
A Rule-Based Approach to teach Mathematics
using Animation

Nada Sharaf1, Slim Abdennadher1, Thom Frühwirth2

1 The German University in Cairo
2 University of Ulm

{nada.hamed, slim.abdennadher}@guc.edu.eg, thom.fruehwirth@uni-ulm.de

Abstract. There are different available methodologies for teaching math-
ematics to children. Teachers use different approaches. Some of the ex-
iting approaches include engaging students with different activities and
games. Computer games/tools have been proven effective with teaching
mathematics. The aim of the paper is to provide teachers with no back-
ground in Computer Science with a utility that enables them to build
their own games. In this way, teachers will be able to customize games
according to the principles they want their students to learn.

Keywords: Constraint Handling Rules, Mathematics, Learning, Pro-
gram Animation, Visualization

1 Introduction

One of the recently introduced activities for teaching in different fields, includ-
ing mathematics, is using games and computer platforms [1,2,3]. Students have
proven to have positive attitudes towards games involving maths. Such approach
encourages active learning. Such tools have been proven to be effective in en-
hancing learning of complex content as well [4].

The provided tools are however, to the best knowledge of the authors, static
ones. Teachers do not have the option to customize the games in any way. For
example, the appearance cannot be changed. Users will have to stick to the look
provided by the original programmers of the tools. In addition, teachers cannot
customize the mathematical concepts tackled by the tools. They might thus have
to use different games/tools in case they need to tackle more than one concept.
The work in this paper aims at overcoming these drawbacks. It introduces a
new rule-based approach for generating different interactive customizable games.
Through the offered tool, teachers are able to define the mathematical concepts
students should practice. They are then able to state how numbers should be
visualized.

The tool makes use of the recently introduced annotation rules for animat-
ing Constraint Handling Rules’ (CHR) programs [5]. Such rules were able to
embed visualization features into CHR programs. With the new extension, CHR
programs were animated during execution. The tool used source-to-source trans-
formation to eliminate the need for changing the CHR compiler.



2

The tool introduced in the paper generates CHR programs representing the
different mathematical concepts entered by the teacher. Annotation rules are
then utilized to visualize the execution of the program using the inputs of the
teacher.

The paper is organized as follows: Section 2 introduces CHR. In Section 3,
annotation rules are discussed in more details. Section 4 introduces the different
features offered to teachers. Section 5 shows how students can use the platform.
Finally, conclusions and directions to future work are offered.

2 Constraint Handling Rules

CHR [6,7,8,9] was initially introduced for writing constraint solvers. However,
over the years, it has been used as a general purpose language. CHR programs
consist of different rules that rewrite constraints in the constraint store until a
fixed point is reached. A CHR rule has a head and a body and an optional guard.
A rule is only applied if the constraint store contains constraints matching the
head constraints and if the guard is satisfied. For example the below “simplifica-
tion rule” is able to sort a list of numbers. Each element in the list is represented
by the CHR constraint list(Index,Value).
list(I1,V1),list(I2,V2)<=>I1<I2,V1>V2|list(I2,V1),list(I1,V2).

The rule is applied on any two elements that are not sorted. The elements are
then swapped with respect to each other by removing the head constraints from
the store and adding the constraints in the body. In order for the rule to be
applied, two list constraints have to be in the store. The two constraints have
to satisfy the guard as well. Upon successive applications of the rule, all ele-
ments are sorted. Propagation rules, on the other hand, do not remove the head
constraints from the constraint store. They only add the body constraints such
as the transitivity rule for the less than or equal constraint (leq):
leq(A,B),leq(B,C)==>leq(A,C).

The last, and more general, type is the simpagation rule. A simpagation rule has
two types of head constraints separated by a backslash: “\”. On executing a sim-
pagation rule, the constraints before the backslash are kept and the ones after the
backslash are removed. For example the rule min(A)\min(B)<=>A<B|true com-
pares two constraints and keeps only the one having the lower number. Thus,
upon applying this rule successively, the only constraint remaining is the one
with the smallest number.

3 Annotation Rules for Animating CHR Programs

With CHR becoming a general purpose language, the need of tracing tools has
been evoked. In [10], a tracing utility for CHR was added. It was able to show
at each step of the execution, the constraint store and which rules were being
applied. The tool used source-to-source transformation. However, since CHR
is used with different types of algorithms (such as sorting, tree and graph algo-
rithms), an algorithm animation tool was required. In order to keep the platform



3

a generic one, visual annotation rules were added [5]. The idea is that every CHR
constraint was linked with a visual object. CHR rules operate on constraints,
adding and removing them. Each time a new constraint is added to/removed
from the store, its corresponding visual object(s) (if any) is added/removed.
Users are supplied with an interface to mark the interesting constraints. Such
constraints affect the visualization and are linked to visual objects. For example,
in the sorting program shown in Section 2, the interesting constraint is list/2.
Every list constraint could be visualized as a bar where the height of the bar
is a factor of the “value” of the list element. The x-position of the bar is a fac-
tor of the “index” of the list element. The whole list is visualized to the user
in this case. When a list constraint is added/removed, its corresponding bar is
added/removed animating the executed algorithm. To keep the system generic,
the scripting tool Jawaa1 [11] was used. Jawaa offers users with a wide range of
visual objects and actions.

4 Teacher Module

In this section, the “teacher module” is introduced. This module is used by
teachers to specify the mathematical concepts students should learn and the
appearance of the output game. Figure 1 shows the first screen teachers get.
They have the option to define a “simple rule” and a “Rule with Steps”. A
simple rule is a rule computed through one step. Teachers can also define a rule
with several cases/steps.
In the case of simple rules, teachers have to define the input(s) and output.
Figure 2a shows the view teachers get once they decide to add a simple rule.
The name of the rule is editable. As seen in Figure 2b, it was changed to sum.
Users can enter any number of inputs. An input could be a variable name or
an actual value as seen in Figure 2b. The output could also be a value or an
expression as shown in Figure 2c.
In the case of defining a rule with steps, instead of only defining the expression
for the output, teachers define steps. Except for the first step, each step takes
the output of the previous step as one of its inputs. There is an upper limit to
the number of steps that could be performed. As a proof of the concept, the
paper will focus only on the case of simple rules since the core principles for
generating the animations in both cases are the same.

4.1 Defining Animations

After teachers define the mathematical rule that students should practice, they
can define how the quizzes students get look like. They can first choose a color or
an image for the background. They can also specify how numbers should appear.
The idea is that each number m could be represented by a visual object or n
visual objects. Teachers can customize what the objects are. Objects could be

1 http://www.cs.duke.edu/csed/jawaa2/

http://www.cs.duke.edu/csed/jawaa2/


4

Fig. 1: Teacher module: Welcome page

(a) Simple rule: Homepage (b) Adding a new input

(c) Editing output (d) Summation rule defined

Fig. 2: Simple rules: inputs and outputs.

simple shapes (provided by Jawaa) such as circles, rectangles, etc. Objects could
also be linked to pictures to match a specific theme. Teachers get the window
shown in Figure 3 where they can link a number to its corresponding visual



5

object to produce the required annotation rules. Once the teacher chooses an
object, the panel gets populated with the corresponding parameters that have to
be filled. In order to link a number to several objects, the teacher should choose
to connect it with the visual object “nObjects”. nObjects is a newly added object
to Jawaa. It groups visual objects together.

For the example shown in the Figure 3, it was required that a number X gets
associated with X different objects. The number was thus linked with “nObjects”.
The teacher enters a value for the required number of generated objects. In
this case, X objects are needed. The teacher should then choose which type
of visual object should be generated X times for each number X. The object
“imageobject” was used in this case. An imageobject is an actual image with
the extension “jpg” or “png”. It was also added to Jawaa. For each imageobject
users have to specify where the image should be shown (x and y coordinates) in
addition to the location of the image (path). In general, each parameter could
be one of the following values or expressions based on them:

1. a constant e.g. 30, red, etc
2. the built-in function valueOf(X) representing the value of the number X.
3. the keyword valueOf(N) used in the case of nObjects to represent the vary-

ing number. For example the first generated object would have an N = 0,
the second would have an N = 1, etc.

Fig. 3: Link a number to a visual object



6

In the previous example the x-coordinate of each shown imageobject was set to
30 + valueOf(N)× 40. Thus for the first image shown the x-coordinate will be
30+0×40 which is 30. The second image will have an x-coordinate of 30+1×40
or 70, etc. A user can also associate a number through more than one rule. For
example, a number could be associated with a colored circle and a text object.
Thus more than one object would be shown for the same number.

Once the teacher defines the needed annotation rule(s), they move to the next
(optional) step. In this step, teachers can define any number of constraints on the
input numbers students will get. For example teachers can add constraints for
an input to be a one-digit number (i.e. < 10 and ≥ 0). Constraints can also link
more than one input together (e.g. X < Y ). Figure 4 shows an example where
every input has more than one associated constraint. The available constraints
are <, >, ≤, ≥, =, ! =. Teachers also choose lower and upper bounds for the
generated numbers.

Fig. 4: Restricting generated numbers

4.2 Translation to CHR Programs

Every simple rule named rule name with inputs X1, . . . , XN is represented with
the CHR constraint rule(rule_name,N). Inputs are represented separately through
the constraints input(Rule_name,Value,Index). The output of the rule con-
tains in most of the cases an expression to be evaluated. The evaluated output
is stored inside the constraint output(Rule_name,Output). Thus such a simple
rule is represented by the following CHR program:



7

:-chr_constraint rule/2, input/3, output/2.

rule(Rule_name,N),input(Rule_name,X1,1),...,input(Rule_name,XN,N),

<=> Output is Expression, output(Rule_name,Output).

The CHR file is automatically generated. Thus, the teacher does not have to
be aware of CHR to use the system. The produced file is transformed using the
CHRAnimation tool to be able to produce the required visual objects during
execution.

5 Student Module

Once users start to play, the background is set to the background chosen by the
teacher. It could be just a color or an image. Afterwards, the random generator is
used to generate numbers fulfilling the needed constraints. Once the numbers are
generated, the CHR file produced in Section 4.2 is queried. The aim of querying
the CHR file is to:

– generate the correct output to be able to compare the answer of the student
with the correct one.

– represent the inputs and output as CHR constraints activating the anima-
tion.

Every input is associated with the constraint input/3. Every time, such a con-
straint is added, its corresponding visual object(s) is added. For instance, in
the previous example, every input with value X is associated with X pictures
each showing an “apple”. Thus every time a constraint for an input is added,
CHRAnimation adds the corresponding visual objects to the animation frame
resulting in the window shown in Figure 5a showing the two input numbers (2
and 4)1.

The student can then start to add the suggested output. Every time the
student presses “Add”, the output is incremented. Since the output is a number,
it is visualized in the same way. Figure 5b shows the window after pressing the
button one time. The output is thus now visualized with one apple. Figure 5c
shows the window after setting the output to 6. In this case, six apples are shown.
At any point, the student can “check” whether the current output is correct or
not. They get the corresponding message in each case.

5.1 Another Quiz

Another option for producing interesting interactive animations is to:
1. Link every input number with a normal Jawaa circular node. The text inside

the node is its value. Its background is blue.
2. Link the output with a random number of nObjects displaying a group of

nodes. Each node is placed in a random position. The text inside each node
is also a random number. CHRAnimation has the keyword “Random” that
could be utilized in this case. Such nodes have green backgrounds.

1 The y-coordinate specified by the teacher is automatically multiplied by the index
of the input to have each input on separate line



8

(a) Inputs (b) Editing output I

(c) Editing output II

Fig. 5: Quiz 1

3. Link the output with a Jawaa circular node with the name (jawaanodeout)
displaying the actual output of the rule. It is also placed at a random position.
Its background is green as well.

4. Add an annotation rule linking the output constraint with an onclick com-
mand for the object jawaanodeout. Once it is clicked, the changeParam

command is activated changing its color to red.1

1 The onclick command was previously added to Jawaa. It allows an action to be
performed on clicking a specified object.



9

Once the generated CHR file is queried two blue nodes representing the two
inputs are shown. In addition, a group of green nodes are shown. Only one of
them represents the output. Once the user clicks on the node representing the
output value, its color changes to red. If the user clicks on any other node,
nothing happens. Figure 6a shows the initial setup with the randomly placed
nodes. Figure 6b shows the node with the output being highlighted after the
user clicked it.

(a) Randomly placed nodes

(b) Highlighted node after clicking

Fig. 6: Quiz 2

6 Conclusion & Future Work

This paper shows how annotation rules could be utilized for generating quizzes to
teach mathematics. The tool was able to customize the look of the games accord-



10

ing to the inputs of the teachers unlike existing games with static looks and oper-
ations (such as: http://www.iboard.co.uk/iwb/Simple-Addition-Stories-721).
The tool does not need any computer science background. As seen through the
examples, annotation rules were able to produce interactive animations that
could be used to teach mathematical rules. In the future, different mathematical
concepts should be explored and animated. The tool should be linked with dif-
ferent visualization libraries as well. The paper offered a prototype for a proof of
concept. In the future, the tool should be extended in a way to handle different
kinds of output quizzes in a generic way.

References

1. S. Barab, M. Thomas, T. Dodge, R. Carteaux, and H. Tuzun, “Making learning
fun: Quest Atlantis, a game without guns,” Educational Technology Research and
Development, vol. 53, no. 1, pp. 86–107, 2005.

2. R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P. Flores, V. Grau,
F. Lagos, X. López, V. López, P. Rodŕıguez, and M. Salinas, “Beyond Nintendo:
design and assessment of educational video games for first and second grade stu-
dents,” Computers & Education, vol. 40, no. 1, pp. 71–94, 2003.

3. G. López-Morteo and G. López, “Computer support for learning mathematics: A
learning environment based on recreational learning objects,” Computers & Edu-
cation, vol. 48, no. 4, pp. 618–641, 2007.

4. F. Ke, “A case study of computer gaming for math: Engaged learning from game-
play?,” Computers & Education, vol. 51, no. 4, pp. 1609–1620, 2008.

5. N. Sharaf, S. Abdennadher, and T. W. Frühwirth, “CHRAnimation: An Anima-
tion Tool for Constraint Handling Rules,” in Logic-Based Program Synthesis and
Transformation - 24th International Symposium, LOPSTR 2014. (M. Proietti and
H. Seki, eds.), vol. 8981 of Lecture Notes in Computer Science, pp. 92–110, Springer,
2014.

6. T. W. Frühwirth, “Theory and Practice of Constraint Handling Rules,” J. Log.
Program., vol. 37, no. 1-3, pp. 95–138, 1998.

7. T. Frühwirth, Constraint Handling Rules. Cambridge University Press, 2009.
8. H. Betz, F. Raiser, and T. W. Frühwirth, “A complete and terminating execution

model for Constraint Handling Rules,” TPLP, vol. 10, no. 4-6, pp. 597–610, 2010.
9. T. W. Frühwirth, “Constraint Handling Rules - What Else?,” in Rule Technolo-

gies: Foundations, Tools, and Applications - 9th International Symposium, RuleML
2015, Berlin, Germany, August 2-5, 2015, Proceedings (N. Bassiliades, G. Gottlob,
F. Sadri, A. Paschke, and D. Roman, eds.), vol. 9202 of Lecture Notes in Computer
Science, pp. 13–34, Springer, 2015.

10. S. Abdennadher and N. Sharaf, “Visualization of CHR through Source-to-Source
Transformation,” in Technical Communications of the 28th International Confer-
ence on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary
(A. Dovier and V. S. Costa, eds.), vol. 17 of LIPIcs, pp. 109–118, 2012.

11. W. C. Pierson and S. H. Rodger, “Web-based animation of data structures using
JAWAA,” in Proceedings of the 29th SIGCSE Technical Symposium on Computer
Science Education, 1998, Atlanta, Georgia, USA, February 26 - March 1, 1998
(J. Lewis, J. Prey, D. Joyce, and J. Impagliazzo, eds.), pp. 267–271, ACM, 1998.

http://www.iboard.co.uk/iwb/Simple-Addition-Stories-721

	A Rule-Based Approach to teach Mathematics using Animation
	Introduction
	Constraint Handling Rules
	Annotation Rules for Animating CHR Programs
	Teacher Module
	Defining Animations
	Translation to CHR Programs

	Student Module
	Another Quiz

	Conclusion & Future Work


