
Mixed Script Ad hoc Retrieval using back transliteration
and phrase matching through bigram indexing: Shared

Task report by BIT, Mesra

Nimesh Ghelani, Sujan Kumar Saha
∗

∗, Amit Prakash
†

Dept. of Computer Science and Engineering
Birla Institute of Technology, Mesra, India

nimeshghelani@gmail.com, sujan.kr.saha@gmail.com, aprakash@bitmesra.ac.in

ABSTRACT
This paper describes an approach for Mixed-script Ad hoc
retrieval, a subtask as part of FIRE 2015 Shared Task on
Mixed Script Information Retrieval. We participated in sub-
task 2 of the shared task, where a statistical model was used
to carry out back transliteration to Devanagari script. To
perform the search, bigram based index of the documents
were used and search was performed using pivot terms in
the query.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language
Processing-Language parsing and understanding

Keywords
transliteration, information retrieval

1. INTRODUCTION
A large number of languages are written using indigenous
scripts. Internet has allowed anyone to easily post content
to websites, which is usually written in Roman script due
technical reasons. This process of phonetically represent-
ing the words of a language in a non-native script is called
transliteration. The situation, where both documents and
queries can be in more than one scripts, and the user ex-
pectation could be to retrieve documents across scripts is
referred to as Mixed Script Information Retrieval.

A challenge that search engines face while processing
transliterated queries and documents is that of extensive
spelling variation. For instance, the word dhanyavad (”thank
you” in Hindi and many other Indian languages) can be writ-
ten in Roman script as dhanyavaad, dhanyvad, danyavad,
danyavaad, dhanyavada, dhanyabad and so on.

Subtask 2 of the shared task focuses on Mixed-script Ad
hoc retrieval, where given a query in Roman or Devanagari
script, the task was to fetch ranked documents based on
their relevance. The documents consisted of mixed script
content which are related to song lyrics, movie reviews, or
astrology. To solve this task, Devanagari script was chosen
as the base script. A back transliteration module was built

∗Advisor
†Helped out with result analysis

using a frequency based statistical model on partitioned let-
ter group matching. It was built using the training data of
transliterated Devanagari-Roman word pairs. Entire query
and documents were back transliterated to Devanagari script
using this module. The search was performed on bigram
indexes of documents[1]. Spelling variations were handled
using LCS (Longest Common Subsequence) based similar-
ity. Pivot terms based on high IDF (Inverse Document Fre-
quency) values[1] were chosen from the query terms. Search
was carried around these pivot terms to perform phrase
match in documents. Further boosting and reordering of
results were performed using heuristics based on intent and
document titles.

The rest of the paper discusses the detailed methodology in
section 2, followed by the results in section 3 and finally the
conclusion in section 4.

2. METHODOLOGY
The proposed method consists of 2 modules: The Back
Transliteration module, and the Searching module.

The Transliteration module is used for transliterating words
expressed in Roman script to Devanagari script. This is
needed because the search module assumes every word in
the query and documents to be in Devanagari script. The
reason Devanagari is used as the base script over Roman
is its concrete implication of phonemes solely from the re-
spective letters. In other words, each phoneme is strongly
attached to its corresponding letters rather than the whole
word, or the neighboring phonemes. This helps in the Search
module which involves computing similarity scores between
two similar sounding words.

2.1 Back Transliteration
Back Transliteration is performed using a statistical model
which is trained on a list of Devanagari-Roman transliter-
ated word pairs.

2.1.1 Training
Training was performed on a list of 36,947 transliterated
Hindi words (Roman script) and their Devanagari represen-
tation.[2]

Given a list of Devanagari-Roman word pair, each Roman
word Wr is represented as characters ∧r1r2..rn$. The ∧ and

59

the $ are added as characters to mark the beginning and
the end of the string, respectively. Subsequent operations
will treat these markers just like any other character of the
word. This is done in order to separate vowels which start
the word from the ones which contribute to the phoneme
by succeeding a consonant. The corresponding Devanagari
word Wd has no ∧ and $ markers.

The Roman word Wr is partitioned (refer expression 1) into
groups of characters where length of each individual group is
between 2 and nGramLimitR (assigned to 3 in the system).
The corresponding Devanagari word Wd is also partitioned
(refer expression 2) into groups where length is between 1
and nGramLimitD (assigned to 3 in the system). The lower
limit for Devanagari is 1 due to single Devanagari letters
often having a consistent sound contribution to the whole
word.

Wr = wgR1...wgRi...wgRn, 2 ≤ |wgRi| ≤ nGramLimitR
(1)

Wd = wgD1...wgDi...wgDm, 1 ≤ |wgDi| ≤ nGramLimitD
(2)

For each possible partitions of both words where n = m,
wgDi is added as a possible phoneme equivalent of wgRi.
A global dictionary is maintained with key as Roman letter
groups, and value as another dictionary with key as Devana-
gari letter groups and value as integer counts. This global
dictionary is updated over all the Roman-Devanagari word
pairs.

Partitioning is done using a straightforward approach with
exponential time complexity. This is practical due to the
lower constant factor associated and since the word length
is usually small enough.

The proposed approach produces lot of noise due to blind
position based letter group matching. However, with enough
training data, the relevant Devanagari letter groups bubble
up over the outliers.

The model generated by the training yields for any Roman
letter group lgR, a list of tuples (lgDi, fi), denoting that
the Devanagari letter group lgDi was mapped to lgR, fi
times. The value score(lgDj , lgR) = fj/

∑
fi is used as

the confidence score for lgDj being a suitable candidate for
replacing lgR.

2.1.2 Transliteration
This module determines possible transliterations of an input
word in Roman script to Devanagari script. It produces
multiple results and attempts to rank them on the basis of
their confidence scores.

Similar to the Roman script words in training phase, the
input word Wr is surrounded by the ∧ and $ markers. Par-
titioning is also performed in the same way as the partition-
ing of Roman words during training (refer expression 3).
For any partition, each Roman letter group is matched to
the Devanagari letter group with maximum score, using the
dictionary generated during the training. These matched
letter groups are concatenated to get the final result Wd,

with a consolidated confidence score (equation 4) for the
result.The result with maximum confidence score for a par-
tition is returned as the best Devanagari candidate for the
given Roman word.

Wr = lgR1...lgRi...lgRn, 2 ≤ |lgRi| ≤ nGramLimitR

Wd = lgD1...lgDi...lgDn

(3)

scoreconsolidated =

n∏
i=1

(|lgRi| ∗ score(lgDi, lgRi)) (4)

2.2 Data Structures
2.2.1 Word Dictionary (wordDict)

The wordDict supports two operations, insert and query.

insert(w) inserts the word w into the dictionary.

query(w, threshold,maxResults) returns at most top
maxResults words present in the dictionary whose similar-
ity with w is greater than threshold.

wordDict is implemented using a hash table, with keys as
words. query is done by iterating over all the keys and
finding its similarity with the query word using Longest
Common Subsequence (LCS) (equation 5. All words wi

in the dictionary such that similarity(w,wi) ≥ threshold,
are sorted in decreasing order of their similarity score with
query w, and top maxResults words are returned.

similarity(w1, w2) = LCS(w1, w2)/max(|w1|, |w2|) (5)

2.3 Preprocessing and Indexing the docu-
ments

Around 60,000 documents constitutes the search pool.

Documents to be searched are mixed script text documents.
Since the base script was chosen to be Devanagari, translit-
eration is performed wherever required, to ensure the entire
document is in Devanagari script. Indexing is done sepa-
rately for the document titles and the contents.

For each word w, before(w) and after(w) is built,
which is an augmented wordDict of words occurring
just before and after w in any document, respec-
tively. before(w) and after(w) represent set of tuples
(wx, (doc1, ..., doci, ..., docn)). The doci refers to the docu-
ment in which wx occurred before/after w. These are built
both for the content and title of the documents.

The searching module makes uses the IDF (Inverse Docu-
ment Frequency) values of the words. IDF values are calcu-
lated for each Devanagari word (original or transliterated) in
the document content and title. IDF (w) = log N

1+n
, where

the word w occur in n documents out of N total documents.

A global wordDict is inserted with all the Devanagari words
(original or transliterated) found in the documents. It is
denoted as docWordDict. It serves as the unigram index of
documents.

2.4 Searching

60

Input→ Query as a list of words in mixed script.
Output→ List of documents sorted by their relevance score.

Any query word in Roman script is replaced by transliterat-
ing it to Devanagari script using the transliteration module
(using the highest scored result).

2.4.1 Pivot Selection
A pivot term is selected from the query terms, around which
the rest query is expanded over the documents. The selec-
tion criteria used for the pivot terms are their IDF values.
Top Npivots (assigned to 3 in the system) distinct query
terms, sorted in decreasing order of their IDF values, are
chosen as pivot terms.

In some cases, there are Roman words whose correct De-
vanagari representation are present in the documents, but
the representations produced by the module are not. This
is due to one of the two reasons, 1. The result produced by
the transliteration module is incorrect, 2. There are multi-
ple correct Devanagari representations for that Roman word.
Since the transliteration module always tends to produce re-
sult sounding as close to the correct result, docWordDict’s
fuzzy query is used to fetch similar words present in the doc-
uments with similarity score above a reasonable threshold.
For a word w, if the most similar word found has a similarity
score of above 0.95, that word’s IDF value is concluded as
the IDF value for w. Otherwise, the maximum IDF value of
the similar words is chosen.

2.4.2 Pivot expansion
A bigram traversal query is performed on each of the Npivot

pivots and scores are independently added to vote for rele-
vance of the results.

For each pivot term, a candidate word list is fetched from
the docWordDict’s query. The candidate words have a sim-
ilarity score above similarityThreshold (assigned to 0.7 in
the system). Processing multiple similar words instead of
one accounts for incorrectness in the transliteration module
and multiple similar sounding representations of the pivot
term in the documents. Bigram traversal (next section) is
performed on each of the candidate words and results are
combined into the result set for that pivot term. If two sep-
arate query for same pivot term (different candidate word)
returns a score for a same document, the maximum score is
considered in the combined result.

Result sets of pivot terms are combined by adding the scores
for overlapping documents, voting for their relevance.

2.4.3 Candidate word bigram traversal

Input→ word, pivot, original query.
Output→ List of documents with relevance score.

The idea is to traverse across bigrams to efficiently match
variable length phrases in the document content. Traversal
is performed across the left and right of the pivot position
in the original query separately, whose results are later com-
bined.

If the original query has terms q1q2...qn, each
qi will refer to a list of words wj,qi such that
similarity(qi, wj,qi) ≥ similarityThreshold. A traversal
can be defined from wx,qi to wy,qj such that, | i − j |= 1.
The state variables for wy,qj during traversal are computed
from the variables of wx,qi . It should be noted that a state
is defined by wy,qj as well as the path taken to reach that
word, but for the sake of short variable names, it is omitted
but remains true.

The state variables consist of the result document set
(doc set(w)), and confidence score (score(d,w)) along with
phrase count (count(d,w)) corresponding to each document
(d) in the result document set (doc set(w)).

The first traversal always begins from wx,qp (qp is
the current pivot). The initial result document set
doc set(wx,qp) consists of documents which have wx,qp in
their body. The initial confidence score for a document
d is score(d,wx,qp) = similarity(wx,qp , qp). The initial
phrase count count(d,wx,qp) is simply the number of times
wx,qp occur in the document body. bigram doc set(x, y)
represents the set of documents in which bigram xy occur.
bigram count(d, x, y) is the number of times bigram xy oc-
cur in document d.

Traversing from wx,qi to wy,qj , assuming i+1 = j, the state
variables for wy,qj are calculated as shown in equation 6.
This traversal can also be interpreted as an effort to match
the bigram qiqj in the query by matching similar bigram xy
in the document. The new result document set consist of
documents from doc set(wx,qi) which have the bigram xy
present in its content. For a document d, the new count is
updated by the minimum of its count in previous state and
the number of times bigram xy occurs in the content of d.
A normalized value of this count (Equation 7), along with
the similarity between qj and wy,qj (Refer equation 5) and
the score of d in previous state are used to calculate the new
score for document d. The count is normalized in order to
have a regulated effect on scoring.

doc set(wy,qj) = doc set(wx,qi)

∩ bigram doc set(wx,qi , wy,qj)

count(d,wy,qj) = min(count(d,wx,qi)

, bigram count(d,wx,qi , wy,qj))

score(d,wy,qj) = similarity(qj , wy,qj)

+ score(d,wx,qi)

∗ normalizeCount(count(d,wy,qj))

(6)

normalizeCount(x) = min(2, 1 +
x− 1

3
) (7)

For j + 1 = i, just swapping the parameters in
bigram doc set and bigram count is required. Using the
above traversal rules, traversal starts from word, towards
left and right separately. If the pivot query term is
qp, then scoreLeft(d) = score(d,wx,qL), such that it
is non-zero and L is as small as possible. Similarly,
scoreRight(d) = score(d,wy,qR), such that it is non-zero
and R is as large as possible. The query phrase from qL
to qR, was thus matched in document d. It should be

61

noted that this may not be true as traversals were performed
through bigrams and not larger n-grams. However, it serves
as a decent assumption. Both the left and right scores are
combined using (leftScore + rightScore) ∗ (R − L + 1) to
serve as a final score for document d. All relevant documents
with non-zero scores are preserved.

2.4.4 Boosting results
Once the relevant documents with their scores are computed,
some boosting heuristics are applied to reorder results. For
sake of clarity, this result set is denoted by resultSet.

The entire search algorithm is repeated, instead this time
just on document titles. This result set is denoted by
titleResultSet. Score of any document in resultSet also
present in titleResultSet is added by titleMatchScore∗1.5.
Lastly, intent boosting is performed, where intentBoost (0.2
in the system) is added to scores of documents whose doc-
ument class (lyrics, movie reviews, etc) are explicit in the
query and document title. Class is simply determined by
matching class terms to document titles.

After sorting the results, 10 documents with highest scores
are selected.

3. RESULTS AND ERROR ANALYSIS
The results obtained for the submitted runs are summa-
rized in Table 1. For comparison, best score among all
the teams are stated in parenthesis. Relative to other
teams, the best overall NDCG@1, MAP and MRR scores
were obtained, while the overall NDCG@5, NDCG@10 and
RECALL were second best. The scores for cross-script
NDCG@1, NDCG@5, MAP and RECALL were second best,
and the rest were at third.

Subtask 2 results
Overall Score Cross-script

NDCG@1 0.7567 (0.7567) 0.3400 (0.4233)
NDCG@5 0.6837 (0.6991) 0.3350 (0.3964)
NDCG@10 0.6790 (0.7160) 0.3678 (0.4358)
MAP 0.3922 (0.3922) 0.2960 (0.3060)
MRR 0.5890 (0.5890) 0.3904 (0.4233)
RECALL 0.4735 (0.4921) 0.4551 (0.5058)

Table 1: Results obtained along with best score
among all teams (in parenthesis)

Producing only 10 results per query for submission affected
the recall and slightly the MAP. Just rerunning the eval-
uation on 20 results per query, increased the overall recall
to 0.5038, and the cross script recall to 0.4751. The overall
MAP was slightly increased to 0.4073, and cross script MAP
to 0.3037.

These results give an insight on where the system fails and
the possible improvements. The search module heavily re-
lies on the transliteration module for accurate translitera-
tion. The transliteration module is, however, based on a
non sophisticated statistical model, which sometimes hurts
the overall score.

While calculating IDF values for words, similar words are
treated differently, which is a bad choice because some vari-

ation of a low IDF word might actually get a high IDF value.
This directly affects the pivot selection, where IDF value
plays a crucial role. Pivot selection also needs improvisation
so that it tries to cover the entire query instead of some fixed
number of pivots. Eg, for a long query with large number of
high IDF terms, selecting fix number of pivots might leave
out important parts of the query.

4. CONCLUSION AND FUTURE WORK
In this paper, an approach for retrieving relevant documents
from a mixed script document collection, was discussed and
analysed. A frequency based letter group mapping model for
back transliteration was used to perform search on a bigram
representation of the documents. Pivot selection was done to
identify important parts of query, around which the search
was expanded.

There is a lot of scope for future work. The search mod-
ule will directly benefit from a better back transliteration
module. Sophisticated transliteration models can be used
to test its improvement on the search module. A script spe-
cific rule based similarity method can be applied for finding
similar sounding words with different spellings. There are
many constants used throughout the algorithm, whose val-
ues were chosen based on heuristics and assumptions. Their
tuning will significantly contribute to optimal behaviour of
the system.

The problem with the current method of IDF was discussed
in the previous section. A potential solution would be to
cluster similar sounding words and calculate IDF values of
the clusters. Better IDF values would allow for incorporat-
ing them into the document relevance scoring. Document
scoring also needs some deep analysis and improvisations.

5. REFERENCES
[1] Christopher D Manning, Prabhakar Raghavan, and

Hinrich SchÃijtze. Introduction to information retrieval
, volume 1. Cambridge university press Cambridge,
2008.

[2] K Gupta, M Choudhury, K Bali. Mining Hindi-English
Transliteration Pairs from Online Hindi Lyrics.In
Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC’12),2012,
2459-2465.

[3] P Gupta, K Bali, R E Banchs,M Choudhury, P Rosso.
Query Expansion for Mixed-script Information
Retrieval. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in
information retrieval, 2014, 677-686.

62

