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Abstract: The Learning Pulse study aims to explore whether physiological data such as 

heart rate and step count correlate with learning activity data and whether they are good 

predictors for learning success during self-regulated learning. To verify this hypothesis an 

experiment was set up involving eight doctoral students at the Open University of the 

Netherlands. Through wearable sensors, heart rate and step count were constantly 

monitored and learning activity data were collected. All data were stored in a Learning 

Record Store in xAPI format. Additionally, with an Activity Rating Tool, the participants 

rated their learning and working experience by indicating the perceived levels of 

productivity, stress, challenge and abilities along with the type of activity. These human 

annotated labels can be used for supervising machine learning algorithms to discriminate 

the successful learning moments from the unsuccessful ones and eventually discover the 

attributes that most influence the learning process. 
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Introduction 
This paper presents the development of Learning Pulse, a study designed and conducted within the Technology 

Enhanced Learning Innovations (TELI) department of the Welten Institute, a research centre at the Open 

University of the Netherlands. Learning Pulse, funded via the Learning Analytics Community Exchange 

project8, is a research initiative of the Learning Analytics and the New Learning Experience thematic working 

groups of TELI in cooperation with the Department of Data Science and Knowledge Engineering (DKE) of 

Maastricht University. The study took place from September to December 2015 with the idea to combine 

wearable technologies with learning activity data in order to analyse and empirically infer the learning patterns 

of an individual by means of machine learning, data mining and information visualisation techniques. The 

approach used in Learning Pulse is an example of learning analytics tailored to bridge physical with digital 

learning spaces (CrossLAK theme 2) and of combining data from varied heterogeneous data sources (CrossLAK 

theme 4) by means of the new xAPI data standard.  

Rationale 
Learning Pulse aims at modelling the endeavours of an individual learner in the context of self-regulated 

learning or cognitive work. Thus, there are three main assets that constitute the study: (1) the employment of 

biosensors to collect physiological data, (2) the use of regular subjective activity reporting and, (3) the use of 

predictive and learning platform independent learning analytics. The context and the three research assets are 

hereby described.  

Self-regulated Learning 
Self-regulated learning is the process whereby learners set goals for their learning and monitor, regulate, and 

control their cognition, motivation, and behaviour, guided and constrained by their goals and the contextual 

features of the environment (Pintrich & Zusho, 2007). The first important assumption that holds for a self-

regulated learner is the strong engagement with the learning activity and the desire of improving the learning 
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performance (Butler & Winne, 1995). Learning Pulse builds on this natural desire and aims at developing a 

model to support this disposition. The second assumption is that each individual learns differently and has 

his/her own goals, cognition and motivation (Ryan & Deci, 2000). The predictive models, which will be 

described later, will therefore be specific and valid only to one specific learner. 

 

Biosensors for Learning 
Biosensors are getting increasingly available to the general public: embedded in wearable technologies, 

biosensors are more and more being used in industries like healthcare, fitness, and sports (Swan, 2012). Multi-

sensor approaches, combined with cardiovascular activity, are also a growing trend in the industry (Schneider et 

al., 2015). Such involuntary responses are easier and cheaper to measure but more difficult to interpret, being 

the result of a complex system of stimuli (Pijeira-Díaz et al., 2016). The role of the physiological footprints over 

psychological states has been subject of research for several decades and has already offered interesting insights. 

Boucsein & Backs (2000) for example relate significant change in physiological responses to common physical 

and mental activities. Among all physiological responses heart rate is accounted to be the most recurrent and 

thus most predictive one. In related research there is, however, little focus on the role that biosensors have in 

enhancing learning (Schneider et al., 2015). Learning Pulse aims to address this challenge, researching for 

meaningful patterns in physiological responses in self-regulated learning. 

 

Predictive Learning Analytics  
The process of exploiting learning data with the aim of understanding and thus optimising the learning practice 

is usually referred to as learning analytics (LA). Consisting of several different disciplines including learning 

science, software engineering, statistics, data mining and information visualisation, LA is a modern and 

powerful tool for sense-making of educational data (Siemens & Baker, 2012). In particular, the capacity to make 

predictions on learning outcomes makes learning analytics highly valuable for all stakeholders in education 

(ECAR-ANALYTICS Working Group, 2015). A common drawback on the application of LA is to limit the 

scope of the learner’s activity only to one specific virtual learning environment (VLE) or learning management 

system (LMS). However, as Suthers & Rosen (2011) point out, learning is often distributed across multiple 

media, websites and networked environments; the learning activity traces may be fragmented and not match 

analytic needs. Learning Pulse aims to address this issue by employing platform-independent learning analytics: 

instead of looking at a particular application or environment, it logs the use of all software in use during the 

learning activity.   

Method 
The overarching research question is given below, followed by a possible follow-up question if question 1 is 

answered positively. This second research question seeks to understand if, by leveraging biosensor data, by 

scoring and predicting learning success and by constantly feeding back these predictions to the learner, the 

learning and the cognitive work performance will eventually increase. 

 

1. Are physiological responses like heart rate and step count, when associated with learners’ 

activity data, predictive for learning and cognitive working performance? 

2. Can biofeedback techniques be employed to improve learning and cognitive working 

performance? 

 

In Learning Pulse the hypothesis range is thus defined by the degree of success in the learning activity. 

As first theoretical ground for learning success, the concept of Flow is used. Theorised by the Hungarian 

psychologist Csikszentmihalyi, the Flow is a mental state of operation that an individual experiences when 

immersed during a state of energised focus, enjoyment and full involvement in the activity process. Being in the 

Flow means feeling in complete absorption with the current activity and being fed by intrinsic motivation rather 

than extrinsic rewards (Csikszentmihalyi, 1997). According to Csikszentmihalyi, the Flow happens whenever 

there is a balance between the level of difficulty of the task (the Challenge dimension) and the level of 

preparation of the individual for the given activity (the Abilities dimension). When these two dimensions are 

maximised, the Flow is likely to manifest. 
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Experimental Setup and Task Description 
The experiment lasted twelve working days and involved eight participants, four males and four females, aged 

between 25 and 35, all of them doctoral students at the TELI group of the Open University of the Netherlands 

with backgrounds in different disciplines including computer science, psychology and learning science. Being 

PhD students, they can be considered both learners and cognitive workers. To carry out their own research, the 

participants used their personal laptops and were asked to install a preconfigured software tracking tool. All 

participants were also provided with a wearable fitness tracker and were asked to sign an informed consent form 

about the use of their personal information for research purposes. During the experiment the participants were 

asked to continue their research activity as usual and, while doing that, rate their learning activity every hour 

between 8AM and 7PM, for those hours that they worked. The ratings were collected through a web application 

developed ad hoc, named Activity Rating Tool. In addition, to get more insights into how stressful moments are 

reflected in the heart rate changes and self-perceived productivity, the participants were asked to do additional 

tasks, such as delivering presentations or submitting short abstracts about the topic of their research.  
 

Data Sources 
Learning Pulse uses four sources of data as detailed below: biosensor data, user activity data, rating data, and 

weather data. All the collected data are summarised into an Entity-Relation Model shown in Figure 1. 

Physiological data were collected using Fitbit Charge HR
9
, a wristband that every participant wore throughout 

the whole experiment. A Fitbit is a commercial wireless tracker that embeds different sensors to track a number 

of statistics in real-time, including heart rate, steps taken, distance travelled, calories burned, stairs climbed and 

active minutes throughout the day. The two measurements of interest for Learning Pulse are the heart rate and 

step count, updated respectively every five seconds and every minute. With such frequency the values of these 

two variables are stored for every participant from 8AM until 8PM during the 12 days of the experiment. The 

other biosensor, used however for only one participant, observes two measures: skin conductance, updated up to 

four times every second, and the noise level, updated with the same frequency. The values of this sensor are 

directly stored in the Learning Record Store in xAPI format (see below). 

The activity data was obtained using RescueTime
10

, a time management software meant to be a 

working efficiency tool. RescueTime can be installed on different platforms and generates personal analytics by 

logging the applications running on the laptop or mobile device. Every five minutes, RescueTime stores an array 

containing the applications in use, weighted by their duration in seconds, into a proprietary cloud database. Each 

application is also given a category. 
The users’ ratings were collected through the Activity Rating Tool, a web application developed in 

Python running on Google App Engine server. When a user accesses the app and authenticates into the system, 

he/she is able to click onto one of the past learning intervals (timeframe) of that current day. To simplify the 

data collection process, the timeframes to be rated have a fixed length of one hour: they begin and end at full 

hours (e.g. the first timeframe goes from 8AM to 9AM). To rate the activity each participant is asked first of all 

to choose, from a closed list, the category of the main activity performed during the selected timeframe: (1) 

reading, (2) writing (e.g. a paper, or a presentation), (3) meeting (both online, offline), (4) communicating (with 

email, or chat), or (5) other (e.g. going to lunch, having a break). Then, through a sliding button, a value ranging 

from 0 to 100 has to be chosen for each of the following questions: 

 
 Productivity: How productive were you? 
 Stress: How stressed did you feel? 

 Challenge: How challenging was the activity? 
 Abilities: How prepared did you feel for the activity? 

 
In order to make the ratings as accurate as possible, at the end of each timeframe, participants 

were encouraged to rate their activities directly after a timeframe concluded by an email reminder to the 

personal inbox of each participant. All the ratings were stored in Google Datastore and sent in xAPI format 

to the Learning Record Store as detailed in the section 3.4. 

Weather condition may also have an influence on individual learning performance. For this reason 

it has been decided to model the weather as an extra feature of the learning process. The web service 
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Weather Underground
11

 was chosen for providing free historical weather data. Updated every 30 minutes, 

the weather data consist of four attributes: temperature, pressure, humidity, hourly precipitation. 
 

Data Collection 
To support the collection of such heterogeneous types of data, Learning Pulse uses a flexible software 

architecture. In Figure 2 all the different components are divided in three functional layers: (1) the 

Application Layer, (2) the Controller Layer, and (3) the Data Layer. 

 

 
Figure 1. Learning Pulse Entity Relation model 

 
Figure 2. Learning Pulse three-layer architecture 

The Application Layer is constituted by the user interfaces, the sensors and the third-party 

applications which the user directly interacts with. The components of this layer are responsible for 

collecting the data of the environment and sending them to the Controllers. In this layer fall the Activity 

Rating Tool, the Fitbit tracker, the skin-conductance sensor and the RescueTime software. The Controller 

Layer is the core of the software architecture responsible for the processing, manipulation and storing of 

the data collected. It includes the server-side web application of the Activity Rating Tool, the management 

of the user accounts, and the data-importing mechanisms to gather the data from the third-party datastores. 

Part of the Controllers is also the Data Transformer, which prepares the data in the correct representation. 

The Data Layer is the layer where all the data reside. It includes both the internal databases, i.e. the 

Datastore and the Learning Record Store, and the third party cloud datastores such as the Fitbit and 

RescueTime ones. 

Data Storing 
The standard chosen to store Learning Pulse data is the Experience API (xAPI). The xAPI is an open source API 

and RESTful web service, with a flexible standard based on learning statements with the format actor-verb-

object. The statements, generated in JSON format, are validated by and stored in a Learning Record Store 

(LRS). The main advantage of xAPI is interoperability: learning data from any system or resource can be 

captured and eventually queried by third party-authenticated services. In Learning Pulse xAPI statements are 

opportunely designed: to store for example one heart rate value for the user ARLearn7, the xAPI statement will 

carry the following meaning “At timestamp 2015-11-24 08:05 ARLearn7 experienced Heart-Rate of value 87”. 

One statement is hence generated for every sensor at any value update. This results in a considerable size of 

information to be stored. To handle the load of information the Learning Record Store is implemented with 

Google Big Query Datastore, a non-relational and highly scalable datastore which is able to query massively 

large datasets in few seconds. 

Hypothesis Modelling  
A graphical representation of Csikszentmihalyi’s model is given in Figure 3. Having sampled, through the 

Activity Rating Tool, Challenge and Abilities as normalised numerical values the Flow can be calculated as 

follow: 
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(1) 

where Fij is the Flow score for the learner ith at the timeframe jth; Aij and  Cij are the values rated by the 

learner ith at the timeframe jth for, respectively, level of Abilities and Challenge. In the scatter plot in Figure 4 

the ratings of one participant are plotted in a two dimensional space and are coloured depending to their value of 

Flow calculated with formula (1). 

 

  

Figure 3. Csikszentmihalyi’s Flow model Figure 4. Scatter plot of the ratings on challenges 

and abilities rated by ARLearn7 
 

To check the validity of the hypothesis, the flow score will be validated by computing its correlations 

with productivity and stress, in order to check if increasing flow corresponds to increasing productivity and 

stress. The use of the Flow score enables a representation of the “learning success” of an individual at a 

particular point of time as a single normalised value. Maximising this value will therefore mean maximising 

learning success. To further simplify the number of hypothesis, the range of Flow score is divided into three 

sections: (1) Low success where 0 < Fij ≤ 0.33; (2) Medium success where 0.33 < Fij ≤ 0.66; and (3) High 

success where 0.66 < Fij ≤ 1.00. The traffic-light classification is popular in the field of predictive learning 

analytics since it is straight-forward to understand (ECAR-ANALYTICS Working Group, 2015).  

Analysis and Further Steps 
Once the language of hypothesis is defined, the next step consists of defining the language of learning samples, 

or in other words, devising a representation of the data convenient for the regression task – i.e. predict the 

correct Flow class. Given that the data present several one-to-n relations, a suitable representation would be a 

multiple-time-series in which every data point is a five-minute discretised interval. With such representation 

each observation can be seen as a stochastic process governed by a set of equations, each of them explaining the 

previous observations and being of order equal to the number of attributes considered. An expected example of 

the correlations among the observations can be the following: having a lunch break or a walk is likely 

to  influence the productivity of the next hours. Assuming that there is dependence among the observations 

restricts the range of possible regression models that can be used. With the choice of regression model other 

issues need to be addressed. When opting for the five-minute interval representation, those attributes having 

more than one value every five minute (heart rate above all) need to be represented in a way to avoid 

information loss. Also the dimensionality can constitute a considerable challenge: events that occurs seldomly, 

like the use of a particular software application, will turn into very sparse signals presenting few spikes but most 

of the time zeros.  

Finally, once a good performing regression model is trained to discriminate learning success, it can be 

exploited to make predictions almost in real time. This means for example being able to predict whether the next 

five, ten minutes or even one hour, is likely to be the time for a successful learning experience. This predictive 

capability will be explored also in further studies, i.e. Visual Learning Pulse, using dashboards to display 

feedback to the learner.  
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