
Automated Metadata Generation for
Linked Data Generation and Publishing Workflows

Anastasia Dimou
anastasia.dimou@ugent.be

Tom De Nies
tom.denies@ugent.be

Ruben Verborgh
ruben.verborgh@ugent.be

Erik Mannens
erik.mannens@ugent.be

Rik Van de Walle
rik.vandewalle@ugent.be

Ghent University – iMinds – Data Science Lab

ABSTRACT
Provenance and other metadata are essential for determin-
ing ownership and trust. Nevertheless, no systematic ap-
proaches were introduced so far in the Linked Data pub-
lishing workflow to capture them. Defining such metadata
remained independent of the rdf data generation and pub-
lishing. In most cases, metadata is manually defined by the
data publishers (person-agents), rather than produced by
the involved applications (software-agents). Moreover, the
generated rdf data and the published one are considered to
be one and the same, which is not always the case, leading to
pure, condense and often seductive information. This paper
introduces an approach that relies on declarative descrip-
tions of (i) mapping rules, specifying how the rdf data is
generated, and of (ii) raw data access interfaces to automat-
ically and incrementally generate provenance and metadata
information. This way, it is assured that the metadata in-
formation is accurate, consistent and complete.

1. INTRODUCTION
Nowadays, data owners publish their data at an increasing

rate. More and more of them publish also its correspond-
ing rdf representation and interlink it with other data.
However, even though provenance and other metadata be-
come increasingly important, most rdf datasets published
in the Linked Data cloud provide no or seldom narrow meta-
data. To be more precise, only 37% of the published rdf
dataset provide provenance information or any other meta-
data [22]. In these rare cases that such metadata is available,
it is only manually defined by the data publishers (person-
agents), rather than produced by the applications (software-
agents) involved in the Linked Data publishing cycle. Most
of the current solutions which generate and/or publish rdf
data, do not consider also automatically generating the cor-
responding metadata information, despite the well-defined
and w3c recommended vocabularies, e.g., prov-o [16] or
void [1], that clearly specify the expected metadata output.

As a consequence, the lack of available metadata infor-

Copyright is held by the author/owner(s).

WWW2016 Workshop: Linked Data on the Web (LDOW2016)

mation neither allow being aware of the origin of the rdf
data, nor reproducing the rdf data generation outside the
context of the application that originally generated it. This
occurs because most of the tools that generate rdf data
derived from heterogeneous data, put the focus on indepen-
dently providing the corresponding rdf representation, dis-
sociating the resulting rdf data from its original source.
In the same context, provenance and metadata information
regarding the actual mapping rules which specify how the
rdf data is generated from raw data, are not captured at
all. Nevertheless, such information might equally influence
the assessment of the generated rdf data trustworthiness.

Similarly, data publishing infrastructures, such as triple
stores, do not automatically publish any provenance or other
metadata regarding the rdf data they host. Instead they
would have been expected to enrich the metadata produced
while the rdf data was generated with metadata associated
with the publishing activity. Moreover, the rdf data gener-
ation and its publication are considered as interrelated ac-
tivities that occur together. Although, this is not always the
case. Therefore, the generated rdf data and the one sub-
sequently published are not always one and the same. For
instance, rdf data might be generated in subsets and pub-
lished all together, or generated as a single dataset but pub-
lished in different rdf graphs. Consequently, their prove-
nance and rest metadata information is not identical.

In a nutshell, capturing provenance and metadata infor-
mation on every step of the Linked Data publishing work-
flow is not addressed in a systematic and incremental way so
far. In this paper, we introduce an approach that considers
declarative and machine-interpretable data descriptions and
mapping rules to automatically assert provenance as well
as other metadata information. Our proposed solution is
indicatively applied on mappings described using the rml
language [8] and is implemented in the rml tool chain.

The remainder of the paper is structured as follows: In Sec-
tion 2, we outline the current state of the art. In Section 3,
we discuss the essential steps of the Linked Data publish-
ing cycle where provenance and metadata can be generated
and in Section 4, we discuss the different levels of metadata
details identified. In Section 5, we describe how machine-
interpretable mapping rules are considered to automate the
metadata generation and in Section 6 we showcase how we
implemented it in the rml tool chain.

2. STATE OF THE ART
In this section, we investigate existing systems, involved

in the Linked Data publishing workflow. Tools generating
mappings and rdf data or publish rdf data are approached
with respect to their support for automated metadata gener-
ation (Section 2.1). In addition, we outline the w3c recom-
mended vocabularies for metadata description (Section 2.2),
as well as the most well-known and broadly used approach
for representing provenance and other metadata (Section 2.3).

2.1 Linked Data publishing cycle
In the Linked Data publishing workflow there are different

activities taking place. Among them, the definition of the
rules to generate rdf data from raw data, its actual gener-
ation, its publishing and its interlinking are few of the most
essential steps. However, the majority of the tools devel-
oped to address these tasks do not generate automatically
any provenance or metadata information as the correspond-
ing tasks are accomplished, let alone enriching metadata de-
fined in prior steps of the Linked Data publishing workflow.

Hartig and Zhao [10] argued regarding the need of in-
tegrating provenance information publication in the Linked
Data publishing workflow. However, they focused only on its
last step, namely the rdf data publication, outlining meta-
data publication approaches and showcasing on well-know
rdf data publishing tools, such as Pubby1 and Triplify2.

None of the well-know systems that generate rdf repre-
sentations from any type of (semi-)structured data provide
any provenance or metadata information in conjunction with
the generated rdf data, to the best of our knowledge. For
instance, none of the prevalent tools for generating rdf data,
such as DB2triples3, Karma4, or xsparql5, to indicatively
mention a few of the prevalent tools. The main obstacle, at
least with respect to provenance, is that it is hard to specify
where the data originally resides. That occurs because most
of these tools, consider a file as data input. However, where
the data of this file is derived from is not known and, there-
fore, the corresponding provenance annotations can not be
accurately defined in an automated fashion.

The d2r server6 and the csv2rdf4lod7 are the only tool
that generates provenance and metadata information in con-
junction with the rdf data. However, the d2r server refers
only to data in relational databases, it supports a custom
provenance vocabulary, not the w3c-recommended prov-
o [16], and is limited to dataset high level metadata in-
formation. The csv2rdf4lod refers only to csv files and
it achieves capturing provenance using custom bash scripts
that aim to keep track of the commands used. The situation
aggravates in the case of custom solutions for generating rdf
data which neglect to include in its development cycle mech-
anisms to generate provenance and metadata information.

With the advent of mapping languages, such as the d2rq8,
sml9, or the w3c recommended r2rml [4], the mapping
rules that specify how triples are generated from raw data,

1
http://wifo5-03.informatik.uni-mannheim.de/pubby/

2
http://triplify.org/

3
https://github.com/antidot/db2triples

4
http://usc-isi-i2.github.io/karma/

5
http://xsparql.deri.org/

6
http://d2rq.org/

7
https://github.com/timrdf/csv2rdf4lod-automation/wiki

8
http://d2rq.org/d2rq-language

9
http://sml.aksw.org/

were decoupled from the source code of the corresponding
tools that execute them. However, mapping languages are
explicitly focused on specifying the mapping rules, neglect-
ing to provide the means to specify the data source too.
Whereas, for instance the d2rq language allows to specify
the relational database where the data is derived from, other
languages, including r2rml, do not, considering it out of the
language’s scope. rml [8] is the only language that allows
referring to data descriptions based on well-known vocabu-
laries to determine the data source [9] (see Section 5).

The situation remains the same also in the case of inter-
linking tools, such as the prevalent Silk [28] and Limes [19].
Interlinking tools generate rdf data consisting of links be-
tween rdf datasets, the so-called linksets. None of the most
well-known tools generate any provenance or metadata an-
notations regarding the links that were identified and repre-
sented as the output dataset of the interlinking task.

In the same context, tools were developed to support data
owners to semantically annotate their data. However, those
tools still generate both the mapping rules and the corre-
sponding rdf data after the rules execution, without pro-
viding any provenance or metadata information. To be more
precise, none of the tools that automatically generate map-
pings of relational databases to its rdf representation, such
as BootOx [14], IncMap [21], or Mirror [5], or support users
in defining mapping rules, e.g., FluidOps editor [23], sup-
ports automated provenance and metadata information gen-
eration, neither for the mapping rules, nor for the generated
rdf data. Specifying metadata for the mapping rules or
considering the mapping rules to determine the provenance
and metadata becomes even more cumbersome, in particu-
lar in the case of mapping language whose representation is
not in rdf, e.g., sml, sparql or xquery.

Similarly, among the rdf data publishing infrastructures,
only Triple Pattern Fragments10 (tpf) [26, 27] provide some
metadata information, mainly regarding dataset level statis-
tics and access. Virtuso 11, 4store 12 and other pioneer pub-
lishing infrastructures do not provide out-of-the-box meta-
data information, e.g., provenance, dataset-level statics etc.
of the rdf data published. lodlaundromat13 is the only
Linked Data publishing infrastructure that provides auto-
matically generated metadata information. However, it uses
its own custom ontology14 which partially relies on the prov-
o ontology to provide metadata information.

2.2 Provenance and Metadata Vocabularies
w3c recommended vocabularies were already defined to

specify rdf data provenance and metadata information:

2.2.1 PROV Ontology
The prov ontology (prov-o) [16] is recommended by w3c

to express the prov Data Model [18] using the owl2 Web
Ontology Language (owl2) [13]. prov-o can be used to
represent provenance information generated in different sys-
tems and under different contexts.

According to the prov ontology, a prov:Entity is a physi-
cal, digital, conceptual, or other kind of thing. A prov:Activity
occurs over a period of time and acts upon or with entities;

10
http://linkeddatafragments.org/

11
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

12
http://4store.org/

13
http://lodlaundromat.org/

14
http://lodlaundromat.org/ontology/

http://wifo5-03.informatik.uni-mannheim.de/pubby/
http://triplify.org/
https://github.com/antidot/db2triples
http://usc-isi-i2.github.io/karma/
http://xsparql.deri.org/
http://d2rq.org/
https://github.com/timrdf/csv2rdf4lod-automation/wiki
http://d2rq.org/d2rq-language
http://sml.aksw.org/
http://linkeddatafragments.org/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
http://4store.org/
http://lodlaundromat.org/
http://lodlaundromat.org/ontology/

it may include consuming, processing, transforming, modi-
fying, relocating, using, or generating entities. A prov:Agent
bears some form of responsibility for an activity taking place,
for the existence of an entity, or for another agent’s activity.

2.2.2 VoID Vocabulary
The Vocabulary of Interlinked Datasets (void) [1] is a vo-

cabulary for expressing metadata about rdf datasets with
applications ranging from data discovery to cataloging and
archiving of datasets. void expresses (i) general, (ii) ac-
cess and (iii) structural metadata, as well as links between
datasets. General metadata is based on Dublin Core. Ac-
cess metadata describes how the rdf data can be accessed
using different protocols. Structural metadata describes the
structure and schema of the rdf data.

According to the void vocabulary, a void:Dataset is a set
of rdf triples maintained or aggregated by a single provider.
A void:Dataset is a meaningful collection of triples, that deal
with a certain topic, originate from a certain source or pro-
cess, and contains sufficient number of triples that there is
benefit in providing a concise summary. The concrete triples
contained in a void:Dataset is established through access in-
formation, such as the address of a sparql endpoint. Last,
a void:Linkset is a collection of rdf links whose subject and
object are described in different datasets.

2.2.3 DCAT Vocabulary
The Data Catalog Vocabulary (dcat) [17] is designed to

facilitate interoperability between data catalogs published
on the Web. It aims to (i) increase data discoverability,
(ii) enable applications to easily consume metadata from
multiple catalogs, (iii) enable decentralized catalogs pub-
lishing, and (iv) facilitate federated dataset search.

According to the dcat vocabulary, a dcat:Catalog repre-
sents a dataset catalog, a dcat:Dataset represents a dataset
in the catalog, whereas a dcat:Distribution represents an ac-
cessible form of a dataset, e.g., a downloadable file, an rss
feed or a Web service that provides the data. dcat consid-
ers as a dataset a collection of data, published or curated
by a single agent, and available for access or download in
one or more formats. This data is considered for generating
an rdf dataset. Thus, the generated rdf dataset forms a
dcat:Distribution of a certain dcat:Dataset.

2.3 Approaches for tracing PROV & metadata
We outline methods for capturing provenance and other

metadata information. We identify two approaches that cap-
ture provenance and other metadata information inline with
the rest rdf data –Explicit Graphs (Section 2.3.3) and Sin-
gleton Properties (Section 2.3.2)– and two that trace them
independently of the rdf data –rdf Reification (Section 2.3.1)
and Implicit Graphs(Section 2.3.4). In the following subsec-
tions, we discuss in more details alternative approaches for
defining the provenance of the following rdf triple:

1 ex:item10245 ex:weight "2.4"^^xsd:decimal .

2.3.1 RDF Reification
The rdf framework considers a vocabulary for describing

rdf statements and providing additional information. rdf
reification is intended for expressing properties such as dates
of composition and source information, applied to specific in-
stances of triples. The conventional use involves describing

an rdf triple using four statements. A description of a state-
ment is called a reification of the statement. The rdf reifica-
tion vocabulary consists of the type rdf:Statement, and the
properties rdf:subject, rdf:predicate and rdf:object.
rdf reification is the w3c recommended approach for rep-
resenting provenance and metadata information.

1 _:ex12345 rdf:type rdf:Statement .
2 _:ex12345 rdf:subject ex:item10245 .
3 _:ex12345 rdf:predicate ex:weight .
4 _:ex12345 rdf:object "2.4"^^xsd:decimal .
5 _:ex12345 prov:wasDerivedFrom _:src123 .

The major disadvantage of rdf reification is the number
of triples required to represent a reified statement. For each
generated triple, at least four additional statements is re-
quired to be generated. So, for an rdf dataset of N triples,
the metadata graph will be equal to four times the number
of the rdf dataset triples in the best case where only the
rdf reification statements are generated and no additional.

2.3.2 Singleton Properties
Singleton properties [20] is an alternative approach for

representing statements about statements using rdf. This
approach relies on the intuition that the nature of every re-
lationship is universally unique and can be a key for any
statement using a singleton property. A singleton property
represents one specific relationship between two entities un-
der a certain context. It is assigned a uri, as any other
property, and can be considered as a subproperty or an in-
stance of a generic property. Singleton properties and their
generic property are associated with each other using the
singletonPropertyOf property, subproperty of rdf:type.

1 ex:item10245 ex:weight#1 "2.4"^^xsd:decimal .
2 ex:weight#1 sp:singletonPropertyOf ex:weigh .
3 ex:weight#1 prov:wasDerivedFrom _:src123 .

2.3.3 Explicit Graphs
The Explicit Graphs approach relies on named graphs.

Named Graphs is a set of rdf triples named by a uri and
can be represented using TriG [3], N-Quads [2] or JSON-
LD [24], but it is not compatible with all rdf serialisations.
This approach is similar to Singleton Properties. Instead of
annotating the common predicate of the triples, the context
of the triple is annotated. This way, introducing one triple
per predicate is avoided. However, the Explicit Graphs ap-
proach has two drawbacks: (i) they are not supported by all
rdf serializations; and (ii) they might be in conflict with the
named graph defined as part of the rdf dataset and whose
intent is different than tracing provenance information.

1 ex:item10245 ex:weight "2.4"^^xsd:decimal ex:graph .
2 ex:graph prov:wasDerivedFrom _:src123 .

2.3.4 Implicit Graphs
Implicit graphs are uris assigned implicitly to a dataset,

graph, triple or term. An Implicit Graph is aware of what it
represents but the represented entity is not directly linked
to its implicit graph. Implicit graphs might be used to iden-
tify a dataset or a graph, but also triples. In the later case,
as Triple Pattern Fragments (tpf) introduced [26, 27], each
triple can be found by using the elements of itself, thus,
each triple has a uri and, thereby, its implicit graph. For
example, the triple x y z for a certain dataset could be iden-
tified by the tpf uri http://example.org/dataset?subject=
x&predicate=y&object=z.

http://example.org/dataset?subject=x&predicate=y&object=z
http://example.org/dataset?subject=x&predicate=y&object=z

1 <http://example.org/dataset?
2 subject=ex:item10245&predicate=ex:weight&object="2.4">
3 prov:wasDerivedFrom _:src123 .

3. WORKFLOW METADATA STEPS
Provenance and other metadata information can be cap-

tured at different steps of the publishing workflow. Keep-
ing track of metadata derived from the different steps of
the rdf data generation and publishing workflow, results in
more complete information regarding how an rdf dataset
was generated and formed in the end. Moreover, provenance
and metadata information generated at different steps of the
publishing workflow offer complementary information.

We identify the following primary steps: mapping defi-
nitions generation (Section 3.1), data source retrieval (Sec-
tion 3.2), rdf data generation (Section 3.3), rdf data pub-
lication (Section 3.4). We consider each workflow step as an
activity (prov:Activity) whose properties is needed to be
traced. In Table 1, we summarize those activities and the
information that needs to be defined each time. The prove-
nance and how the different steps are associated with each
other are shown at Figure 1.

Same Different

Dataset Dataset

Map. Gen. Pub. Gen. Pub. Link.

prov:Entity

prov:wasGeneratedBy
prov:wasDerivedFrom
prov:wasAttributedTo

prov:Agent G# G#
prov:actedOnBehalfOf

void:Dataset – General

dcterms:creator
dcterms:contributor

dcterms:publisher
dcterms:source

dcterms:created
dcterms:modified

dcterms:issued G# G#
dcterms:license G# G#

void:feature G# G#
void:Dataset – Access

void:Dataset – Structural G# G#
void:Dataset – Statistics G# G#

void:Linkset G# G#

A filled circle () indicates that the property should be (re-)assessed
in each of the marked steps. A half-filled circle (G#) indicates that
that property can be assessed in any of the marked steps.

Table 1: Table of properties required for each entity

3.1 Mapping Rules Definition
Provenance and metadata information is required to be

captured when the mapping rules are defined (Fig. 1, Edit
Map Doc). In this case, it is important to track when the
mapping rules were edited or modified and by whom. An
rdf dataset might have been generated using multiple map-
ping rules whose definition occurred at different moments
and by different agents. Consequently, the generation of
certain mapping rules (Fig. 1, Generate Map Doc) is an ac-
tivity (prov:Activity) which is informed by all prior editing
activities (Fig. 1, Edit Map Doc). For instance, a mapping

rule might have been generated by a mapping generator or
edited by a human-agent using a mapping editor. However,
such a maping rule might have been modified or used in con-
junction with other mapping rules which were generated, in
their own turn, by another human-agent at a different time.

The agent who defined the mapping rules (Fig. 1, Map-
ping Editor) might differ from the one who generated (Fig. 1,
Data Generator) or published the data (Fig. 1, Data Pub-
lisher), or even the owner of the data (Fig. 1, Data Owner).
Being aware of who defined the mapping rules is of crucial
importance to assess the trustworthiness of the final rdf
data, even though it is neglected so far. For instance, rdf
data generated using mapping rules from an automated gen-
erator might be considered less trustworthy compared to rdf
data whose mapping rules were defined by a data specialist.

3.2 Data Sources Retrieval
An rdf dataset might be derived from one or more het-

erogeneous data sources (Fig. 1, Data Source Acquisition).
Each data source, in its own turn, might be derived from
an input. For instance, a table might be derived from a
database or some json data might be derived from a Web
api. Such a data source might be turned into an rdf graph
partially or in its entirety. This might mean that not the
entire stored data is retrieved but a selection is only used
to generate the rdf data. For instance, only the data that
fulfils an sql query could be retrieved to generate the rdf
dataset, instead of the entire table or database.

For this activity, it is important to keep track of metadata
regarding the data sources and their retrieval, as this indi-
cates the original data sources of the generated rdf data.
However, the originally stored data might have changed over
time. For instance, in the case of an api, some data is re-
trieved at a certain time, but different data might be re-
trieved at a subsequent time. Therefore, it is crucial to
know when the data is accessed to assess its timeliness with
the original data. For instance, comparing the last modified
date of the original data and the generation date of the rdf
data, indicates whether the available rdf representation is
aligned with the current version of the original data or not.

3.3 RDF Data Generation
As soon as the mapping rules and the data source are

available, the rdf data is generated (Fig. 1, Generate RDF
Data). For this activity, it is important to keep track of
(i) how the rdf data generation was triggered, i.e. data-
driven or mapping-driven, from raw data (rdf generation)
or from rdf data (rdf interlinking); (ii) when the rdf
dataset was generated, and (iii) how, i.e. in a single dataset
or in subgraphs, subsets etc. Besides the aforementioned,
this activity is crucial for capturing the origin of the rdf
data, as only at this step that information is known (in com-
bination with the data description and acquisition).

3.4 RDF Data Publication
The published rdf data is not always identical to the gen-

erated one (Fig. 1, genRDF Vs. pubRDF). For instance, it
might be the result of merging multiple rdf datasets which
are generated from different data sources at the same or dif-
ferent moments. Moreover, the published rdf dataset might
be published in a different way compared to how the rdf
data was generated. For instance, it could be split in differ-
ent graphs to facilitate its consumption. This might lead to

wasDerivedFrom

wasDerivedFrom

Generate
RDF data

wasAttributedTo

Start Time
startedAtTime endedAtTime

used

Edit
Map Doc

Generate
Map Doc

wasStartedBy

wasGeneratedBy
wasAssociatedWith

actedOnBehalfOf

actedOnBehalfOf

generatedAtTime

hadPrimarySource

generatedAtTime

endedAtTime

startedAtTime

wasStartedBy

used

generated

wasInformedBy

Data Source
Acquisition

generated

used

Publish
RDF Data

usedwasAssociatedWith

startedAtTime

endedAtTime

generatedAtTime

endedAtTime

startedAtTime

generatedAtTime

End Time

Start Time

End Time

Start Time

End Time

Start Time

End Time

wasDerivedFromactedOnBehalfOf

Data Generator

Data Publisher

Data Owner

Mapping Editor

pub
RDF Data

gen
RDF Data

non-RDF
Data

Stored Data

Map Doc

Figure 1: A coordinated view of Linked Data publishing workflow activities.

different metadata for the generation and publication activi-
ties, and these metadata sets might have different purposes.

For instance, void access information metadata is more
meaningful and possible to be generated during the rdf data
publication, whereas provenance information in respect to
the original data can only be defined during the rdf data
generation activity. To the contrary, void structural or sta-
tistical metadata might be generated both during rdf data
generation and publication. However, the generated rdf
data is not always identical to the one published. If the
generated rdf data differ from the one published, then such
metadata should be defined for both cases (see Table 1).

4. METADATA DETAILS LEVELS
There are different details levels for capturing provenance

and metadata information. However, in most cases so far,
the provenance and metadata information is delivered on
dataset level. This mainly occurs because the metadata in-
formation are only defined after the rdf data is generated
and/or published. However, different applications and data
consumption cases require different levels of provenance and
metadata information. Overall, the goal is to achieve the
best trade-off between details level and number of additional
triples generated for balancing information overhead and ac-
ceptable information loss in an automated metadata gen-
eration occasion. For instance, considering rdf reification
for capturing all provenance and metadata information for
each triple, means that metadata referring to the entire rdf
dataset is captured repeatedly for each individual triple. To
the contrary, considering an implicit graph on dataset level
results in information loss in respect to the origin of each
triple, if multiple data sources are used to generate the rdf
dataset, because it is not explicitly defined where each triple
is derived from.

Automating the provenance and metadata information
generation, allows exploiting hybridic approaches which can
contribute in optimizing the metadata information balance.
In this section, we outline the different details levels for
capturing metadata that we identified: Dataset level (Sec-
tion 4.1), named graph level (Section 4.2), partition level (Sec-
tion 4.3), triple level (Section 4.4) and term level (Section 4.5).
For each level, we describe what type of metadata is cap-
tured and we discuss the advantages and disadvantages when
used in combination with different representation approach.

4.1 Dataset Level
Dataset level provenance and metadata provide high-level

information for the complete rdf dataset. This level of de-
tail is meaningful for all metadata information that refer to
the whole dataset, i.e. a void:Dataset and are the same
for each triple. Therefore, among the alternative represen-
tation approaches, considering an explicit or implicit graph
for the dataset to represent provenance and metadata anno-
tations is sufficient on dataset level and it requires the least
number of additional triples. The alternative approaches
in principle assign the same metadata information to each
triple. Thus, the exact same information is replicated for
each triple, causing unnecessary overhead.

Provenance information on dataset level is sufficient if all
triples are derived from the same original data source and are
generated at the same time, as a result of a single activity.
The same occurs if the overall origin source is sufficient to
assess the rdf dataset trustworthiness. On the contrary, if
being aware of the exact data source is required, for instance
to align the semantically annotated representation with the
original data values, more detailed provenance information
is desired, because the high level provenance information is
not as complete and accurate to accomplish the desired task.

4.2 Named Graph Level
An rdf dataset might consist of one or more named graphs.

Named graph based subsets of an rdf dataset provide con-
ceptual partitions of rdf triples semanticfully distinguished
in graphs. Named graph level provenance and metadata in-
formation refer to all rdf annotations which are related to
a certain named graph and contain information for each one
of the named graphs. Each named graph is a void:Dataset

and consists a subset of the whole rdf dataset.
In the case of named graphs, it is not possible to rep-

resent metadata and provenance information using explicit
graphs, because the rdf statements are already quads and
the named graph has different semantics than providing meta-
data information. As in the case of dataset level, implicit
graphs for each named graph and for the complete dataset
generate the minimum number of additional rdf triples.
Moreover, the named graph level metadata information are
sufficient if all triples of a certain named graph are derived
from the same data source. Otherwise, there is information
loss which can be addressed at a narrower detail level.

4.3 Partitioned Dataset Metadata Level
A dataset might be partitioned based on different aspects.

The most frequent partitions are related to (i) the underlying
data source or the triple’s (ii) subject, (iii) predicate, or
(iv) object. Besides the aforementioned partitions, any other
custom partition can be equally considered. A source-based
partitioned rdf dataset is an rdf dataset whose subsets are
formed with respect to their derivation source. To be more
precise, all rdf terms and triples are derived from the same
original data source. Source-based partitioned rdf datasets
derived from a single data source are not considered because
they coincide with the actual rdf dataset. A subject-based
partitioned rdf dataset is the part of an rdf graph whose
triples share the same subject. Consequently, subject-level
metadata provides information for all triples which share the
same subject. It similarly applies in the case of predicate-
based or object-based partitions.

Partitioned datasets might be treated in the same way as
named graphs, but it is also possible to use explicit graphs to
define the subsets metadata. An implicit graph for each sub-
set of the rdf dataset which resembles a partition achieves
generating the minimum number of additional triples for the
metadata information. In the particular case of predicate-
based partition, representing the provenance and metadata
information using singleton properties would cause generat-
ing almost the same number of additional triples as in the
case of defining an explicit or implicit graph per partition.

4.4 Triple Level
If metadata is captured on triple level, it becomes possi-

ble to keep track of the data source each triple was derived
from. However, that causes the generation of rdf annota-
tions for metadata whose number of triples is larger than
the actual dataset. In the simplest case, the number of ad-
ditional triples for the metadata information depends on the
number of data sources. The more data sources, the more
metadata information to be defined. Triple level metadata
become meaningful also in the case of big data or streamed
data where the time one triple was generated might signifi-
cantly differ compared to the rest triples of the rdf dataset.

In the case of triple level metadata, singleton properties
become meaningful when statements about all triples shar-
ing the same property share the same metadata information.
For instance, if all triples whose rdf terms are associated us-
ing a certain predicate, share the same metadata, e.g., they
are all derived from the same data source.

4.5 RDF Term Level
Even rdf terms that are part of a certain rdf triple can

derive from different data sources. For instance, an rdf
term is generated considering some data value derived from
a source A. This rdf term might constitute the subject of
an rdf triple whose object though is an rdf term derived
from a source B. In this case, even more detailed metadata
information is required to keep track of the provenance infor-
mation. Among the alternative approaches for representing
metadata, the rdf reification becomes meaningful at this
level of detail. To be more precise, the rdf reification is
meaningful in the cases that the rdf terms that consist an
rdf triple and form a statement derive from different data
sources and/or are generated at a different time.

5. METADATA GENERATION WITH RML
We introduce an approach that takes into consideration

machine interpretable descriptions of data sources and map-
ping rules, which are used to generate rdf datasets, to
also automatically generate its corresponding provenance
and metadata information. Our approach relies on asserting
statements from declarative descriptions of data sources and
mapping rules. This allows our proposed approach to be ap-
plied on alternative mapping languages and be replicated in
different implementations.

In our exemplary case, machine interpretable mapping
rules are defined using the rdf Mapping Language (rml) [8].
rml is considered because it is the only language that al-
lows uniformly defining the mapping rules over heteroge-
neous data sources. Moreover, rml is aligned with machine
interpretable data source descriptions defined using different
vocabularies, e.g., dcat [17], csvw [25], Hydra [15] etc [9].

5.1 RML Mapping Definitions
Mapping rules are defined using the rdf Mapping Lan-

guage (rml). rml [8] extends the w3c recommended r2rml
mapping language [4] defined for specifying mappings of
data in relational databases to the rdf data model. rml
covers also mappings from data sources in different (semi-
)structured formats, such as csv, xml, and json.

rml documents contain rules defining how the input data
can be represented in rdf. An rml document (see Listing 1)
contains one or more Triples Maps (line 5 and 13). A Triples

Map defines how triples are generated and consists of three
main parts: the Logical Source, the Subject Map and zero or
more Predicate-Object Maps. The Subject Map (line 6 and 14)
defines how unique identifiers (uris) are generated for the
resources and is used as the subject of all rdf triples gen-
erated from this Triples Map. A Predicate-Object Map (line 7
and 15) consists of Predicate Maps, which define the rule that
generates the triple’s predicate (line 9, 17 and 19) and Ob-

ject Maps (line 18 and 20) or Referencing Object Maps (line 10),
which define how the triple’s object is generated.

1 @prefix rr: <http://www.w3.org/ns/r2rml#>.
2 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
4
5 <#PersonMap> rml:logicalSource <#DCAT_LogicalSource> ;
6 rr:subjectMap <#PersonSubjectMap>;
7 rr:predicateObjectMap <#AccountPreObjMap>.
8 <#PersonSubjectMap> rr:template "http://ex.com/{ID}".
9 <#AccountPreObjMap> rr:predicate foaf:account;

10 rr:objectMap <#TwitterRefObjMap>.
11 <#TwitterRefObjMap> rr:parentTriplesMap <#TwitterAcount>.
12
13 <#TwitterAcountMap> rml:logicalSource <#DB_LogicalSource>;
14 rr:subjectMap <#TwitterSubMap>;
15 rr:predicateObjectMap <#AccountPreObjMap>, <#HomepagePreObjMap>.
16 <#TwitterSubMap> rr:template "http://ex.com/{account_ID}".
17 <#AccountPreObjMap> rr:predicate foaf:accountName;
18 rr:objectMap [rml:reference "name"].
19 <#HomepagePreObjMap> rr:predicate foaf:accountServiceHomepage;
20 rr:objectMap <#HomepageObjMap>.
21 <#HomepageObjMap> rml:reference "resource".

Listing 1: RML Mapping Rules

5.2 Mapping Document Metadata
A mapping document summarizes mapping rules defined

using the rml language. rml is serialized in rdf, thus a
mapping document (<#MapDoc>) can be considered as an
rdf dataset itself (void:Dataset). Therefore, it has its own

metadata as any other rdf data can have. To be more
precise, a mapping document is a prov:Entity that can be as-
sociated with a prov:Agent, either a human agent or software.
The Mapping Document is the result of a prov:Activity, which
is informed, on its own turn, from different editing activities.

1 @prefix dcterms: <http://purl.org/dc/terms/>.
2 @prefix prov: <http://www.w3.org/ns/prov#>.
3 @prefix void: <http://rdfs.org/ns/void#>.
4
5 <#MapDoc> a prov:Entity, void:Dataset;
6 prov:generatedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime;
7 prov:wasGeneratedBy <#MapDoc_Generation>;
8 prov:wasAssociatedWith <#RMLEditor>;
9 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>;

10 dcterms:creator <http://rml.io/people/AnastasiaDimou>;
11 dcterms:created "2016-01-05T17:10:00Z"^^xsd:dateTime;
12 dcterms:modified "2016-01-05T17:15:00Z"^^xsd:dateTime;
13 dcterms:issued "2016-01-07T10:10:00Z"^^xsd:dateTime.
14
15 <#MapDoc_Editing> a prov:Activity;
16 prov:startedAtTime "2016-01-05T17:00:00Z"^^xsd:dateTime;
17 prov:endedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime .
18
19 <#MapDoc_Generation> a prov:Activity;
20 prov:generated <#MapDoc>;
21 prov:startedAtTime "2016-01-05T17:09:00Z"^^xsd:dateTime;
22 prov:endedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime;
23 prov:wasInformedBy <#MapDoc_Editing>.
24
25 <#RMLEditor> a prov:Agent;
26 prov:type prov:SoftwareAgent.
27
28 <http://rml.io/people/AnastasiaDimou> a prov:Agent;
29 prov:type prov:Person;
30 prov:actedOnBehalfOf <#DataOwner>.

Listing 2: Mapping Metadata Description

Besides the metadata regarding the entire mapping doc-
ument (<#MapDoc>), similarly metadata might be defined
on Triples Map level or regarding any of the Term Maps, espe-
cially in case that different parts of the mapping document
(subsets of <#MapDoc>) were defined by different agents or
at different times. For instance, the metadata information
of different Triples Map might be as follows:

1 @prefix dcterms: <http://purl.org/dc/terms/>.
2 @prefix prov: <http://www.w3.org/ns/prov#>.
3 @prefix void: <http://rdfs.org/ns/void#>.
4
5 <#MapDoc> void:subset <#PersonMap>, <#TwitterAccountMap>.
6
7 <#PersonMap> a prov:Entity, void:Dataset;
8 prov:wasGeneratedBy <#PersonMap_Generation>;
9 prov:wasAssociatedWith <#RMLEditor>;

10 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>.
11
12 <#TwitterAccountMap> a prov:Entity, void:Dataset;
13 prov:wasGeneratedBy <#TwitterAccountMap_Generation>;
14 prov:wasAssociatedWith <#RMLEditor>;
15 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>.
16
17 <#PersonMap_Generation> a prov:Activity;
18 prov:generated <#PersonMap>;
19 prov:wasInformedBy <#PersonMap_Editing>.
20
21 <#TwitterAccountMap_Generation> a prov:Activity;
22 prov:generated <#TwitterAccountMap>;
23 prov:wasInformedBy <#TwitterAccountMap_Editing>.
24
25 <#PersonMap_Editing> a prov:Activity.
26 <#TwitterAccountMap_Editing> a prov:Activity.

Listing 3: Triples Map Metadata Description

5.3 Data Sources Retrieval Metadata
One or more data sources might be considered for gen-

erating an rdf dataset. In our exemplary case, one data
source is described by the <#DB LogicalSource> and the un-
derlying database that contains the data is described by the
<#DB Source> using the d2r vocabulary. Its description:

1 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
2 @prefix dcat: <http://www.w3.org/ns/dcat#>.
3 @prefix d2rq:
4 <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>.
5
6 <#DB_LogicalSource> rml:logicalSource [
7 rml:query """SELECT * FROM DEPT WHERE ... """ ;
8 rml:source <#DB_Source>].
9

10 <#DB_Source> a d2rq:Database;
11 d2rq:jdbcDSN "jdbc:mysql://localhost/example";
12 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
13 d2rq:username "user";
14 d2rq:password "password".

Listing 4: Database Source description

Similarly, a data source might be a dcat:Dataset and one
of its distributions might be considered for generating the
rdf dataset. Directly downloadable distributions contain a
dcat:downloadURL reference. For instance:

1 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
2 @prefix dcat: <http://www.w3.org/ns/dcat#>.
3
4 <#DCAT_LogicalSource> rml:source <#DCAT_Source>;
5 rml:referenceFormulation ql:XPath;
6 rml:iterator "...".
7
8 <#DCAT_Source> a dcat:Dataset;
9 dcat:distribution <#XML_Distribution> .

10
11 <#XML_Distribution> a dcat:Distribution;
12 dcat:downloadURL <http://ex.org/file.xml>.

Listing 5: DCAT source description

The data source retrieval can be considered as a prov:Activity

attributed to a prov:Agent. Such a prov:Agent can be the data
owner or an agent acting on his behalf, i.e. Data Genera-
tor. The data source consists of a prov:Entity which was de-
rived from the data acquisition activity. The original data
source description provides some information regarding the
data source. Additional, provenance information is added
for further clarity. The metadata for a data source, e.g., the
<#DB LogicalSource> and the <#DCAT LogicalSource>, are
described as follows:

1 @prefix prov: <http://www.w3.org/ns/prov#>.
2
3 <#DB_LogicalSource> a prov:Entity;
4 prov:wasDerivedFrom <#DB_Source> ;
5 prov:generatedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime .
6
7 <#DB_Retrieval> a prov:Activity;
8 prov:generated <#DB_LogicalSource> ;
9 prov:used <#DB_Source>;

10 prov:startedAtTime "2016-01-05T17:00:00Z"^^xsd:dateTime ;
11 prov:endedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime .
12
13 <#DCAT_LogicalSource> a prov:Entity;
14 prov:generatedAtTime "2016-01-05T17:05:00Z"^^xsd:dateTime .
15
16 <#DCATsource_Retrieval> a prov:Activity;
17 prov:generated <#DCAT_LogicalSource>;
18 prov:used <#DCAT_Source>.

Listing 6: Data Sources Metadata Description

5.4 RDF Dataset Generation Metadata
Considering the aforementioned mapping document and

the data source descriptions, rdf triples are generated.

Approaches for Tracing Metadata and RML
Among the different approaches for capturing provenance
and metadata information, rml can best be aligned with
implicit graphs and rdf reification. Those two approaches
generate metadata information independently of the gener-
ated rdf data. In particular, explicit graphs are not consid-
ered as they might coincide with the named graphs if any
explicitly defined for the actual rdf dataset.

Metadata Details Levels and RML
Dataset level metadata information is associated with all
triples generated considering all mapping rules in a map-
ping document. Named graph level metadata information is
associated with triples which are generated considering Term

Maps related to the corresponding Graph Map.
As far as partitioned rdf datasets is concerned, each par-

tition is associated with different parts of one or more Triples

Maps. To be more precise, source-level metadata information
is generated for all triples which are derived from Triples Maps

which share the same Logical Source. In the same context,
subject-level metadata information is generated for each unique
instantiation of one (or more) of the Subject Maps that ap-
pear in the mapping document. Similarly, predicate-level
metadata information is generated for each unique predi-
cate which appears in one or more Triples Maps. Last, object-
level metadata anotations are generated for each unique ob-
ject which is generated due to an Object Map. Whereas the
aforementioned levels consider implicit graphs to represent
provenance and metadata information, triple and RDF term
level metadata information can only be captured considering
reification statements.

Dataset Level Metadata
Dataset level provenance and metadata information has as
follows for the aforementioned running example:

1 @prefix dcterms: <http://purl.org/dc/terms/>.
2 @prefix prov: <http://www.w3.org/ns/prov#>.
3
4 <#RDF_Dataset> a prov:Entity, void:Dataset;
5 prov:generatedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime;
6 prov:wasGeneratedBy <#RDFdataset_Generation>;
7 prov:wasDerivedFrom <#DB_LogicalSource>,<#DCAT_LogicalSource>;
8 prov:wasAssociatedWith <#RMLProcessor>;
9 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>;

10 dcterms:creator <http://rml.io/people/AnastasiaDimou>;
11 dcterms:created "2016-01-05T17:10:00Z"^^xsd:dateTime;
12 dcterms:modified "2016-01-05T17:12:00Z"^^xsd:dateTime;
13 dcterms:issued "2016-01-07T10:10:00Z"^^xsd:dateTime.
14
15 <#RDFdataset_Generation> a prov:Activity;
16 prov:generated <#RDF_Dataset>;
17 prov:startedAtTime "2016-01-05T17:00:00Z"^^xsd:dateTime;
18 prov:endedAtTime "2016-01-05T17:10:00Z"^^xsd:dateTime;
19 prov:wasInformedBy <#MapDoc_Generation>;
20 prov:used <#MapDoc>,<#DB_LogicalSource>,<#DCAT_LogicalSource>.
21
22 <#RMLProcessor> a prov:Agent;
23 prov:type prov:SoftwareAgent.

Listing 7: RDF Dataset Level Metadata

The rdf data generation might be triggered either by a
mapping document (mapping-driven approach) or by a data
source (data-driven approach) [11]. Depending on which ap-

proach occurs at a certain case, the rdf data generation
activity (<#RDFdataset Generation>) is informed by the map-
ping document generation activity (<#MapDoc Generation>)
or by the data source generation activity (e.g., the <#DB-

source Retrieval> or the <#DCATsource Retrieval>).
Specifying the data source where the rdf dataset was de-

rived from becomes easy and can be automatically asserted
thanks to the aligned mapping and data source descriptions.
The rml mapping rules declaratively define the data sources
used, in contrast to other mapping languages which do not
explicitly define the data sources considered for fulfilling the
mapping activity.

However, as one can observe, it is defined that the rdf
dataset was derived from an extract of data from a database
and an xml file published on the Web, but it is not explicitly
defined which triples are derived from each data source.

Triple Level Metadata
In order to address the aforementioned ambiguity regarding
the rdf triples origin, rml metadata generation might be
defined based on the Predicate Object Maps, for instance the
<#AccountPreObjMap> and the <#HomepagePreObjMap>. The
metadata information of the generated rdf triples follows:

1 @prefix prov: <http://www.w3.org/ns/prov#>.
2 @prefix void: <http://rdfs.org/ns/void#>.
3
4 <#RDF_Dataset> void:subset <#AccountRDF>, <#HomepageRDF>.
5
6 <#AccountRDF> a prov:Entity, void:Dataset;
7 prov:wasGeneratedBy <#RDFdataset_Generation>;
8 prov:wasDerivedFrom <#DB_LogicalSource>,<#DCAT_LogicalSource>;
9 prov:wasAssociatedWith <#RMLProcessor>;

10 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>.
11
12 <#HomepageRDF> a prov:Entity, void:Dataset;
13 prov:wasGeneratedBy <#RDFdataset_Generation>;
14 prov:wasDerivedFrom <#DB_LogicalSource>;
15 prov:wasAssociatedWith <#RMLProcessor>;
16 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>.

Listing 8: RDF Triple Level Metadata

Even though it is easy one to observe that this resolves
the ambiguity issue regarding the provenance in the case of
triples generated considering the <#HomepagePreObjMap>,
it is not the same in the case of triples generated consider-
ing the <#AccountPreObjMap>. In the later case, the rdf
triples are formed generating the subject and the object
from different data sources. To be more precise, the triple’s
subject is generated considering a value derived from the
<#DCAT LogicalSource>, whereas the triple’s object is de-
rived from the <#DB LogicalSource>. If, even more detailed
provenance is required, rdf term level should be preferred.

RDF Term Level Metadata
The rdf term level is the narrowest details level for meta-
data information. It is applicable in the cases of Referencing

Object Maps, namely when the subject and the object of an
rdf triple is derived from different data sources. rdf reifi-
cation is the only approach for representing this metadata
information. Considering the aforementioned running exam-
ple, the metadata information of the rdf triples generated
from the <#AccountPreObjMap> Predicate Object Map are de-
fined as it follows:

1 _:ex12345 rdf:type rdf:Statement .
2 _:ex12345 rdf:subject ex:item10245 .
3 _:ex12345 rdf:predicate foaf:account .
4 _:ex12345 rdf:object <https://twitter.com/natadimou>.
5
6 ex:item10245 prov:wasDerivedFrom <#DCAT_LogicalSource>.
7 <http://twitter.com/natadimou>
8 prov:wasDerivedFrom <DB_LogicalSource>.

Listing 9: RDF Term Level Metadata

DCAT Catalogue Enrichment
In the case that the original data is published on the Web
in the frame of a catalogue described with the dcat vo-
cabulary, complementary metadata information can be gen-
erated to enrich it. If one of the dcat:Dataset distributions
(dcat:Distribution) is considered to generate the corresponding
rdf representation, complementary dcat metadata might
be generated as well, to specify that the generated rdf
dataset is another distribution of a certain dcat:Dataset pub-
lished on the dcat:Catalog. For instance, in the case of the
running example, the <#DCAT RDF> and the <#DB RDF>

are source-level partitions of the rdf dataset. The rdf
triples in the <#DCAT RDF> partition is an rdf distribu-
tion of the <#XML Distribution> for the <#DCAT Source>.
The <#DCAT RDF> metadata information and the enriched
<#DCAT Source> have as follows:

1 @prefix dcat: <http://www.w3.org/ns/dcat#>.
2 @prefix prov: <http://www.w3.org/ns/prov#>.
3 @prefix void: <http://rdfs.org/ns/void#>.
4
5 <#RDF_Dataset> void:subset <#DCAT_RDF>, <#DCAT_RDF>.
6
7 <#DCAT_RDF> a prov:Entity, void:Dataset;
8 prov:wasGeneratedBy <#RDFdataset_Generation>;
9 prov:wasDerivedFrom <#DCAT_LogicalSource>;

10 prov:wasAssociatedWith <#RMLProcessor>;
11 prov:wasAttributedTo <http://rml.io/people/AnastasiaDimou>.
12
13 <#DCAT_Source> dcat:distribution <#DCAT_RDF>.

Listing 10: DCAT Metadata Enrichment

6. METADATA & THE RML TOOL CHAIN
We implemented the aforementioned approach at the rml

tool chain, namely the rmleditor15 and the rmlprocessor16.
The rml tool chain was configured to support implicit graphs
and rdf reification. The supported metadata can be further
extended to take into consideration other metadata vocabu-
laries too and generate corresponding metadata information.
In more details:

RML Editor
The rmleditor [12] was extended to generate metadata re-
garding the editing and generation of the mapping rules, as
they are declaratively represented using the rml language.
The rmleditor keeps track of the mapping document edition
and generation activities, when they occurred and by whom.
The rmleditor was extended to support implicit graphs for
defining the metadata information which is related to the
rml mapping document or its subsets.

15
http://rml.io/RMLeditor.html

16
http://github.com/RMLio/RML-Mapper

RML Processor
The rmlprocessor was extended with a Metadata Module
that automatically generates metadata for the generated
rdf dataset. The desired metadata to be generated by the
rmlprocessor can be configured by an agent1. The agent
who triggers the mapping activity can define the vocabulary
to be used, as well as the desired details level. By default,
the w3c recommended prov [16], void [1] and dcat [17] vo-
cabularies are supported. Although, the rmlprocessor can
be further extended to support other vocabularies and gen-
erate more metadata information.

The rmlprocessor has also been extended to automati-
cally generate corresponding metadata regarding rdf dataset
generation. It was extended to generate metadata informa-
tion considering implicit graphs or rdf reification. To be
more precise, the rmlprocessor was configured to generate
metadata information using implicit graphs for the metadata
which are related with the whole dataset as well as for named
graphs. The rmlprocessor was configured to generate rdf
reification triples if the metadata level is set on triple or rdf
term level. The explicit graphs and singleton properties were
not considered because they need to be defined inline with
the actual rdf data, together with the mapping rules.

7. CONCLUSIONS AND FUTURE WORK
The proposed approach aims to show how metadata of the

fundamental activities for the generation and publication
of rdf triples can be automatically generated. Our solu-
tion covers the rdf dataset generation, including metadata
for the mapping rules definition and the data descriptions.
Based on the provided metadata information, it is expected
that publishing infrastructures will enrich this information
with complementary details regarding the rdf dataset pub-
lication activity. Moreover, it is expected that rdf pub-
lication infrastructures will re-determine certain properties
regarding the metadata information, if the rdf dataset is re-
formed before it gets published. Moreover, the metadata can
be enriched with additional information derived from other
activities involved in the Linked Data publishing workflow.

Provenanve and metadata information can be multidimen-
sional and its consumption diverges across different systems.
Different applications require different levels of metadata in-
formation to fulfil their tasks, whereas diverse metadata in-
formation might be desired. The presented workflow was
focused on the essential parts of the Linked Data publish-
ing workflow. However, any metadata information might be
considered as they accrue from other activities involved in
the Linked Data publishing workflow. In the future, we con-
sider including metadata information regarding the results
of the rdf validation [7, 6], applied both on the mapping
document, as well as on the generated rdf data.

Different aspects of the rdf data generation and publish-
ing might influence its quality and trustworthiness assess-
ment. In most of the cases so far, the provenance and meta-
data information are manually delivered on dataset level.
Automating the provenance and metadata generation rely-
ing on machine interpretable descriptions of the different
workflow steps, allows to generate metadata in a system-
atic way. The generated provenance and metadata informa-
tion becomes more accurate, consistent and complete. The
metadata generation for certain rdf data is an incremental
procedure that relies on the contribution of different activ-

http://rml.io/RMLeditor.html
http://github.com/RMLio/RML-Mapper

ities in the Linked Data publishing workflow to enrich the
information we have for the generated rdf dataset.

8. ACKNOWLEDGMENTS
The described research activities were funded by Ghent

University, iMinds, the Institute for the Promotion of Inno-
vation by Science and Technology in Flanders (IWT), the
Fund for Scientific Research Flanders (FWO Flanders), and
the European Union.

9. REFERENCES
[1] K. Alexander, R. Cyganiak, M. Hausenblas, and

J. Zhao. Describing Linked Datasets with the VoID
Vocabulary. W3C Interest Group Note, Mar. 2011.
http://www.w3.org/TR/void/ .

[2] G. Carothers. RDF 1.1 N-Quads. Working Group
Recommendation, W3C, Feb. 2014.
https://www.w3.org/TR/n-quads/ .

[3] G. Carothers and A. Seaborne. RDF 1.1 TriG.
Working Group Recommendation, W3C, Feb. 2014.
https://www.w3.org/TR/trig/ .

[4] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB
to RDF Mapping Language. Working Group
Recommendation, W3C, Sept. 2012.
http://www.w3.org/TR/r2rml/ .

[5] L. de Medeiros, F. Priyatna, and O. Corcho.
MIRROR: Automatic R2RML Mapping Generation
from Relational Databases. In Engineering the Web in
the Big Data Era. 2015.

[6] T. De Nies, A. Dimou, R. Verborgh, E. Mannens, and
R. Van de Walle. Enabling dataset trustworthiness by
exposing the provenance of mapping quality
assessment and refinement. In Proceedings of the 4th
International Workshop on Methods for Establishing
Trust of (Open) Data, 2015.

[7] A. Dimou, D. Kontokostas, M. Freudenberg,
R. Verborgh, J. Lehmann, E. Mannens, S. Hellmann,
and R. Van de Walle. Assessing and Refining
Mappings to RDF to Improve Dataset Quality. In
Proceedings of the 14th ISWC, 2015.

[8] A. Dimou, M. Vander Sande, P. Colpaert,
R. Verborgh, E. Mannens, and R. Van de Walle.
RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data. In Workshop on
Linked Data on the Web, 2014.

[9] A. Dimou, R. Verborgh, M. Vander Sande,
E. Mannens, and R. Van de Walle.
Machine-Interpretable Dataset and Service
Descriptions for Heterogeneous Data Access and
Retrieval. In SEMANTiCS 2015, 2015.

[10] O. Hartig and J. Zhao. Provenance and Annotation of
Data and Processes: Third International Provenance
and Annotation Workshop, IPAW 2010, chapter
Publishing and Consuming Provenance Metadata on
the Web of Linked Data. 2010.

[11] P. Heyvaert, A. Dimou, R. Verborgh, E. Mannens, and
R. Van de Walle. Approaches for Generating
Mappings to RDF. In Proceedings of the 14th ISWC:
Posters and Demos, 2015.

[12] P. Heyvaert, A. Dimou, R. Verborgh, E. Mannens, and
R. Van de Walle. Towards a Uniform User Interface

for Editing Mapping Definitions. In Workshop on
Intelligent Exploration of Semantic Data, 2015.

[13] P. Hitzler, M. Krötzsch, B. Parsia, P. F.
Patel-Schneider, and S. Rudolph. OWL 2 Web
Ontology Language. W3C Recom., Dec. 2012.
http://www.w3.org/TR/owl2-primer/ .

[14] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov,
I. Horrocks, C. Pinkel, M. Skjæveland, E. Thorstensen,
and J. Mora. BootOX: Practical Mapping of RDBs to
OWL 2. In The Semantic Web - ISWC 2015. 2015.

[15] M. Lanthaler. Hydra Core Vocabulary. Unofficial
Draft, June 2014.
http://www.hydra-cg.com/spec/latest/core/.

[16] T. Lebo, S. Sahoo, and D. McGuinness. PROV-O: The
PROV Ontology. Working Group Recommendation,
W3C, Apr. 2013. http://www.w3.org/TR/prov-o/ .

[17] F. Maali and J. Erickson. Data Catalog Vocabulary
(DCAT). W3C Recommendation, Jan. 2014.
http://www.w3.org/TR/vocab-dcat/ .

[18] L. Moreau and P. Missier. PROV-DM: The PROV
Data Model. Working Group Recommendation, W3C,
Apr. 2013. http://www.w3.org/TR/prov-dm/ .

[19] A.-C. Ngonga Ngomo and S. Auer. Limes: A
Time-efficient Approach for Large-scale Link
Discovery on the Web of Data. 2011.

[20] V. Nguyen, O. Bodenreider, and A. Sheth. Don’t Like
RDF Reification?: Making Statements About
Statements Using Singleton Property. In Proceedings
of the 23rd International Conference on World Wide
Web, 2014.

[21] C. Pinkel, C. Binnig, E. Kharlamov, and P. Haase.
IncMap: Pay As You Go Matching of Relational
Schemata to OWL Ontologies. In Proceedings of the
8th International Conference on Ontology Matching,
pages 37–48, 2013.

[22] M. Schmachtenberg, C. Bizer, and H. Paulheim.
Adoption of the Linked Data Best Practices in
Different Topical Domains. In ISWC 2014. 2014.

[23] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler.
Editing R2RML mappings made easy. 2013.

[24] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and
N. Lindström. JSON-LD. Working Group
Recommendation, W3C, Jan. 2014.
https://www.w3.org/TR/json-ld/ .

[25] J. Tennison, G. Kellogg, and I. Herman. Model for
Tabular Data and Metadata on the Web. W3C
Working Draft, Apr. 2015. http:

//www.w3.org/TR/2015/WD-tabular-data-model-20150416/.

[26] R. Verborgh, O. Hartig, B. De Meester,
G. Haesendonck, L. De Vocht, M. Vander Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle. Querying datasets on the Web with high
availability. In Proceedings of the 13th ISWC, 2014.

[27] R. Verborgh, M. Vander Sande, P. Colpaert,
S. Coppens, E. Mannens, and R. Van de Walle.
Web-scale querying through Linked Data Fragments.
In Proceedings of the 7th Workshop on Linked Data on
the Web, 2014.

[28] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk –
A Link Discovery Framework for the Web of Data. In
Workshop on Linked Data on the Web, 2009.

http://www.w3.org/TR/void/
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/trig/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/owl2-primer/
http://www.hydra-cg.com/spec/latest/core/
http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/json-ld/
http://www.w3.org/TR/2015/WD-tabular-data-model-20150416/
http://www.w3.org/TR/2015/WD-tabular-data-model-20150416/

	Introduction
	State of the Art
	Linked Data publishing cycle
	Provenance and Metadata Vocabularies
	PROV Ontology
	VoID Vocabulary
	DCAT Vocabulary

	Approaches for tracing PROV & metadata
	RDF Reification
	Singleton Properties
	Explicit Graphs
	Implicit Graphs

	Workflow Metadata Steps
	Mapping Rules Definition
	Data Sources Retrieval
	RDF Data Generation
	RDF Data Publication

	Metadata Details Levels
	Dataset Level
	Named Graph Level
	Partitioned Dataset Metadata Level
	Triple Level
	RDF Term Level

	Metadata Generation with RML
	RML Mapping Definitions
	Mapping Document Metadata
	Data Sources Retrieval Metadata
	RDF Dataset Generation Metadata

	Metadata & the RML tool chain
	Conclusions and Future work
	Acknowledgments
	References

