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Abstract. LPS (Logic-based Production System) is a framework that 

combines logic programs with reactive rules and a destructively-

updated database. The logic programs provide proactive behavior and 

allow definitions of processes, and the reactive rules provide reactive 

behavior. This paper describes a first attempt in using LPS to model 

the operations of cutter suction dredging (CSD). It is the result of a 

year-long consultation with experts from the Dredging Engineering 

Research Centre at Hohai University. LPS was chosen for this appli-

cation because its combination of proactivity and reactivity was 

thought to be a good match for CSD operations. These require pro-

cesses for normal operations, as well as constant monitoring to identi-

fy any operational problems that may be arising and taking reactive 

correction steps. 

Keywords: Reactive rules, Process modelling, Artificial intelligence, 

Executable model 

 

1  Introduction 

LPS (Logic-based Production System) [2,3,4,5,6,7] is a logic-based state transition 

framework inspired by logic programming and artificial intelligence. It combines 

logic programs with reactive rules and a destructively-updated database. The logic 

programs provide goal-driven proactive behavior and definitions of processes and the 

reactive rules provide event-driven reactive behavior. LPS has both operational and 

declarative semantics and the operational semantics has been proved sound in general 

and complete in certain special cases.  

 LPS has been implemented in XSB Prolog and in Java, and has been used for a 

variety of small trial applications, including stock control, teleo-reactive robotics, 

workflow and gaming. This paper describes a first attempt in using LPS to model the 

operations of cutter suction dredging. It is the result of a year-long consultation with 

experts from the Dredging Engineering Research Centre at Hohai University, and 

uses their data [8] on dredging parameters. 

 Dredging engineering plays an important role in port construction, flood control 
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and drainage, reclamation projects, and other aspects of environmental manipulation 

and protection. There are different types of dredgers which operate differently and are 

suitable for different types of soil [12]. In this paper we concentrate on cutter suction 

dredgers (CSDs), e.g. in Figure1,which are some of the most widely used types of 

dredgers. They have a cutting device at the inlet of the suction pipe. The cutting de-

vice, exemplified in Figure 2, loosens the water bed by rotation and swinging from 

side to side,  and moves the soil towards the suction mouth where the slurry is then 

sucked up the suction pipe and transported through a network of pipes, such as in 

Figure 3, and deposited where required. 

 Dredging using CSDs involves major challenges, one of the greatest of which is 

the toll it takes on the environment due to high emission and high energy consump-

tion, aggravated by inefficiency and low production
1
. Operating a CSD requires ex-

pertise. Due to the complexity of the dredging environment, operators need to contin-

ually monitor and adjust the running state of dredging equipment to prevent pipe 

blockage and to achieve high production and low energy consumption. The dredging 

equipment is complex, and operators need to keep an eye on a large set of operation 

parameters. 

 

  

 Fig. 1.  A cutter-suction dredger [12]     

 Figure 4 shows one panel of monitors. A dredging operator typically needs to 

keep an eye on several such panels to check, for example, the flow of the slurry along 

the network of pipes, the production, the density of the slurry at various points in the 

pipeline and other parameters. In addition he needs to operate the dredger through 

control panels such as the one in Figure 5, including control rods and buttons. 

 The efficiency and effectiveness of the dredging operation is highly dependent 

on the experience of the operator [13,14]. An experienced operator will notice a de-

veloping problem quickly, and will know the best steps to rectify the problem before 

it develops into a costly situation, both in terms of time and resources. Dredging is a 

growing activity, and it requires a substantial increase in the number of well-trained 

                                                           
1
 Production is the quantity of soil dredged per unit of time. 



 

operators. Zhou et al. [14], for example, address this issue by proposing a number of 

required competences and a system for certification for CSD operators. Others, for 

example [1] and [9], follow a long tradition of training dredger masters by using pur-

pose-built simulators. Other researchers have addressed these issues by exploring how 

computers can provide assistance in dredging operations. Tang et al. [11] argue that if 

dredging processes can be monitored by computer software, the dredging state can be 

evaluated more accurately and, in turn, adjustments can be made more effectively.   

Similarly, Cox et al. [1] argue that automatic monitoring can free dredging operators 

from the tedious, prolonged and tiring task of watching many different gauges and 

apparatuses. Furthermore, Ni et al. [9] suggest that automatic monitoring together 

with fault detection can facilitate early diagnosis and repair of faults, and even possi-

bly precautionary adjustments, before costly deterioration. Our contribution is along 

these latter lines. In particular we share the objectives of Wang and Tang [13], in 

providing computerized expert assistance to dredging operators. 

 

 

 
 
Fig. 2. A cutter dredger Cutter Head 

 In this paper, which extends [10], we explore how LPS can be used to provide 

an executable computerized model of CSD operations. We provide a schema for the 

modeling and a brief outline of the logic-based formalization. This is our first attempt 

at this application, and the model has been tested only in simulation.  To provide a 

model of CSD there is a need for setting the optimal ranges of various operational 

parameters, such as ideal ranges of speeds for the cutter head swing and rotation for 

different types of soil, and the optimal ranges of production. We base our parameters 

on the work of Li and Xu [8]. They have used data mining techniques on actual 

dredging data to determine the primary dredging parameters for a balanced optimiza-

tion of high production and low energy consumption. 

 In the short to medium term, we see two potential applications for our work. 

Firstly it can be used as an online advice and guidance system for dredging operators, 

to help reduce the complexity of their operations and decision making. Secondly it 

can be used as a training system for would-be operators. In the long term it can be 



used to automate parts of the dredging operation. 

 

 

Fig. 3.  Network of pipes from the dredger head towards discharge 

 

    

Fig. 4.  Panel of Monitors 

       

Fig. 5.  Panel of Monitors and Controllers 
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2  A Schema of Intelligent Cutter Suction Dredging Using LPS 

LPS seems particularly well suited to the task of modeling intelligent dredging for 

several reasons. It allows the representation of the state of the dredging task in terms 

of the task’s operational parameters, and it provides a language that can model both 

processes for proactive behavior and event-driven production system-type rules for 

reactive behavior.  Thus it can model “normal” operations when everything is going 

well, and it can model how an abnormality and operational problem can be identified 

and what steps need to be taken to rectify it. Moreover, the LPS model is executable, 

in the sense that given periodic input of the dredger sensor readings and monitors, it 

outputs the next course of actions with their suitable operational parameters.  

 A schema for modeling CSD in LPS is presented in Figure 6. This includes two 

parts. On the left there is knowledge for intelligent decision-making in dredging using 

data mining and statistical methods [8].  A small part of this knowledge is summa-

rized in Table 1. This shows suitable ranges of some CSD parameters optimal for high 

production and low energy consumption. These ranges have been extracted for differ-

ent types of soil, for example sand, rock and clay. The table focuses on parameters for 

sand dredging. This data informs the rest of the schema on the right side of Figure 6 

which consists of the model in the LPS framework, which we describe below. 

 

2.1  LPS Framework for Modeling Cutter Suction Dredging  

The LPS model of dredging involves basic dredging data, dynamic dredging state data, 

dredging processes, and dredging operation monitoring and fault detection.  

The LPS language consists of: 

a) A (deductive) Database, DB 

b) Process definitions, Levents 

c) Reactive Rules, R 

d) A Domain Theory, D 

 

A detailed description of the language can be found in [7]. Here we summarize the 

language to the extent that is sufficient to describe a schema that can be used to engi-

neer the dredging application. 

 The database DB allows representation of static (non-changing) and dynamic 

(changing) data, as well as definitions of concepts. The static and dynamic parts of the 

database incorporate basic and dynamic dredging state data, respectively. Basic 

dredging data involves type of the dredging area, type of soil and optimal ranges of 

parameters of CSD. For example, the following specify the optimal ranges of some 

parameters for the cutter head, given in Table 1: 

 

 \* range(part, param, soil type, low, high, unit) */ 

 range(cutterHead, load, sand, 11.07, 13.81, MPa).   

 range(cutterHead, rotation_speed, sand, 25, 30, r/m). 



 range(cutterHead, swing_speed, sand, 9.62, 10.61, m/min). 

Dynamic dredging state data involves the changing operational state of the dredging, 

for example indicated by the monitors and sensors, indicating production, cutter head 

load, slurry density and speed in various locations along the networks of pipes. For 

example:  

 even(cutter_load). 

indicates that currently cutter load is even. This may change during the operation if 

the teeth of the cutter head are damaged, for example. In the simulation the monitor 

readings are also considered part of the dynamic part of the knowledge base. For ex-

ample:        

 \* reading(part, param, value) */ 

 reading(cutterHead, load,  12).     

stating that the current monitor reading for cutter head load is 12, and 

 reading(dischargePipe, production, 1.4). 

stating that the current monitor reading for production at the discharge pipe is 1.4.  

 The concept definitions in DB allow representation of concepts and parameters 

that depend on other concepts and parameters. For example the following states that 

the value of an operational parameter, Param, for equipment part, Part, is low if for 

the given soil type, S,  the read value of the parameter lies below the lower bound of 

the parameter’s optimal range. 

low(Part, Param) :- soil_type(S), range(Part, Param, S, L, H, Unit),                       

reading(Part, Param, V), V<L.
2
 

In addition, the concept definitions in DB are used to specify how operational and 

mechanical faults can be recognised during dredging. Such faults will,  in turn, trigger 

the reactive rules, R. These have the flavor of production rules, and are used to moni-

tor the state of the dredging operation, to detect faults, and to trigger correction pro-

cedures.  

 The process definitions, Levents, incorporate dredging procedures, both for nor-

mal operations and for fault correction. We will show some examples of rules in R 

and clauses in Levents later. The domain theory, D, allows the system to reason about 

the expected effects and preconditions of actions. Below we summarize some of the 

operational and mechanical faults that we have catered for within the LPS schema.   

                                                           
2
 For ease of reading we have dropped the time parameters in most of the formalisa-

tion presented in this paper.      
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Fig. 6. A schema of intelligent dredging for cutter suction dredger using LPS 

2.2  Identification and Resolution of Operational/Mechanical Faults 

During dredging various problems can be encountered, all ultimately resulting in the 

lowering of production. Expert operators have developed effective ways of identify-

ing the causes of such problems and procedures for resolving them. These types of 

problems have been studied through fault tree analysis in CSD safety performance  

[15] and a CSD simulator has been developed in Dredging Engineering Research 

Centre of Hohai University in China [9]. Out LPS  model is the result of  year-long 

consultation with these colleagues. Here are some examples of faults that may arise 

and indicators for recognizing them. These have been formalized in our LPS system. 

 

The suction mouth (inlet) problem: This occurs when there is a blockage of the suc-

tion mouth, for example if debris or a piece of rock is stuck at the mouth of the suc-

tion pipe. An expert operator identifies this problem via the monitors by seeing that 

vacuum in the suction pipe (Figure 3) is high, but slurry speed and slurry density in 

the suction pipe are low, i.e. the suction pump is working (creating the high vacuum), 

but the slurry is not getting sucked up the pipe effectively, as something is blocking it. 



 

Table 1. Optimal ranges of dredging parameters of a CSD for sand 

 

The cutter head problem: This occurs when some of the blades of the cutter head are 

broken. An expert operator identifies this problem via the monitors by seeing that 

vacuum is high, but slurry speed and slurry density in the suction pipe are low. In 

addition the cutter load is uneven. This latter is what distinguishes this problem from 

the one above. The unevenness of the cutter load occurs because as the cutter rotates 

the load is normal where the blades are not damaged and is low where they are dam-

aged. 

The suction pipe problem: This occurs when too much slurry collects in the suction 

pipe and blocks it. In this case in the suction pipe slurry speed is low and slurry densi-

ty is high, and in the discharge pipe (Figure 3) slurry density is low. 

 Table 2 summarizes these faults (ignoring the discharge pipes for simplicity). 

There Low means less than the lower end of the optimal range given in Table 1, High 

means higher that the upper end of the optimal range, and Normal means within the 

range. Cutter load uneven means the cutter load varies significantly (according to 

some expert heuristic) during each rotation of the cutter head. 

Parameters Optimal 

Range 
Parameters  Optimal Range 

Cutter Head 

Rotation 

Speed 

(25, 30) r/min Dredging Pump Vacuum (0.4, 1.08) MPa 

Cutter Head 

Swing 

Speed 

(9.62, 10.61) 

m/min 
Dredging Pump Rotation 

Speed 
(225, 228) r/min  

Cutter Head 

Load 
(11.07, 13.81) 

MPa 
Depth of a Cut (1.82, 1.84) m 

Slurry Den-

sity in Dis-

charge Pipe 

(47.5, 59) % Production (1.68, 1.89) m
3
/sec 

Slurry Speed 

in Discharge 

Pipe 

(4.94, 5.08) 

m/sec 
Energy Consumption (1.4, 1.57) kw/h 

Slurry Den-

sity in Suc-

tion Pipe 

(46.5, 59) % Slurry Speed in Suction 

Pipe 

(4.95, 5.10) m/sec 



 

Table 2. Summary of  relationship between monitored data and Dredging Process Faults  
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Information such as that represented in Table 2 is used in concept definitions in the 

LPS DB, allowing the system to recognize faults through combining data from the 

dredger’s monitor readings. For example: 

 /* The blocked suction mouth problem (bsm) /*  

problem(bsm) :- low(suctionPipe, slurry_speed), low(suctionPipe,  slur-

ry_density), high(suctionPipe, vacuum), even(cutter_load). 

 /* The damaged cutter head problem  (dch) /* 

problem(dch) :- normal(suctionPipe, slurry_speed), low(suctionPipe, slur-

ry_density), high(suctionPipe,  vacuum), uneven(cutter_load). 

Reactive rules can be used to alert that the cutter load is uneven, which, in turn, as can 

be seen, above, may imply that there is a problem with the cutter head: 

 

even(cutter_load), reading(cutter_head, load, V1, T1), reading(cutter_load, 

load, V2, T1+1 sec), reading(cutter_load, load, V3, T1+2), varied(V1, V2, V3) 

  update(uneven(cutter_load)) 

This states that if currently it is believed that the cutter load is even, but the next three 

successive readings of the load significantly differ from one another (as the cutter 

head rotates) then the status of cutter load is changed to uneven. The domain theory D 



provides this updating of the status. Notice that the three readings of the cutter load 

collectively provide a complex event that can trigger the reactive rule. 

 Other reactive rules are triggered when problems are recognized, for example, 

when there is blocked suction mouth problem its specific corrective procedure has to 

be executed: 

 

 problem(bsm)  solve(bsm) 

Expert corrective procedures for dealing with such faults are formalized as process 

definitions in the Levents component of LPS. The process for dealing with the suction 

mouth problem might be summarized as follows: 

 Stop the discharge pumps, the suction pump and the rotation of the cutter 

head, so that the slurry flows down in the discharge pipe. This may remove 

the blockage.   

 Wait for 5 minutes. 

 Restart everything (discharge pumps, the suction pump and the cutter head 

rotation at a “normal” speed) and resume “normal” operation from where it 

was suspended. 

 After 5 minutes recheck the relevant monitors (slurry density and vacuum in 

suction pipe). 

 If the problem is resolved carry on. 

 If the problem is not resolved do the first step above, then lift the cutter head 

above water and remove blockage manually, then restart and resume the 

normal dredging process from the location of the dredging unit where the 

process was suspended. 

 

2.3  The Operational Semantics (OS) of LPS 

All the components of LPS summarized above work together within an operational 

semantics. The OS has been described formally and in detail in [7]. We do not repeat 

that description here. Here we explain how it is applicable to the dredging problem. 

The OS is based on a cycle: 

Examine the current state of operation   

  

 Make operational decisions  

           

 Output/Enact the decided actions 

Figure 7 summarises how the LPS OS relates to the dredging application. 



 

D esision /R easoning

C entre

IN PU T

1. E quipm ent param eters (as sta tes)

2 . E nvironm ent Factors 

3 . M onitors’  read ings

........

O U T PU T

1. O perational dredging  param eters 

2 . O perational actions 

........

O PE R A T IO N A L  PA R A M E T E R S

� Sw ing speed

� Slurry  speed

� C utter ro tation  speed

� Pum p ro tation  speed

� Slurry  density

..........

 

Fig. 7. Operational semantics of LPS as applied to Dredging 

 At the starting state the dredging model initializes the normal dredging process-

es, as described in Levents. These involve actions such as lowering the cutter ladder 

into the water (at the required co-ordinates), followed by starting the cutter head rota-

tion, followed by starting the discharge and suction pumps, and so on. The operational 

parameters will be instantiated according to the specifications such as those summa-

rized in Table 1.  

 Then periodically, during each OS cycle, the system updates its status according 

to the latest equipment parameters and monitor readings. While the normal proce-

dures (e.g. cutter head swinging and rotating and advancing forward) progress in the 

background, the reactive rules, R, monitor the state changes and trigger a reaction if a 

problem/fault is recognized. The intervention may or may not require stopping the 

normal processes. For example, it may simply require that the normal process is con-

tinued but with different cutter head rotation or swing speeds. On the other hand, in 

more complex cases, it may require that the normal process is stopped and a correc-

tive procedure executed instead. 

 Each fault modeled in LPS is catered for by reactive rules in R. LPS allows at-

taching priorities to the reactive rules. So, for example, if multiple concurrent faults 

are recognized (for example, broken blade and blocked discharge pipe occurring to-

gether) the system may indicate either that the corrective actions can be done together 

(or with some partial ordering), or according to pre-specified priorities. Moreover, for 

the same fault one can specify alternative corrective procedures. Then the most pre-

ferred procedures can be tried or recommended first before the less preferred ones.  



3  Conclusions 

In this paper we presented a schema of intelligent cutter suction dredging using LPS. 

LPS provides a language for representing concepts, processes and the states of opera-

tion, and an operational semantics for integrating and operationalizing these. 

 The LPS system and the model of dredging have been implemented in (XSB) 

Prolog, and tested by simulating a small sand dredging project. The formalization 

exercise and the resulting experiment have proved promising. Via a simple interface, 

as in Figure 8, we input and update monitor readings (2
nd

 column) and observe what 

recommendations the LPS system would give to the dredger operator (the bottom 

panel). The other panels indicate any problems the system has identified. They also 

indicate according to what corrective procedure the system is making recommenda-

tions to the operator. 

 For future work the system has to be tested more systematically and with more 

complex scenarios. Ultimately, the software has to be integrated, with the hardware of 

the dredging equipment sensors and monitors for more realistic experiments. 
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Fig. 8. LPS dredging simulation interface 
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