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Abstract. This paper is devoted to investigation of problems and methods of 

acoustic signals modeling in the information and control systems for audio ex-

change communications. The problems of estimation and approximation of 

probable density functions, which may assist in distinction of acoustic speech 

signals and external acoustic noise. We consider the direct and indirect meth-

ods, techniques histogram evaluation, ways to overcome incorrect problems. 
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1 Introduction 

Evaluation distributions speech signals and noise, as well as any nature of data, based 

on empirical derived from experimental results of measurements [1]. There are many 

methods of preparing such estimates, divided into many parametric and nonparamet-

ric, direct and indirect methods. 

Under the parametric or understood by classical methods and the methods in which 

the probability density is known to an accuracy of parameters, it has the form 

( , ) ( )f x f x  , where 
nx R  and 

mR   are respectively the vectors of random 

variables and unknown parameters [2].  

The job distribution is characterized, for example, for the detection of problems 

and evaluation of signals. 

The detection tasks assumed that the observed data belongs to one of two or more 

classes, each of which is characterized by its known a priori probability density 

( )kf x , or in particular, its own set of parameters k . The density 

( ) ( , )k kf x f x  and the problem is correlating the observed data to one of the 

known distributions.  

On the contrary, problems of estimation parameter vector   is considered to be 

unknown, though the function ( , )f x 
 
 itself may be a known probability density. 
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If the function ( , )f x 
 
is not a probability density, the parameter vector estima-

tion methods   are considered to be non-parametric. In this case - it is a task of ap-

proximation or approximation of the observed data. The resulting approximation 

function ( , )f x  must satisfy the constraints [1, 3] 

( , ) 0f x    and ( , ) 1f x dx




 .                                     (1) 

A clear distinction between parametric and non-parametric methods is not always 

possible. Thus, the problem of data closer mixture of known distributions represented 

density functions ( , )k kx  , ( , ) ( , )k k k

k

f x a x   , 1k

k

a  ,, more appro-

priately be classified as non-parametric tasks. However if the coefficients 0ka  are 

known, the task can be seen as a parametric. For nonparametric problems are the 

problems of least squares or linear and nonlinear regression. Methods for solving such 

problems is also called projection methods. It should be noted that the definition of 

non-parametric methods above only used in mathematical statistics. In the field of 

systems theory, optimization, approximation and approach them, on the contrary, it is 

called parametric [4, 7], based on the meaning of the tasks is to find a finite number of 

unknown parameters. 

2 Direct and indirect methods of estimating the probability 

density 

A number of studies estimating the probability density methods are divided into direct 

and indirect methods. This hallmark of the direct methods is to use a direct link with 

the required density of empirical data. For example, to direct methods include meth-

ods based on the solution of the integral equation relating the probability density of 

the empirical distribution function 

( ) ( ) ( )nI x v f v dv F x






  ,                                           (2) 

where ( )nF x

 
is the empirical distribution function of the stepped type. The solu-

tion of equation (2) gives the desired estimate of the probability density. 

The empirical distribution function is given by 

( , ]

1

1
( ) ( )

N

n x l

l

F x I x
N






                                              (3) 

where ( , ]( )x lI x 
 
the indicator of the set ( , ]x , 

 ( , ]

1, ( , ]
( )

0, ( , ]

l

x l

l

x x
I x

x x


 
 

 
 and N  the sample size. 
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Problem solving equation (2) with the function (3), as already indicated, it relates 

to a class of incorrect and requires the use of special techniques. Especially the incor-

rectness is shown with a small sample size [5]. Thus the need for recovery of the 

probability density limited amount of data arises frequently, for example, in connec-

tion with the analysis and segmentation unsteady, particularly speech signals, the 

statistical characteristics can only be considered as constant intervals of similar 

sounds. 

Unlike the direct, indirect methods are based on the average risk minimization 

functional described by expressions of the form 

   
1

1
( , ) ( ) ( , )

n

n l

l

R Q x dF x R Q x
N

   


    . 

or their corresponding empirical functionals 

 
1

1
( , )

n

n l

l

R Q x
N

 


   . 

According to this criterion to indirect methods include, such as the maximum like-

lihood method [6]. 

Direct, in principle, other methods, such as histogram techniques and methods 

based on approximation    functions of a regular feature in the in the expression 

( ) ( ) ( )f x x v f v dv




  .                                        (4) 

However, a clear distinction between direct and indirect methods, in general, is not 

always possible. And due to the fact that in both cases, the problem of finding the 

density estimates may result in one way or another, to the problem of minimizing a 

functional of the empirical data, in particular, from the empirical distribution function. 

3 On nuclear and projection estimates the probability density 

The nuclear method for obtaining estimates of the density based on the approximated 

   function under the integral sign in (4) is a function ( )K x defined on some inter-

val of the argument. This function must satisfy the condition 

0

1
lim ( )
h

x
K x

h h




 
 

 
  . 

As a function ( )K x frequently used expressions 

 

1 2, 1
( )

0, 1

x
K x

x

 
 


,  

2

1

( 1)
K x

x



,  

21 xK x e


 ,  
1 sin x

K x
x

 . 
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The right-hand side of equation (4) after such a substitution is a function of expec-

tation 
1 x

K
h h

 
 
 

, which can be replaced by the empirical mean value 

 

 

If we consider that option is chosen on the basis of the sample size, the probability 

density estimate in accordance with equation (4) can be written as 

1

1ˆ ( )
( ) ( )

n
l

l

x x
f x K

nh n h n

 
  

 
   .                             (5) 

The convergence of this expression to the desired density estimation provided by 

the conditions: 1) ( ) 0h n   if n  and 2) 0a   for any number  of inequality 

( )

1

nh n

l

e 






  .  

The definition of function ( )K x can be seen that with the decrease of the parame-

ter h  is an increase in the accuracy of the approximation functions  , but at the same 

time, increasing the chances of erroneous classification evaluation to class multimodal 

densities. Conversely, increasing this setting may lead to an erroneous assessment of 

the assignment to the unimodal density. The problem of choosing a parameter h  that 

arises in this regard stems from the incorrect density estimation problem and for this 

reason has no unique solution. We can only assert that in assessing unimodal distribu-

tions require higher values h  than in the case of multimodal. 

Equation (4), and you can use when assessing the probability density projection 

method. In this method, an unknown probability density is represented by a polyno-

mial system of normalized orthogonal functions  
1

( )
m

k x , while assessment [1] 

1

ˆ ( ) ( )
m

k k

k

f x a x


 .                                          (6) 

Substitution of this polynomial in (4) gives the equation 

1

( ) ( )
m

k k

k

f x a x


   . and 
1

1
( ) ( ) ( )

d n

k k k l

lc

a x f x dx x
n

 


  
 

Substituting this expression in (6) leads to the formu-

la
1 1

1ˆ ( ) ( ) ( ).
n m

k k l

l k

f x x x
n

 
 

    

Finally, if you enter the kernel function 
1

( , ) ( ) ( )
m

l k k l

k

K x x x x 


  the estimate of 

the density takes the form similar to (5) 

 
1

1ˆ ( ) ,
n

l

l

f x K x x
n 

  . 

The use of projection methods in which the score is represented by formula (6), is 

not limited to the case considered. There are tasks that are equally based on a projec-
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tion methods, and the integral equation (2). In one of the approaches are evaluated on 

the smoothed data that is provided by a non-degenerate linear operator of the form 

( ) ( , ) ( )
d

c

B g x K x v g v dv   .\ 

The action of the operator on (2) leads to the equation 

( ) ( )nG f x Q x                                            (7) 

where 

( ) ( , ) ( ) ( )
d d

c c

G f x K x z I z v f v dvdz   , 

1

1
( ) ( ) ( , )

l

dn

n n

l x

Q x B F x K x v dv
n

 



   , 

and  (6)  is an expansion with respect to functions  
1

( )
m

k x  of operator 
HG G . 

The solution of equation (7) because of its incorrectness reduced to the problem of 

minimizing the functional  

 
2

2ˆ ˆ ˆ( ) ( ) ( ) ( )
d d

n j

c c

J f G f x Q x dx f x dx    .                          (8) 

It is shown that this functional reaches a minimum at values of the coefficients of 

the polynomial-patients (6) 

2

k k
k

k j

b
a



 



, 

where ( ) ( )
d

k n k

c

b Q x x dx 
 

and ( )k x , 
k 

 

 its own functions and values of 

the operator 
HG G . 

In the particular case when the core ( , ) ( )K x v K x v  of the operator B  the op-

erator to convolution ( ) ( ) ( )
d

c

B f x K x v f v dv   . 

This allows for the minimization of the functional (8) to take advantage of the Fou-

rier transform [1, 6, 7]. Using this, evaluation of density 

 
1

1ˆ ( ) ( )
n

l j

lj

f x g x x
n


 

    . 

Here the function 
1

( ) ( )
2

j ug u g e d 






  .

 

It is the inverse Fourier transform  

2

( ) ( )
( )

( ) ( ) j

K K
g

K K

 


   




 
  

and  ( ) ( ) j uK K u e du






  . 
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4 The histogram assessment of the probability density  

The histogram is called a bar chart of the distribution of the random variable. The 

height of each column represents the number of values of the random value falling 

within the appropriate interval, generally different widths (see Fig. 1.). 

The ratio of the random variable values 
ln  from the interval 

1( , ]l lx x
to the total 

number of values N  is the empirical probability of the event 1( , ]l lx x x . 
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Fig. 1. Histogram of a mixture of two normal distributions  

The theoretical value of this probability is written at the same time through a proba-

bility density  
1

1( , ] ( )
l

l

x

l l

x

P x x x f x dx



    . 

If we equate the theoretical and empirical density and assume that within each in-

terval change in the probability density can be neglected, the density estimation can 

be written as 

l
l

l

n
f

x N



, 1, ,l q ,                                            (9) 

where 1l l lx x x      the lenght of the l   interval. 

When splitting field ( , ]c d of the random variable values q at equal intervals of 

length ( )lx d c q    and formula (9) can be written as 

 
( )

l
l

n q
f

d c N



, 1, ,l q ,                                   (10) 
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    Count value obtained by the formula (9) or (10), etc. may be used for approxima-

tion of the probability density. Units corresponding to estimates, in the first approxi-

mation can be found from the expressions 

1( , ]

1

i l l

l i

x x xl

x x
n



  , 1, ,l q . 

The graph obtained by approximating the probability density based on 

points ( , )l lx f , 1, ,l q , in the coordinates x , f .. Thus, depending on the 

amount of data it can be used as interpolation numerical techniques and approxima-

tions of functions. In both cases the problem is to construct  the system polynomial 

( , )P x a  by the functions ( )i x , 1, ,i m
1

( , ) ( ) ( )
m

T
i i

i

P x a a x a x 


  . 

where  1, ,
T

ma a a  and  1( ) ( ), , ( )
T

mx x x   . 

In the case of vector interpolation a is the system of equations 

( )T
l la x f  , 1, ,l q m  . 

In matrix form, this system takes the form 

T a f  ,                                                      (11) 

where  1, ,
T

mf f f  and  1 2( ), ( ), , ( )mx x x    . 

In evaluating you can also take advantage of the generalized method of local inter-

polation. In this method, a sequence of the form of formula (11) as defined for the 

corresponding sequence of interpolation intervals. At the same time these formulas 

are supplemented by restrictions, providing the necessary conditions of conjugation of 

local solutions, and the order of the polynomial is not required to match the number of 

points ( , )l lx f , that is q m . 

Approximation of probability density smoothing means is the task of the least 

squares. The challenge here is to minimize the residual sum of squares polynomial 

smoothing and density lf  
ratings. Functional to be minimized is recorded at the same 

time as 

 
2

1

( ) ( )
n

T
l l

l

J a a x f


                                     (12) 

In order to smooth the data, as in the interpolation, you can use the methods of the 

local approximation, generalizing them in relation to the desired, in particular, a 

smooth interface polynomials defined on a sequence of intervals and delivering the 

minimum values of functionals of the form (12) under the constraints set by the terms 

of  pairing. 

Histogram methods [1, 6] of estimation of the probability density, 

especially by interpolation, the problem inherent in the partition of the set of values of 

the random variable into intervals for small sample sizes. Fig. 2. a, b shows two histo-
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grams mixture of normal distributions, the same as in Fig. 1. for a sample of 100 sam-

ples. 

 

Fig. 2. Histograms mixture of normal distributions by partitioning the range of values in (a) and 

(b) intervals 

This figure shows that the partition of the set of values of the random variable by 20 

intervals (Fig. 2 a) interpolation approach does not restore the true form of distribu-

tion and draw the right conclusions. The situation is improved by splitting the plurali-

ty of slots 10 (Fig. 2 b). In this case, a graph similar in shape to the true probability 

density bimodal. The solution to this problem, in principle, feasible in the framework 

of the adaptive partition of the set of values of the random variable in the interval, not 

necessarily of the same length. Optimal partition is in this case, by varying the lengths 

and intervals of the centers and of the results of comparison, possibly followed by 

averaging them. 

At the local, including generalized local approximation, partition problem is less 

acute, and is connected, on the contrary, ensuring sufficient to smooth the number of 

intervals. However, there is a new question - the question selection algorithm that 

ensures optimal degree of smoothing empirical estimates (9). Resolution of this issue 

in principle, feasible methods based on the variation of the free parameters of the 

algorithm and then selecting the best according to some evaluation criteria. 

Another problem for interpolation and approximation of methods for smoothing is 

a problem of assessment ˆ ( )f x
 
belonging to the class of probability density functions. 

These conditions within the local approximation can be taken into account by intro-

ducing into the problem of minimizing the functional (12), corresponding limitations 

and within the interpolation approach - by varying the lengths and intervals of the 

partition centers. 

Finding the coefficients of the polynomial (6) optimization methods is the task of 

the linear regression. In practice, however, these polynomials are often built on the 

systems standard probability densities nonlinearly depend on a certain set of parame-

ters. In this case, if the input vector of parameters  1, ,
T

r   , it is possible to 
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determine the polynomial
1

( , , ) ( , ) ( , )
m

T
k k

k

P x a a x a x    


   , where 

 1( , ) ( , ), , ( , )
T

mx x x      . 

Accordingly, the estimate of density can be written as 

1

ˆ ˆ ˆˆ ˆ( ) ( , ) ( , )
m

T
k k

k

f x a x a x   


   

where the evaluation parameters are the solution to the minimization problem 

   
2

,
1

ˆˆ, argmin ( , )
n

T
l l

a
l

a a x f


  


   . 

Finding the vector of parameters a  and  and in this case refers to a class of non-

linear problems, which are usually solved by constrained optimization methods. 

5 Conclusion 

This paper is a study of direct and indirect estimating the density methods of acoustic 

signals and the probability of interference occurring in the information and control 

telecommunications systems. Investigated models of nuclear projection probability 

density estimate that are based on probability density signals approximation in the 

case of unimodal and multimodal distributions. Applying method of histogram mix-

ture normal distributions estimation shows that the true form of distributions in the 

partition of values set  of a random variable on a different number of slots is not al-

ways possible to restore. This solution is provided by an adaptive optimal partition by 

varying the lengths and intervals of partition centers. 
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