-
rity and Privacy in Computing and Communications (Trust-
Com), 2012 IEEE 11th International Conference on, pages
1251–1258, June 2012. doi: 10.1109/TrustCom.2012.91.
Yu Wei, Hanlin Zhang, Linqiang Ge, and R. Hardy. On
behavior-based detection of malware on android platform.
In Global Communications Conference (GLOBECOM),
2013 IEEE, pages 814–819, Dec 2013. doi: 10.1109/GLO-
COM.2013.6831173.
Westyarian, Y. Rosmansyah, and B. Dabarsyah. Malware
detection on android smartphones using api class and ma-
chine learning. In Electrical Engineering and Informatics
(ICEEI), 2015 International Conference on, pages 294–297,
Aug 2015. doi: 10.1109/ICEEI.2015.7352513.
Zhao Xiaoyan, Fang Juan, and Wang Xiujuan. Android
malware detection based on permissions. In Information
and Communications Technologies (ICT 2014), 2014 In-
ternational Conference on, pages 1–5, May 2014. doi:
10.1049/cp.2014.0605.

J. Xu, Y. Yu, Z. Chen, B. Cao, W. Dong, Y. Guo, and J. Cao.
Mobsafe: cloud computing based forensic analysis for mas-
sive mobile applications using data mining. Tsinghua Sci-
ence and Technology, 18(4):418–427, August 2013. doi:
10.1109/TST.2013.6574680.
S.Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik. A new
android malware detection approach using bayesian classi-
fication. In Advanced Information Networking and Applica-
tions (AINA), 2013 IEEE 27th International Conference on,
pages 121–128, March 2013. doi: 10.1109/AINA.2013.88.
S.Y. Yerima, S. Sezer, and G. McWilliams. Analysis of
bayesian classification-based approaches for android mal-
ware detection. Information Security, IET, 8(1):25–36, Jan
2014a. ISSN 1751-8709. doi: 10.1049/iet-ifs.2013.0095.
S.Y. Yerima, S. Sezer, and I. Muttik. Android malware de-
tection using parallel machine learning classifiers. In Next
Generation Mobile Apps, Services and Technologies (NG-
MAST), 2014 Eighth International Conference on, pages
37–42, Sept 2014b. doi: 10.1109/NGMAST.2014.23.

Balaji Baskaran and Anca Ralescu MAICS 2016 pp. 15–23

23

