=Paper= {{Paper |id=Vol-1614/paper_91 |storemode=property |title=Forecasting Economic Indices of Agricultural Enterprises Based on Vector Polynomial Canonical Expansion of Random Sequences |pdfUrl=https://ceur-ws.org/Vol-1614/paper_91.pdf |volume=Vol-1614 |authors=Igor P. Atamanyuk,Yuriy P. Kondratenko,Natalia N. Sirenko |dblpUrl=https://dblp.org/rec/conf/icteri/AtamanyukKS16a }} ==Forecasting Economic Indices of Agricultural Enterprises Based on Vector Polynomial Canonical Expansion of Random Sequences== https://ceur-ws.org/Vol-1614/paper_91.pdf
Forecasting Economic Indices of Agricultural Enterprises
   Based on Vector Polynomial Canonical Expansion
                of Random Sequences

           Igor P. Atamanyuk 1, Yuriy P. Kondratenko 2,3, Natalia N. Sirenko1
                1
                    Mykolaiv National Agrarian University, Commune of Paris str. 9,
                                      54010 Mykolaiv, Ukraine

                      atamanyuk_igor@mail.ru, sirenko@mdau.mk.ua
            2
                Petro Mohyla Black Sea State University, 68th Desantnykiv Str. 10,
                                  54003 Mykolaiv, Ukraine
                            3
                                Cleveland State University, 2121 Euclid Av.,
                                      44115, Cleveland, Ohio, USA

           y.kondratenko@csuohio.edu, y_kondrat2002@yahoo.com



       Abstract. Calculating method for forecasting economic indices of agricultural
       enterprises on the basis of vector polynomial exponential algorithm of
       extrapolation of the realizations of random sequences is worked out. The model
       of prognosis allows estimate the results of enterprise functioning (to estimate
       future gross profit, gross production) after its reorganization (change of land
       resources, manpower resources, fixed assets). Prognostic model does not
       impose any restrictions on the forecast random sequence (linearity, stationarity,
       Markov behavior, monotonicity, etc.) and thus allows fully take into
       consideration stochastic peculiarities of functioning of agricultural enterprises.
       The simulation results confirm high efficiency of introduced calculating
       method. The scheme reflecting the peculiarities of functioning of the forecast
       model are also introduced in the work. The method can be realized in the
       decision support systems for agricultural and non-agricultural enterprises with
       various sets of economic indices.


       Keywords. calculation method, random sequence, canonical decomposition,
       forecasting economic indices

       Key Terms. computation, mathematical model




1 Introduction

Many decision-making processes in different areas of economy (management of
enterprises, transport logistics, finance forecasting, investment under uncertainty and
so on) are based on the different mathematical models, experienced theoretical



ICTERI 2016, Kyiv, Ukraine, June 21-24, 2016
Copyright © 2016 by the paper authors
                                         - 459 -




methods and modern intelligent algorithms [1-6]. For guaranteeing efficient
performance of an enterprise on the market, it is necessary to form the strategy and
tactics of enterprise development correctly, to ground the plans and management
decisions. To do this is possible only based on effective diagnostics and
prognostication of current and future economical situation at the enterprise. Western
specialists have the priority in the investigation of the possibilities of the management
on the basis of the forecasting of enterprise economic state. Bever (the USA) started
theoretical development and building of prognostic models, then it was continued in
the works of Altman (the USA) [7-8], Alberichi (Italy), Misha (France) and others [9-
10]. More contemporary trend in the building of the algorithms of economic indices
forecasting is the usage of stochastic methods of extrapolation. The relevance of such
approach is explained with the influence of great number of accidental factors on the
results of enterprise functioning (weather conditions, accidental variations of demand
and supply, inflation etc.), under the influence of which the change of economic state
indices obtains accidental character. It is especially important to take into account
stochastic peculiarities of economic indices during the solving of the problems of
prognostication of the state of agricultural enterprises.
   But the existing models of prognosis impose considerable limitations on the
accidental sequence describing the change of economic indices [11-16] (Markovian
property, stationarity, monotony, scalarity etc.). Thereupon the problem of the
building of the forecast model under the most general assumptions about the
stochastic properties of the accidental process of the change of the indices of
enterprise economic state arises.


2 Aim and the Raising of Problem

The aim of this work is the development of the efficient and robust method for
forecasting agricultural enterprise indices. The main requirement to the forecasting
method is the absence of any essential limitations on the stochastic properties of the
accidental process of economic indices change.


3 Theoretical Conception of the Proposed Forecasting Method

The most universal method (from the point of view of the requirements to the
investigated accidental sequence) is a method that based on the mechanism of
canonical expansions [17-18]. The main primary indices of the economic state of
agricultural enterprises are the gross profit, gross output, land resources, labour
resources, fixed assets that is why the object of the investigation is the vector
accidental sequence with five dependant constituents (if necessary the number of
figures and their qualitative composition may be changed). Preliminary investigations
(the check of dependence of accidental values on the basis of statistical data about the
work of agricultural enterprises in Nikolaev region) showed that the accidental
sequences describing the change of the economic state of the enterprises which relate
to the intensive [19] type of the development during the interval of eleven years that
                                                                       - 460 -




corresponds to the processing of twelve annual indices for the great number of the
enterprises of the mentioned type have the most stable and significant stochastic
relations. For such vector accidental sequence the canonical expansion has the
following look [20]:
                                                        i   5
               X h  i   M  X h  i     V(  )h( )  i  , i  1,12, h  1,5,                               (1)
                                                     1  1


where        X 1  i  , i  1,12 - gross profit;
             X 2  i  , i  1,12 - gross output;
             X 3  i  , i  1,12 - land resources;
             X 4  i  , i  1,12 - labour resources;
             X 5  i  , i  1,12 - fixed assets.
    The elements of                     canonical expansion are the accidental coefficients
V(  ) ,   1,12,   1,5               and    nonrandom  coordinate functions   h( )  i  ,
  1,12,   1,5 :
                                                   1 H                                   1
 V(  )  X     M  X       V( j )
                                                    ( j)
                                                             V( j )( j )   ,  1,12;                        (2)
                                                   1 j 1                               j 1



                D    M V(  )    M  X      M 2  X     
                                        2                   2

                                                           
                 1 H                                           1                                                      (3)
               D j           D j   ( j )   ,   1,12;
                              ( j)                      2                                        2

                  1 j 1                                      j 1

                      M V ( )
                                     X  i   M [ X  i ]                    1
    h( )  i                                                                        ( M  X    X h  i   
                                        h                   h
                                                                           
                                    M V         
                                              ( ) 2                             D  
                                      
                                                                   1 H
                  M  X     M  X h  i     D j (  )
                                                                     ( j)
                                                                          ( ) h( j ) (i )                             (4)
                                                                   1 j 1
                                1
                              D j ( )
                                         ( j)
                                              ( )h(j ) (i ),   1,5,  1, i.
                                j 1


   Coordinate functions  h   i  , h,   1,5,  , i  1,12 have the following properties:

                               1, h   &   i;
                                    h   i                              (5)
                                0, i   or h< & =i.
   The algorithm of extrapolation on the basis of canonical expansion has the look
[20]:
                                                                    - 461 -




                                                   M [ X h (i )],   0,
                          
                           (  ,l 1)
              mh  i   mh
               (  ,l )
                                        i    xl     ml(  ,l 1)    h(l)  i  , l  1,            (6)
                           (  ,5)
                          mh  i    x1     m1                      h(1)  i  , l  1,
                                                              (  1,5)
                                              

where           mh(  ,l ) (i )  M  X h  i  / x   ,   1,5,   1,   1; x j (  ), j  1, l  , h  1,5,
 i  k ,12 - is the linear optimal quantity by the criterion of the minimum of the average
square of the error of the prognosis is the estimation of the future values of the
investigated sequence under the condition that the values are known
 x   ,   1,5,   1,   1; x j    , j  1, l .
  Essential deficiency of the forecast model (6) is the assumption of existence of
only linear stochastic relations in the sequence X h  i  , h  1,5, i  1,12, describing the
process of change of economic indices of agricultural enterprises. The analysis of
statistical data about the work of agricultural enterprises of Nikolaev region showed
that         the            stochastic         relations       till    the     fourth    order
      o        o
                          
 M  X hl   X ms  i    0,  , i  1,12, l  s  4, h, m  1,5 are essential for such a
                         
sequence. Non-linear canonical model of the investigated sequence with taking
account of non-linear relations takes the form [21]:
                                i 1    5     3                              h 1 3
X h (i )  M  X h (i )   W(l )  l(h ,1) ( , i )   Wil(  )  l(h ,1) (i, i )  Wih(1) , i  1,12.   (7)
                                 1 l 1  1                               l 1  1

   Random coefficients W(l ) ,  =1,12, l=1,5,  =1,3 and nonrandom coordinate
functions  l(h , s )  , i  ,  , i =1,12, l, h=1,5,  ,s=1,3 are determined with the help of
expressions:
                                                                      1 5        3
              W(l )  X l    M  X l      W(mj )  mj(l , )   ,                           (8)
                                                                      1 m 1 j 1


                    l 1    3                                 1
                  W(mj )  mj(l , )  ,    W(l j ) lj(l , )  ,  ,   1,12;
                    m 1 j 1                                j 1


                Dl ,  ( )  M W                      M  X    M  X   
                                                   ( ) 2              2                2   
                                                                                                                   (9)
                                                l                  l                      l


            1 5     3                                               l 1     3
          Dmj     mj(l ,  )   ,    Dmj    mj(l ,  )  ,  
                                                               2                                          2

            1 m 1 j 1                                             m 1 j 1


                                        1
                                   Dlj    lj(l , )  ,  ,   1,12;
                                                                              2

                                       j 1
                                                                         - 462 -




                                                       M W (l )  X hs  i   M [ X hs  i ]  
                              l(h , s )  , i                                                                                            (10)
                                                                    M W (l )  
                                                                                   2

                                                                                    

                              1
                                   ( M  X l   X hs  i    M  X l    M  X hs  i   
                         D l  ( )
                                    1    5       3
                                     D mj (  ) mj
                                                     (l , )
                                                               ,   mj( h , s )   , i  
                                     1 m 1 j 1

                                        l 1   3
                                       D mj ( ) mj
                                                     (l , )
                                                              ,   mj( h , s )  , i  
                                       m 1 j 1

                      1
                   D lj ( ) lj( l ,  )  ,   lj( h , s )  , i  ,   1, h , i  1,12,   1, i.
                     j 1

   Vector algorithm of extrapolation [22-24] for the considered quantity of the
components and order of stochastic relations on the basis of canonical expansion (7)
takes the form:
                            M  X h  i   ,   0;
                                                                                                                                              (11)
                           
                            (  , l 1)
                            m j,h  s, i    x j     m j, j                 l ,     (j ,hl , s )   , i  , l  1, j  5;
                                                          l          (  , l  1)

                           
m (j , h, l )  s , i   
                            (  ,3)
                            m j , h  s , i    x j 1     m j , j 1  3,     j 1,1   , i  , l  1, j  5;
                                                                     (  ,1)                   (h,s )


                           
                           
                            m 5,( h,3)  s , i    x1    1  m 5,1(  ,3)
                                                                                    3,   1   1,1( h , s )    1, i  , l  1, j  5.
                           
m(j , h,l ) 1, i   M  X h  i  / xn   ,   1,5, n  1,3,  1,   1; xn (  ),   1, j , n  1, l                               is
optimal by the criterion of minimum of mean-square error of prognosis estimation of
future values of economic index with ordinal number h provided that for the
prognosis values xn   ,   1,5, n  1,3,   1,   1; xn    ,   1, j , n  1, l are
used.
   Altogether 165 values xh  i  , h  1,5, i  1,11,  =1,3 and 5220 not equal to zero
weight coefficients  l(h, s )  , i  ,  , i =1,12, l, h=1,5,  ,s=1,3 are used in the algorithm
of prognosis (11).
   The expression for mean-square error of extrapolation with the help of algorithm
(11) by known values x nj    ,  =1, k ; j  1,5; n =1,3 is in the form:
                                                                          5    3
Eh( k ,3)  i   M  X h2  i    M 2  X h  i     D jn (  )  (jnh ,1)   , i  ,i  k  1,12.
                                                                     k                                               2
                                                                                                                                               (12)
                                                                     1 j 1 n 1

    This expression is equal to dispersion of a posteriori casual sequence
 X  i  / x   ,   1,5, n  1,3,  1,   1; x ( ),   1, j, n  1, l .
     h
                 n
                 
                                                                               n
                                                                               

  In Fig. 1 the scheme reflecting the peculiarities of functioning of the forecast
model (11) is represented.
                                  - 463 -




Fig. 1. Scheme of functioning of the forecast model (11) ( N  3, H  5)
                                               - 464 -




   Method of prognostication of future values of economic indices on the basis of the
forecast model (11) presupposes realization of the following stages:
   Stage 1. Gathering of statistical data about the results of enterprises functioning;
   Stage 2. Estimation of moment functions M  X s  i   , M  X lj   X hs  i   on the
basis of cumulated realizations of random sequence describing the process of change
of economic indices;
   Stage 3. Calculating of the parameters of the algorithm of extrapolation (11);
   Stage 4. Estimation of future values of economic indices on the basis of the
forecast model (11);
   Stage 5. Estimation of the quality of the solving of the forecast problem for
investigated sequence with the help of the expression (12).


4 Results of Numerical Experiment

Method is approbated on the basis of statistical data of functioning of agricultural
enterprises in Nikolaev region during the period 2004-2015 (74 enterprises with
gross profit     200-900 thousands grivnas). Moment functions M  X hs  i   ,
M  X lj   X hs  i   were estimated by known formulae of mathematical statistics for
sections 2004, 2005, …, 2014. Data about the work of the enterprises for 2015 were
supposed to be unknown and the estimation of moment functions M  X hs 12   ,
M  X lj   X hs 12   for the last section (corresponding to 2015) was carried out on
the basis of determinate models with the use of four previous years (2011-2014) in
tabular processor Microsoft Excel (instrument “Search for solutions”). For example,
                                                   o         o
                                                                        
in Table 1 the values of autocorrelated function M  X 1   X 1  i   ,   1,12, i=1,12
                                                                       
for the component X 1  i  , i=1,12 (gross profit) are represented.
                               o        o
                                                 
   For 2015 values M  X h   X h 12   ,   1,11 are obtained on the basis of
                                                
determinate model:
     o        o
                                      o       o
                                                                      o      o
                                                                                         
  M  X 1   X 1 12    0, 718M  X 1   X 1 11  -0, 053M  X 1   X 1 10    (13)
                                                                                    
               o          o
                                             o         o
                                                                 
  0, 2128M  X 1   X 1  9    0,105M  X 1   X 1  8   ,   1,11,
                                                              
   Coordinate function 11(1,1)  , i   , i  1,12 (Table 2) corresponds to correlated
           o         o
                                
function M  X 1   X 1  i   ,   1,12, i  1,12 .
                               
                                               - 465 -




              Table 1. Autocorrelated function of the component X 1  i  , i=1,12


        2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
 2004     1     0,99 0,70 0,42 0,79 0,74 0,49 0,72 0,63 0,46 0,55 0,43
 2005 0,99       1     0,72 0,42 0,74 0,74 0,52 0,70 0,64 0,48 0,59 0,46
 2006 0,70 0,72          1     0,57 0,67 0,58 0,701 0,69 0,70 0,66 0,78 0,60
 2007 0,42 0,42 0,57             1     0,38 0,36 0,45 0,21 0,41 0,36 0,19 0,18
 2008 0,79 0,74 0,67 0,38                1     0,81 0,55 0,91 0,80 0,72 0,53 0,41
 2009 0,74 0,74 0,58 0,36 0,81                   1       0,72 0,73 0,92 0,81 0,51 0,44
 2010 0,49 0,52 0,70 0,45 0,55 0,72                       1    0,51 0,74 0,73 0,49 0,41
 2011 0,72 0,70 0,69 0,21 0,91 0,73 0,51                         1     0,77 0,80 0,74 0,55
 2012 0,63 0,64 0,70 0,41 0,80 0,92 0,74 0,77                            1    0,91 0,60 0,59
 2013 0,46 0,48 0,66 0,36 0,72 0,81 0,73 0,80 0,91                                 1   0,71 0,46
 2014 0,55 0,59 0,78 0,19 0,53 0,51 0,49 0,74 0,60 0,71                                 1   0,71
 2015 0,43 0,46 0,60 0,18 0,41 0,44 0,41 0,55 0,59 0,46 0,71                                 1

                     Table 2. Coordinate function 11(1,1)  , i   , i  1,12


    2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2004 1 0,89 0,54 0,55 0,62 0,43 0,45 0,89 0,858 0,90 2,36 2,65
2005 0    1 2,25 -1,46 -2,40 0,27 5,47 -2,71 3,55 1,83 2,85 4,70
2006 0    0    1 5,09 1,17 -1,53 -0,03 -2,77 -0,23 -5,52 2,34 5,07
2007 0    0    0     1  0,17 0,26 0,94 0,18 0,77 1,05 -0,57 -1,17
2008 0    0    0     0    1  0,48 1,27 1,06 1,05 2,01 -2,37 0,69
2009 0    0    0     0    0    1 -1,81 0,74 3,53 0,37 9,31 2,86
2010 0    0    0     0    0    0    1 -0,68 1,44 3,18 -6,74 -3,39
2011 0    0    0     0    0    0    0    1    1,29 2,21 -3,30 0,93
2012 0    0    0     0    0    0    0    0     1    3,88 0,19 -8,44
2013 0    0    0     0    0    0    0    0     0      1  1,99 -4,96
2014 0    0    0     0    0    0    0    0     0      0    1  0,50
2015 0    0    0    0    0     0    0    0     0     0     0    1

   In Table 3 weight coefficients 13(1,1)  , i   ,  1,11, i  2,12 determining the
influence of values x13  i  , i  1,11 of gross profit in high-order third degree on future
values of this parameter are represented.
                                                           - 466 -




           Table 3. Values of coordinate function 13(1,1)  , i   ,  1,11, i  2,12


         2005        2006       2007      2008       2009         2010         2011        2012         2013       2014       2015
               -6
 2004 9*10          -1*10 -3*10 -5*10 -3*10 -2*10 -8*10 -3*10 -1*10 -3*10 -4*10-7
                          -7         -7         -7          -7           -7           -6           -6         -6         -7


 2005      0        -1*10-4 -1*10-4 1*10-5 -3*10-4 3,5*10-5 7*10-5                          10-4        6*10-5 -2*10-4 8*10-5
 2006      0          0        -1*10-5 2*10-6 -3*10-6 -9*10-7 2*10-8 6*10-6 -6*10-6 -9*10-6 -7*10-7
 2007      0          0          0        2*10-8 -9*10-8 2*10-9 3*10-8 7*10-8 8*10-9 4*10-9 3*10-7
 2008      0          0          0          0        -8*10-8 2*10-8 2*10-8 7*10-7 3*10-7 4*10-7 3*10-8
 2009      0          0          0          0          0         -8*10-7 -6*10-7 -7*10-7 -4*10-8 -3*10-7 -9*10-8
 2010      0          0          0          0          0             0        8*10-9 8*10-6 5*10-7 -10-8 -4*10-7
 2011      0          0          0          0          0             0          0          2*10-5 8*10-7 -2*10-6 8*10-6
 2012      0          0          0          0          0             0          0            0          2*10-8 4*10-7 -3*10-6
 2013      0          0          0          0          0             0          0            0            0        3*10-8 -7*10-6
 2014      0          0          0          0          0             0          0            0            0          0        9*10-6

   As it can be seen in Table 3 values 11(3)  i  , i  1,11 are relatively small but this
doesn’t mean that given weight coefficients don’t influence on the forming of the
estimation of future value as 11(3)  i  , i  1,11 are multiplied in the process of
calculations by values x13  i  , i  1,11 (values of the sixth-seventh order).
   For functioning of the forecast model (11) on the basis of statistical data 25 tables
of weight coefficients analogous to Tables 2-3 were calculated.
   During the application of the method of economic indices prognostication for 2016
optimal order of non-linear relations of the investigated random sequence is unknown.
But taking into consideration that N=4 is invariable during 11 years there is quite high
probability that given parameter will remain on the same level.
   Values in Table 4 reflects the change of relative error of prognostication of gross
profit of enterprise (component X 1  i  , i  1,12 ) during 2015 depending on the order
of stochastic relations used in model (11).

                      Table 4. Relative error of prognostication of gross profit

                      Order of stochastic relations                             2            3              4
                             Relative error                                   6,9 %        3,3 %          1,5 %
   Thus the results of the experiment showed (Table 4) that application of nonlinear
relations in the forecast model allows increase considerably the quality of economic
indices prognostication.
                                           - 467 -




5 Conclusion

Calculating method of the estimation of future values of economic indices of
agricultural enterprises functioning is obtained in the work. The algorithm of
extrapolation of vector random sequence based on nonlinear polynomial canonical
expansion is assumed as a basis of the method. The optimal algorithm of the
extrapolation of the economic indices of agricultural enterprises, which as well as
canonical expansion put into its base doesn’t impose any essential limitations on the
stochastic properties of economic indices. In addition to pre-aggregate indicators
(gross output, land resources, manpower, plant and equipment) a range of parameters
can be used as the components of investigated random sequence (weather conditions,
prices of resources, etc) influencing the effectiveness of the functioning of
agricultural enterprises. The results of the numerical experiment showed that the
forecast model possesses high accuracy characteristics at the expense of maximal
taking into consideration of stochastic qualities of random sequence of economic
indices change. Schemes of calculation of the parameters of the forecast model and
estimations of future values of economic indices on its basis are introduced in the
work. Expression for the mean-square error of extrapolation allows to estimate the
quality of the forecast problem solving.


References

1. Drozd, J., Drozd, A.: Models, Methods and Means as Resources for Solving Challenges in
   Co-Design and Testing of Computer Systems and Their Components. Proceedings of 9th
   International Conference on Digital Technologies, Zhilina, Slovak Republic, pp. 225-230
   (2013)
2. Gil-Aluja, J. Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston,
   London (1999)
3. Gil-Lafuente, A.M. Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft
   Computing 175, Springer, Berlin (2005)
4. Imanov, G., Barquero Cabrero, J.D.: Economy & Society 29. ESERP, Madrid, Barcelona,
   Palma de Mallorka (2015)
5. Kondratenko, Y.P., Encheva, S.B., Sidenko, E.V.: Synthesis of Inelligent Decision Support
   Systems for Transport Logistic. Proceeding of the 6th IEEE International Conference on
   Intelligent Data Acquisition and Advanced Computing Systems: Technology and
   Applications, IDAACS’2011. Vol. 2, Prague, Czech Republic, pp.642-646 (2011)
6. Kondratenko, Y.P., Sidenko, Ie.V.: Decision-Making Based on Fuzzy Estimation of Quality
   Level for Cargo Delivery. In book: Recent Developments and New Directions in Soft
   Computing. Studies in Fuzziness and Soft Computing 317, Zadeh, L.A. et al. (Eds), Springer
   International Publishing Switzerland, pp. 331-344 (2014)
7. Altman E.I., Marco G., Varetto F.: Corporate distress diagnosis: comparisons using linear
   discriminant analysis and neural networks. Journal of Banking and Finance, Vol. 18, pp.
   505-529 (1994)
8. Altman E.I., Narayanan P.: An international survey of business failure classification
    models. J. Financial Markets, Institutions and Instruments, Vol. 6, №2, pp. 81-130 (1997)
9. Granger C.W.J., Newbold P.: Forecasting economic time series. Academic Press, (1986)
10. Hall S.G.: Applied economic forecasting techniques. Harvester Wheatsheaf, 224 p. (1994)
                                           - 468 -




11. Ryabushkin B.T.: Application of statistical methods in an economic analysis and
    prognostication. Finances and statistics, Moscow, 175 p. (1987)
12. Trifonov Yu.V., Plehanova A.F., Yurlov F.F.: Choice of effective decisions in an economy
    in the conditions of vagueness. Publishing house NNGU, Nizhniy Novgorod, 140 p. (1998)
13. Połoński M.: Prognozowanie czasu zakończenia inwestycji na podstawie jej bieżącego
    zaawansowania. J. Metody ilościowe w badaniach ekonomicznych, Tom XIII/3, pp. 169-
    179 (2012)
14. Prędki A.: Subsampling approach for statistical inference within stochastic DEA models. J.
    Metody ilościowe w badaniach ekonomicznych, Vol. XIV, No. 2, pp. 158-168 (2013)
15. Teyl G.: Economy prognosis and making decision. Statistics, Moscow, 488 p. (1971)
16. Szmuksta-Zawadzka M., Zawadzki J.: Modele harmoniczne ze złożoną sezonowością w
    prognozowaniu szeregów czasowych z lukami systematycznymi. J. Metody ilościowe w
    badaniach ekonomicznych, Tom XIV/3, pp. 81-90 (2013).
17. Pugachev, V.S.: The Theory of Random Functions and its Application. Fitmatgiz, Moscow
    (1962)
18. Kudritsky V.D.: Filtering, Extrapolation and Recognition Realizations of Random
    Functions. FADA Ltd., Kyiv, (2001)
19. Sirenko N.N.: Management of strategy innovative development of agrarian sector of
    economy of Ukraine. MNAU, Mykolaiv (2010)
20. Atamanyuk I., Kondratenko Y., Sirenko N.: Management of an agricultural enterprise on
    the basis of its economic state forecasting. J. Metody ilościowe w badaniach
    ekonomicznych: Quantitative methods in economics, Vol. XV, No. 2, pp. 7-16 (2014)
21. Atamanyuk I., Kondratenko Y.: Calculation Method for a Computer's Diagnostics of
    Cardiovascular Diseases Based on Canonical Decompositions of Random Sequences. ICT
    in Education, Research and Industrial Applications: Integration, Harmonization and
    Knowledge Transfer. Proceedings of the 11 International Conference ICTERI-2015,
    S.Batsakis, et al. (Eds.), CEUR-WS, Vol. 1356, pp. 108-120 (2015)
22. Atamanyuk I.P.: Algorithm of extrapolation of a nonlinear random process on the basis of
    its canonical decomposition. J. Cybernetics and Systems Analysis, №2, pp. 131-138
    (2005)
23. Atamanyuk, I.P., Kondratenko, V.Y., Kozlov, O.V., Kondratenko, Y.P.: The algorithm of
    optimal polynomial extrapolation of random processes, In: Modeling and Simulation in
    Engineering, Economics and Management, K.J.Engemann, A.M.Gil-Lafuente, J.L.Merigo
    (Eds.), International Conference MS 2012, New Rochelle, NY, USA, Proceedings. Lecture
    Notes in Business Information Processing, Volume 115, Springer, pp. 78-87 (2012)
24. Atamanyuk, I.P. Optimal Polynomial Extrapolation of Realization of a Random Process
    with a Filtration of Measurement Errors. J. Automation and Information Sciences. Volume
    41, Issue 8, Begell House, USA, pp. 38-48 (2009)