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Abstract. In this work, we consider the problem of influence maximiza-
tion on a hypergraph. We first extend the Independent Cascade (IC)
model to hypergraphs, and prove that the traditional influence maxi-
mization problem remains submodular. We then present a variant of the
influence maximization problem (HEMI) where one seeks to maximize
the number of hyperedges, a majority of whose nodes are influenced. We
prove that HEMI is non-submodular under the diffusion model proposed.
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1 Motivation

Influence maximization [2] is a well explored problem in social network analysis.
It has widespread applications in political campaigning, viral marketing and
understanding the spread of memes and other contagion on social media.

The problem first requires a specification of diffusion model, which specifies
how the set of influenced nodes at time t affects the set of non-influenced node
at time t + 1, or in other words, how the influence spreads through the graph
G = (V, E). Given a diffusion model, the influence maximization problem aims to
find the best initial set of k nodes which have the maximum expected influence at
the end of the diffusion process. The function σ(S) denotes the expected number
of nodes influenced at the end of the diffusion process.

A hypergraph is a generalization of a graph, where the hyperedges are subsets
of vertices (rather than just pairs). More formally, a hypergraph H = (V, E) has
a set of vertices V , and every e ∈ E is such that e ⊆ V .

It is not always possible to represent the relationships between actors (nodes/vertices)
through the edge, which is a pairwise (dyadic) relation. For instance, in a research
setting, researchers collaborate in small groups to write scientific publications.

Copyright © 2016 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. This volume is published and copyrighted by its
editors.

38

Proceedings of the 2nd International Workshop on Social Influence Analysis (SocInf 2016) 
July 9th, 2016 - New York, USA



Varun Gangal, Balaraman Ravindran, and Ramasuri Narayanam

Co-membership of a group in such a setting becomes a super-dyadic relation. A
co-authorship network (e.g the arXiv Astrophysics co-authorship network [3])
can be formed from these collaborations, where every node is a researcher and
an edge (a, b) represents a having collaborated with b on a certain publication.
However, this representation is lossy, since we lose the information of whether the
collaboration of a and b involved a third node c. Consider two cases - one where
a and b, b and c, a and c (each pair) worked separately on three publications,
and the other where a,b and c worked together on one publication. A simple
co-authorship network will not be able to distinguish between the two cases.
However, a hypergraph representation where every hyperedge is a publication,
with its nodes being the researchers who authored the publication, will be able
to capture this difference correctly.

Fig. 1: An example hypergraph. e1, e2, e3 and e4 represent the hyperedges

In the past decade, many standard problems in social network analysis have
explored in the context of hypergraphs. [9] looks at spectral clustering and
transductive classification with data which can be represented as a hypergraph.
[5] developed algorithms to detect communities in hypergraphs. [8] extends
random walk based semi-supervised learning to hypergraphs, also handling class
imbalance. There are ways of reducing a hypergraph to a simple graph, but
none of these are lossless. For example, one method of reducing a hypergraph
to a simple graph, known as the clique construction method, adds an edge to
a simple graph between a and b when they share atleast one hyperedge. It is
however possible to represent a hypergraph as a heterogenous, bipartite graph
where one partition consists of the nodes, while the other partition consists of the
hyperedges. Conversely, any bipartite graph can be represented as a hypergraph
considering one partition to be hyperedges and the other partition to be nodes.

The problem of influence maximization in a hypergraph has remained hitherto
unexplored. [7] is the only work we found which looks at influence maximization
in hypergraphs. However, the primary objective of the work is to define Shapley
Value based centrality measures for hypergraphs which can be computed on
various simple graph reductions constructed from the hypergraph. Influence
maximization is just used to evaluate the efficacy of the centrality measures.
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Moreover, the influence maximization experiments are performed on a clique
reduction of a hypergraph rather than the exact hypergraph representation.
Hence, the authors simply use existing diffusion models for simple graphs such
as IC and LT. Hence, to the best of our knowledge, there are no diffusion models
defined which directly model the spread of influence on a hypergraph. Our first
motivation, hence is to define a diffusion model for hypergraphs, and analyze
whether it is submodular.

In a hypergraph, the nodes represent actors while the hyperedges could
be thought of as representing groups or affiliations. At the end of a diffusion
process, every hyperedge could have some influenced incident nodes and some
non-influenced incident nodes. One may seek to extend the notion of a node being
influenced to a affiliation (hyperedge) being influenced. A affiliation is considered
influenced if a majority of its nodes (members) are influenced at the end of the
diffusion process. There may exist situations where one seeks to maximize the
number of affiliations influenced rather than the number of nodes influenced.

For instance, consider a political campaign on a social network such as
Facebook, where the hyperedges correspond to Facebook groups while the nodes
correspond to Facebook users. By controlling or influencing a Facebook group,
one can dominate the content on the group’s page. However, one cannot directly
influence an affiliation, since the mechanism of influence propagation takes place
through users getting converted in support of the political campaign. The manager
of the political campaign here would be interested in selecting the set of initial
users (who can be made to support the campaign through promotions or other
incentives) which would maximize the number of groups influenced. This is a
distinct objective from maximizing the number of nodes influenced, as we shall
illustrate now through an example. We refer to this new variant of influence
maximization as HEMI (Hyperedge Majority Influence Maximization). σHEMI(S)
is the expected number of hyperedges a majority of whose nodes are influenced
at the end of the diffusion process.

Consider a hypergraph H where the hyperedges are e1 = {v1, v2, v3}, e2 =
{v3, v4, v6}, e3 = {v3, v5, v7}. Maximizing the number of nodes would not distin-
guish between the case where S1 = {v1, v2, v3} and S2 = {v3, v4, v5} are the final
set of nodes influenced, since σ() = 3. However, σHEMI() = 1 in the first case
and 2 in the second.

An added motivation of solving HEMI rather than maximizing the number
of nodes directly would be the diversification it achieves. Attaining diversity for
problems such as graph centrality based ranking [4] and k nearest neighbours [6]
has been looked at in the past. In an influence maximization setting, one may be
interested in having a final set of influenced nodes which is sufficiently diverse.
For instance, a cellphone company targeting users to buy its connection, may
want the set of users adopting the connection after its first advertising campaign
to be well spread through various professions and class verticals.
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2 Organization

The rest of this paper is organized as follows - 3 states the definition of the
influence maximization problem, and other related preliminaries. 4 explains the
proof for submodularity of the Independent Cascade Model. 5 describes the
diffusion model on hypergraphs which we have used later. 6 proves that the
diffusion model is submodular. 7 formally define the HEMI problem. 8 proves
that HEMI is not submodular. 9 states possible directions for further work on
this problem.

3 Influence Maximization - Preliminaries

The Independent Cascade Model is a well-known diffusion model. Under this
model, a node u which is influenced at time t gets one opportunity to influence
each of its neighbors v with probability pu,v for time step t + 1. The probability
pu,v is either set to a small constant (e.g 0.1) or set to 1

kv
, where v is the target

node and kv is its degree. Another well-known diffusion model is the Linear
Threshold (LT) model, where every node v first randomly chooses a threshold
αv ∈ [0, 1]. A node v gets influenced at time t + 1 if more than a fraction αv of
its neighbors are influenced at time t.

The major contribution of [2] was their observation that if the σ() function
for a diffusion model is both monotone and submodular, the greedy algorithm for
growing the candidate set S gives a (1 − 1

e ) approximation. Since the brute force
algorithm for this problem requires enumerating all the 2|V | − 1 candidate sets,
this result provided the first tractable way of solving this problem. The function
σ() is monotone if σ(S) ≤ σ(T ) when S ⊆ T . The function σ() is submodular if
it exhibits a diminishing returns property - in other words for two sets S and
T such that S ⊂ T , adding a node v /∈ T to S leads to a greater increase in σ()
than adding v to T .

σ(S ∪ v) − σ(S) ≥ σ(T ∪ v) − σ(T ) (1)

As a result of this observation, the question of whether a diffusion model is
submodular or not acquires special importance (most diffusion models tend to
be monotone anyway), since this allows the use of the greedy algorithm with an
approximation guarantee. The authors then went onto prove that both the IC and
LT diffusion models were submodular, i.e they had a submodular σ() function.
In section 4, we revisit the proof of submodularity for the IC model, since it is
relevant for understanding the proof for submodularity (and counterexample for
non-submodularity), which we present later on.

4 Proof of submodularity for IC model

In the IC model, an edge (u, v) is used in the diffusion process with probability
pu,v. Instead of determining whether (u, v) is used at the time of diffusion, one
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can perform a trial with respect to each edge (u, v), and form a set of live edges
X ⊆ E. Only these live edges participate in the diffusion process. We denote
by σX(S) the number of nodes influenced given the initial set S and the live
edge set S. Note that once the live edges are fixed, there is no randomness in
the process. Now, one can easily see that σX(S) is simply the size of the set
of nodes reachable from S under the graph GX = (V, X). Since reachability is
submodular.

σX(S ∪ v) − σX(S) ≥ σX(T ∪ v) − σX(T ) (2)

Taking expectation on both sides, we get

σ(S ∪ v) − σ(S) ≥ σ(T ∪ v) − σ(T ) (3)

5 Diffusion Model

Our diffusion model is a simple generalization of the Independent Cascade Model
to hypergraphs. Here, we consider a graph Gaug = (V ∪ E, Eaug), where the set
of nodes Vaug is the union of the set of nodes and the set of hyperedges. An
edge eaug = (v, e) or (e, v) ∈ Eaug if v ∈ V, e ∈ Ev ∈ e. For a node-hyperedge
pair (v, e) such that v ∈ e, we add edges in both directions ((e, v) and (v, e)).
This allows us to have independent probabilities of the influence flowing in either
direction. In our model, the hyperedges act as carriers of the influence, allowing it
to flow from one node to another through them. However, note that in the HEMI
objective, we include a hyperedge only if a majority of its nodes are influenced,
regardless of whether it has acted as a carrier.

A node v which is influenced at time step t can influence an incident hyperedge
e with probability pv,e for time step t + 1 through the edge (v, e). A hyperedge e
which is influenced at time step t can influence an incident node v with probability
pe,v for time step t + 1 through the edge (e, v). Though the probabilities pe,v and
pv,e could be set in any way, we use the following two schemes for setting them

– pe,v = p1 and pv,e = p2 ∀v ∈ V , e ∈ E, v ∈ e. Here p1 and p2 are constants.
This is similar to the scheme used in [2], where the probability of an edge
being live is set to a constant for some of the experiments.

– Another scheme would be to normalize all the probabilities of edges incident
onto a node in the augmented graph (which could be a node or a hyperedge)
to sum to 1. In this case, pe,v = 1

kv
and pv,e = 1

|e| .

Here kv is the degree of the node v, while |e| is the size of the hyperedge.
Note that our diffusion model does not simplify to a diffusion model on some

simple graph reduction of the hypergraph. To understand why this is the case,
consider the hypergraph H in Figure 2 where a hyperedge e has 4 nodes u, v,
z and w incident on it. Also, u, v, w and z do not have any other hyperedges
incident on them.
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Fig. 2: Hypergraph H, with a single hyperedge incident on u,v, w, z

Suppose w is already influenced. Now, note that the hyperedge e will get
influenced (as a carrier) with probability 0.5. Let Xe denote the 0-1 random
variable, which is 1 if e is influenced, and 0 otherwise. Similarly, let Xu, Xv, Xz and
Xw be the 0-1 random variables corresponding to whether the respective node is
influenced or not. Xu, Xv and Xz are conditionally independent given Xe. We can
see this from the fact that P (Xu|Xe, Xw = 1) = P (Xu|Xv, Xe, Xw = 1) = 0.5.
Symmetrically, this holds for the other pairs.

However, they are not conditionally independent given only Xw. We can see
that P (Xu|Xw = 1) = P (Xu|Xe = 1)P (Xe = 1|Xw = 1) = 0.5 × 0.5 = 0.25. Let
us now find the value of P (Xu|Xw = 1, Xv = 1).

P (Xu = 1|Xw = 1, Xv = 1) = P (Xu = 1|Xe = 1)P (Xe = 1|Xw = 1, Xv = 1) (4)

= 0.5
P (Xv = 1|Xe = 1)P (Xe = 1|Xw = 1)

P (Xv = 1|Xw = 1)
(5)

= 0.5
P (Xv = 1|Xe = 1)P (Xe = 1|Xw = 1)

P (Xv = 1|Xw = 1)
(6)

= 0.5 (7)

(8)

Since P (Xu|Xw = 1, Xv = 1) > P (Xu|Xw = 1), we can see that Xu and Xv are
not conditionally independent given only Xw. A simple graph based represen-
tation, with the IC diffusion model will not be able to model the dependence
between Xu and Xv, given Xw at time t. This is because the state of Xu and Xv

at the next time step (t+1), only depends on whether the respective edges (w, u)
and (w, v) become live. The triadic relation captured by the hyperedge between
w, u and v is not captured here. [1] had shown that most of the hypergraph based
Laplacians were reducible to the Laplacians of two simple graph constructions -
the star expansion and the clique expansion. However, for our diffusion model, we
have shown that it is necessary to work with the exact hypergraph representation.
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6 Proof of submodularity

We shall first prove that the function σ(S) where S is the number of initially
influenced nodes and σ(S) is the final number of nodes influenced, is submodular
under our diffusion model. Our proof is a simple generalization of the proof for
submodularity of Independent Cascade in simple graphs.

Consider the graph Gaug. Assume, as in the original IC proof, that the set of
live edges X is decided by performing all the trials prior to the diffusion process.
Consider sets of nodes in the original hypergraph S ⊆ V, T ⊆ V, S ⊂ T , and a
node in the original hypergraph v /∈ T . Now, σ(S) is the set of augmented graph
nodes which were nodes in the original graph and are reachable from the set S
in the augmented graph. Note that this does not include the augmented graph
nodes which correspond to hyperedges, though the paths which are used to reach
a node v ∈ V from u ∈ S may have hyperedges as intermediate nodes.

Using the same argument as in the KKT proof, since reachability is submod-
ular, we get

σX(S ∪ v) − σX(S) ≥ σX(T ∪ v) − σX(T ) (9)

Taking the expectation over all X,

σ(S ∪ v) − σ(S) ≥ σ(T ∪ v) − σ(T ) (10)

7 The HEMI Objective - Formal Definition

Consider the state of the hypergraph H = (V, E) at the end of a trial of the
diffusion process, for a given initial set S. Some of the nodes will be influenced,
and some will not be influenced. Let the set of influenced nodes be I. The set of
non-influenced nodes will be V − I. Clearly σ(S), the expected number of nodes
influenced, is equal to E[|I|].

Let Ve denote the set of nodes incident on a given hyperedge e. For HEMI,
we are interested in the number of hyperedges, a majority of whose nodes are
influenced. We define Y to be this set. More formally,

Y = {e ∈ E|Ve ∩ I ≥ |Ve|
2 + 1} (11)

Now, σHEMI(S) = E[|Y |].
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8 Non-submodularity of HEMI:Counterexample

Fig. 3: Hypergraph H; the red ovals correspond to hyperedges while the blue
ovals correspond to nodes.

Consider the hypergraph H shown in Figure 3. H has hyperedges e1 = {v1, v2, v4},
e2 = {v1, v2, v3, v5, v6}, e3 = {v2, v3, v4}. The augmented graph Gaug will have
2 × (3 + 5 + 3) = 22 edges. Let σHEMI(S) be the number of hyperedges with
a majority of their nodes influenced at the end of the diffusion process. Let
σHEMI

X (S) be the number of majority-influenced hyperedges given a set of live
edges X in the augmented graph. One can exactly compute σ(S) by enumerating
over all possible live sets X.

σHEMI(S) =
∑
X

P (X)σHEMI
X (S) (12)

where P(X) is given by

P (X) = Πeaug∈Xp(eaug) (13)

Here p(eaug) = pe,v or pv,e depending on the directionality of the edge i.e whether
it goes from a node to a hyperedge or in the reverse direction. However, note that
using this method of enumerating outcomes even for this small example, would
require us to enumerate 222 outcomes. Instead, we find an estimate of σHEMI(S)
using a simulation-based method.

Consider the sets S = {v5}, T = {v1, v3, v5} and v = v2. Now, we run
simulations to estimate σH(S), σH(S ∪ v), σH(S ∪ v) and σH(T ∪ v). For a given
set, we run 105 trials. In each trial, we start with the initial set influenced at
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time step 0, and then run the diffusion model until convergence (set of influenced
nodes stops growing). We then find the number of hyperedges a majority of
whose nodes are influenced. We find this number averaged over all the trials.

We can see that submodularity is violated for a wide range of p1 and p2 values.
The intuition here is that node v2, which is incident on all the hyperedges, can
act as a swing vertex (converting a non-majority into a majority) only when one
less than majority of the nodes in a hyperedge it belongs to are influenced. A
larger initial set helps having more influenced nodes in the end, thus helping v
perform the role of converting a non-majority into a majority in more hyperedges.
Hence, a larger initial set results in a larger marginal gain on adding v to the
initial set.

pv,e pv,e σH(S ∪ v) − σH(S) σH(T ∪ v) − σH(T )
0.1 0.1 0.08 1.92
0.1 0.2 0.13 1.85
0.1 0.3 0.17 1.79
0.2 0.1 0.15 1.85
0.2 0.2 0.26 1.71
0.2 0.3 0.33 1.60
0.3 0.1 0.22 1.78
0.3 0.2 0.38 1.60
0.3 0.3 0.48 1.43

1
|e|

1
d(v) 0.80 0.85

Table 1: Marginal Gains for Different p1 and p2 values

The threshold values are chosen with the intuition that the probability of
spreading is a small value less than 0.5. In the original influence maximization
paper [2], the authors had set the value of p to 0.01, 0.1 etc. Moreover, when
we state a diffusion model to be submodular, this means that the σ function is
submodular irrespective of the parameters of the diffusion model. Hence, it is
sufficient to prove non-submodularity for a single set of parameters to prove that
the diffusion model is not submodular.

Thus, we can see that the HEMI objective σHEMI(S) is non-submodular.
This means the greedy algorithm is no longer guaranteed to provide a (1 − 1

e )
approximation.

9 Future Work

Although we have proved that the HEMI objective is non-submodular, we are yet
to devise an algorithm which can solve the problem with some provable guarantee.
Devising such an algorithm is a point of future interest. One possible direction
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could be to formulate the HEMI objective as a difference of two submodular
functions, or having submodular upper and lower bounds.
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