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Abstract. The Generalized Traveling Salesman Problem (GTSP) is a gener-
alization of the well known Traveling Salesman Problem (TSP), where along
with a weighted graph G = (V, E,w) we are given by a partition of its node set
V = V1 ∪ . . .∪Vk into disjunctive subsets or clusters. The goal is to find a mini-
mum cost cycle such that each cluster is hit by exactly one node of this cycle. We
consider a geometric setting of the GTSP, in which a partition is specified by cells
of the integer 1× 1 grid (on the Euclidean plane). Even in this special setting,
the GTSP remains intractable enclosing the classic Euclidean TSP on the plane.
Recently, it was shown that this problem has (1.5+8

√
2+ ε)-approximation al-

gorithm with complexity bound depending on n and k polynomially, where k

is the number of clusters. We propose three approximation algorithms for the
Euclidean GTSP on grid clusters. For any fixed k, all proposed algorithms are
PTASs. Time complexities of the first two remain polynomial for k = O(log n)
while the last one is a PTAS when k = n−O(log n).

Keywords: Generalized traveling salesman, Grid clusters, Approximation al-
gorithm

1 Introduction

The Generalized Traveling Salesman Problem (GTSP) is an extension of the well known
Traveling Salesman Problem (TSP). The main difference between these problems is that
unlike the TSP, in the GTSP, it is required to find a shortest tour visiting all specified
disjunctive subsets or clusters of the given node set. An instance of the GTSP is given
by an undirected edge-weighted graph G = (V,E,w), whose node set is partitioned
into k clusters Vi, i = 1, . . . , k. The goal is to find a minimum weight cycle hitting all
the Vi, i.e. visiting one point from each cluster exactly. It is easy to see that the classic
TSP is a special case of the GTSP, for which every cluster consists of a single node.
Therefore, GTSP is strongly NP-hard even in the Euclidean plane.

To the best of our knowledge, the GTSP was introduced in the late 1960s in relation
to the optimal sequencing of computer files [11] and the scheduling of clients through
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welfare agencies [17]. Another practical application closely related to GTSP is about
the optimal routing of vans used to empty post boxes in an urban setting described by
Bovet in [4]. They show that, by means of statistical analysis for the mail traffic, it is
possible to determine (sub)optimal locations for post boxes in a city in order to provide
a good service for customers. At the first stage of analysis, these locations need not be
specified exactly. In particular, if it is decided to locate a post box at a crossroads, it
is not necessary to specify on which side of the street the post box is to be located.
In [4], it is proposed to model such an uncertainty by specifying the cloud of possible
locations. The precise locations can be determined at the second stage, simultaneously
with establishing the routes for the postal vans. This final problem is a kind of the
GTSP.

Although for any nonnegative weighting function w and for any fixed number of
clusters k, the GTSP as an exact polynomial time algorithm [8], any time when k is a
part of the input, the problem is strongly NP-hard, even in the Euclidean plane.

There exist many approaches to finding of optimal or approximate solutions of the
GTSP, e.g. genetic algorithms [3, 9, 16], ant colony heuristic [12], algorithms taking
into account additional precedence constraints [19, 5]. The most intuitive approach is
to reduce the considered instance of GTSP to some appropriate instance of the ordi-
nary TSP. According to Laporte et al. [15], there exists a cost-preserving reduction
from the GTSP to the corresponding instance of the asymmetric TSP. Therefore, re-
searchers can apply the diversity of algorithms and solvers developed for the classic
TSP. Unfortunately, the resulting TSP does not inherit some useful structural features
of the initial problem, e.g. TSP assigned to the Euclidean GTSP is not even a metric
one, so, to approximate this problem we could not use efficient algorithms like well
known Christofides 3/2-approximation algorithm [6] or Aroras PTAS [1] for the metric
or Euclidean TSP, respectively.

First algorithms [11, 17, 18] for the Euclidean GTSP were based on dynamic pro-
gramming. In [14], Laporte and Nobert described an integer linear programming ap-
proach suitable for Euclidean or non-Euclidean problems.

Recently [2], it was shown that the GTSP has (1.5+ 8
√
2 + ǫ)-approximation algo-

rithm with complexity bound depending polynomially on n and k.

In the paper, we present three approximation schemes for the Euclidean GTSP in
k Grid Clusters (EGTSP-k-GC) in the plane. For any fixed k, all schemes find (1+ ε)-
approximate solutions of the analysed problem in polynomial time. Furthermore, the
first two are LTAS in this case and remain PTAS, when k = O(log n), while the last
one remains PTAS for k = n−O(log n).

The rest of the paper is organised as follows. In Section 2, we remind a formal
statement of the EGTSP-k-GC and introduce some necessary definitions and notation.
In Section 3, we present our first two approximation schemes focused to the case of
slowly growing k = k(n). In particular, we present our extension of the famous PTAS
developed by S.Arora for the Euclidean TSP to the case of EGTSP-k-GC. Further, in
Section 4 we consider the case of fast growing k = k(n) and propose a PTAS for this
case based on Arora’s scheme as well. Finally, in Section 5 we summarize the results
obtained and give a short overview of future work.
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2 Problem statement

We consider the following combinatorial optimization problem. For an undirected edge-
weighted graph G = (V,E,w), whose vertex set is partitioned into k clusters Vi,
i = 1, . . . , k, Generalized Traveling Salesman Problem (GTSP) is required to find a
minimum weight cycle visiting one point from each cluster exactly.

We consider the Euclidian Generalized Traveling Salesman Problem in k Grid Clus-
ters, EGTSP-k-GC for short. In this special case of the GTSP, an undirected edge-
weighted graph G = (V,E,w) is given where the set of vertices V correspond to a set
of points in the planar integer grid. Every nonempty 1× 1 cell of the grid forms a clus-
ter. The weight of the edge between two vertices is given by their Euclidean distance.
In Fig. 1, we present an instance of the EGTSP-k-GC for k = 6.

Fig. 1. An EGTSP-k-GC instance for k = 6

3 Schemes for the case of slowly growing k

For this special setting, we propose two approximation schemes. The former scheme is
based on the classic Held-Karp dynamic programming algorithm used to finding exact
solutions for a huge collection of the auxiliary instances of the Euclidean TSP. The
latter one extends the Arora’s PTAS to the case of the EGTSP-k-GC.

3.1 Approximation scheme based on dynamic programming

We start with a very simple algorithm. The main idea is to combine the exhaustive
search for the suboptimal hitting sets for the set of clusters and subsequent dynamic
programming-based estimation of their approximability.

To describe our scheme (see Algorithm 1), we introduce an auxiliary parameter t
and partition all nonempty cells of the given grid into t2 equal subcells of size 1/t.
Further, for any nonempty subcell obtained, we substitute all the nodes (of the graph
G) belonging to it by the center of this subcell. This rounding procedure replaces each
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cluster by at most t2 centers of the containing subcells. Therefore, there are at most t2k

ways to take k such centers as representatives of the given k clusters. Next, for any such
a hitting set (containing k subcell centers exactly) we apply the standard Held-Karp
dynamic programming technique [10] to find the exact solution of the corresponding
TSP in time of O(k22k). Therefore the overall time complexity is O(t2k2kk2) +O(n).

Algorithm 1 Scheme based on DP

Input: a given instance of the Euclidean GTSP on k grid clusters and a required accuracy
level ε.
Output: a (1 + ε)-approximate solution.

1: partition all k nonempty cells of the given grid into t2 smaller subcells; the value t will be
specified later;

2: to each j-th cell assign a finite set Cj consisting of centers of nonempty subcells;
3: for all (c1, . . . , ck) ∈ C1 × . . .× Ck do

4: using dynamic programming find an exact solution S(c1, . . . , ck) of the corresponding
TSP instance;

5: end for

6: output the cheapest solution S(c1, . . . , ck).

Our accuracy bound for Algorithm 1 is based on the fact that, for any v ∈ V , the
distance between the node v and the nearest subcell center is at most

√
2/(2t). Consider

an arbitrary optimal solution of the initial GTSP-k-GC instance. The accumulated
error caused by substitution of the initial nodes by the nearest centers does not exceed
k
√
2/t.
To estimate k in terms of optimum of the initial GTSP, we use a recent approx-

imation result for another combinatorial optimization problem defined on clusters,
Generalized Minimum Spanning Tree Problem (GMSTP). By the way, unlike to well
known classic MSTP, which can be solved to optimality in polynomial time in the most
general setting, GMSTP is NP-hard even in the Euclidean plane, where clusters are
defined by cells of the unit grid. Nevertheless, in this case, the following claim is true.

Theorem 1 ([2]). Let OPTGMSTP be an optimum value of an instance of the Eu-
clidean GMSTP on k grid clusters, then k ≤ 4OPTGMSTP + 4.

Since any Hamiltonian cycle can be reduced to the corresponding spanning tree
by excluding an arbitrary edge, therefore OPTGTSP ≥ OPTGMSTP any time when
the weight function is nonnegative (which is true for the considered Euclidean case).
Therefore, for the Euclidean GTSP, the same assertion is valid.

Corollary 1. Let OPTGTSP-k-GC be the optimum value of an instance of the Eu-
clidean GTSP on k grid clusters, then k ≤ 4OPTGTSP-k-GC + 4.

So, for any k > 4 and ε > 0, taking a value of t such that

k
√
2

t
≤ k − 4

4
ε ≤ εOPTGTSP-k-GC,
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i.e.

t ≥ 4
√
2k

(k − 4)ε
=

4
√
2

ε

(

1 +
4

k − 4

)

≥ 20
√
2

ε
,

we guarantee that our accumulated error does not exceed εOPTGTSP-k-GC. It should
be noticed that asymptotically we can obtain the same result even for t ≥ 4

√
2k/((k−

4)ε) as k → ∞. Hence, we proved the following theorem.

Theorem 2. For any ε > 0 and any fixed k > 4 there exists an algorithm, which
finds an (1 + ε)-approximate solution of the GTSP on k grid clusters in time of
O(k2(O(1/ε))2k) +O(n).

Corollary 2. 1. For any fixed number k > 4 and any ε > 0, Algorithm 1 finds an
(1+ε)-approximate solution of the Euclidean GTSP on k clusters in a linear time with
delay depending on ε.
2. For the Euclidean GTSP on k = O(log n) clusters Algorithm 1 is a PTAS with time
complexity of O((log n)2nO(log(1/ε)))).

3.2 Extended Arora’s scheme

We proceed with a scheme extending the famous PTAS proposed by S.Arora in [1] for
the Euclidean TSP on the plane. Hereinafter we suppose that k > 4.

Similarly to Arora’s PTAS, the main idea of the proposed approximation scheme
is based on randomized recursive partitioning of the axis-aligned bounding box of the
given instance into smaller squares and successive searching for the minimum weight
closed tour subject to the following constraints:

(i) any cluster Vi is visited at once;
(ii) between-node segments of the route are continuous piece-wise linear curves crossing

the borders of all squares only in predefined points called portals;
(iii) locations of the portals and the maximum count of crossings for each border-line

of the squares depend on the given accuracy ε.

Following the main idea of the Arora’s PTAS, we show that, to approximate well
the EGTSP-k-GC in the plane, it is sufficient to design an efficient approximation
algorithm for the special case of this problem, which is called a well-rounded EGTSP-
k-GC. In particular, any PTAS for the well-rounded Euclidean EGTSP-k-GC induces
the corresponding PTAS for the general case with the same complexity bound.

We call an instance of the EGTSP-k-GC well-rounded if

(i) where exists L′ = O(k) such that, for any node vi = [xi, yi] of the input graph G,
its coordinates xi, yi ∈ {0, . . . , L′};

(ii) for any u 6= v ∈ V , w({u, v}) ≥ 4.

Indeed, consider an arbitrary instance of the EGTSP-k-GC and assign to in the
corresponding well-rounded instance. Denoting the maximum distance between cluster
cells by D, we obtain1 that

OPT = OPTGTSP-k-GC ≥ 2D ≥ 2

1 for any k > 4
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by the triangle inequality. Therefore, the size L of the minimal axis-aligned enclosing
box for the given instance satisfies the equation

L ≤ D + 2 ≤ 1.5 · OPT. (1)

Next, we place an axis-aligned grid of granularity Lε/(2k) and move any node to
the nearest grid-point. Evidently, some nodes can map into the same grid-point, and,
therefore, it is possible to obtain a well-rounded instance with a smaller number of
nodes. Furthermore, the case when two or more different clusters share the same grid-
point is possible as well. In this case, we assume that this grid-point hits all these
clusters.

After such a transformation, every internode distance is changed at most by Lε/k.
Also, the weight of any k-cycle can be changed at most by Lε.

By scaling the instance to the factor 8k/(Lε) and shifting the origin to the left-
bottom corner of the scaled bounding box, we obtain the required well-rounded in-
stance, since the size of this bounding box is L′ = O(k/ε) = O(k) for any fixed ε.

Further, consider an arbitrary k-cycle C in the initial instance and the corresponding
cycle C′ in the well-rounded one. Denoting their weights by W and W ′, respectively,
we get

8k (W − Lε) /(Lε) ≤ W ′ ≤ 8k (W + Lε) /(Lε). (2)

In particular, the RHS of equation (2) is valid for optimum values OPT andOPT ′ of the
considered instances, i.e. OPT ′ ≤ 8k (OPT + Lε) /(Lε). Suppose W ′ ≤ (1 + ε)OPT ′

for some ε ∈ (0, 1). Then,

8k (W − Lε) /(Lε) ≤ W ′ ≤ (1 + ε)OPT ′ ≤ 8k(1 + ε) (OPT + Lε) /(Lε)

and, finally,

OPT ≤ W ≤ (1 + ε)(OPT + Lε) + Lε ≤ (1 + 4ε)OPT

due to (1). In such a way we have proved the following lemma.

Lemma 1. Any PTAS for the well-rounded EGTSP-k-GC induces the appropriate
PTAS for the EGTSP-k-GC with the same (up to the order) complexity bound.

Let, further, S be the smallest axis-aligned square containing the instance of the
EGTSP-k-GC. W.l.o.g. let the side-length L′ of S be some power of two.

Following the approach introduced in [1], we construct a dissection of S into smaller
squares using vertical and horizontal lines. These lines are crossing the coordinate axes
in integer-coordinate points with a step of length 1. By construction, every smallest-size
square contains at most one node of the given instance.

Further, we proceed with using of a 4-regular tree of a special kind known as a
quadtree. In our case, the root of the tree is the bounding box S. Each non-leaf square
in the tree is partitioned into four equal child squares. This recursive partitioning stops
on a square containing at most one node. By construction, the quadtree contains O(k2)
leaves, O(logL′) = O(log k) levels and thus O(k2 log k) squares in all.

The center point of the quadtree is the point of crossing of the inner edges of the
squares with the side-length L′/2. We consider a shifted quadtree T (a, b) with the
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center point ((L′/2 + a) mod L′, (L′/2 + b) mod L′), where a, b ∈ N
0
L′ are constants.

Any square of T (a, b) with side-length less than L′ is considered modulo L′.
To some parameter values m, r ∈ N, and any node in the quadtree T (a, b) [square

S], we assign a regular partition of the border S consisting of 4(m+1) points including
all the corners of S. We call this partition m-regular; its points are referred to portals.
We consider the union of m-regular partitions of borders for all nodes of the quadtree
T (a, b).

Definition 1. Let C be an arbitrary simple cycle in the graph G in the plane. The
closed continuous piecewise linear route l(C) is called an (m, r)-approximation of the
cycle C if

(i) l(C) bends only at nodes of given graph and portals;
(ii) the nodes of G are visited by l(C) in the same order as by C;
(iii) for any side of any node of T (a, b), the route l(C) crosses this side at portals and

at most r times.

We use the following result from [13] claiming the existence of (m, r)-approximation
with bounded weight.

Theorem 3. (Structure Theorem) Let an instance of the well-rounded TSP in the
plane be given by the graph G, let L be the side-length of the bounding box S, and let
constants c > 1 and η ∈ (0, 1) be fixed. If the stochastic variables a and b are distributed
uniformly in NL and the parameters m and r are defined by the formulas

m = ⌈2s logL⌉ , r = s+ 4, and s = ⌈36c/η ⌉ .

Then, for an arbitrary simple cycle C of weight W (C), with probability at least 1− η,
there exists an (m, r)-approximation l(C) of weight W (l(C)) 6 (1 + 1/c)W (C).

Theorem 3 permit us to focus on finding the minimum cost (m, r)-approximation
of an optimial solution for the well-rounded EGTSP-k-GC. For any shifted quadtree
T (a, b), denote such minimum cost (m, r)-approximation by C(a, b). Similarly to [1],
for each a and b, we can find C(a, b) by dynamic programming except that, for each
internal node of T (a, b), the number of subtasks increases up to some factor depending
on k. We present the overall scheme as Algorithm 2.

Following the Arora’s argument [1] and the notices above, obtain the following
theorem

Theorem 4. For any fixed ε ∈ (0, 1) and k > 4, Algorithm 2 finds a (1+ε)-approximate
solution for the EGTSP-k-GC in time of

2O(k)k4(log k)O(1/ε) +O(n).

Corollary 3.
1. For any fixed k > 4, Algorithm 2 is a LTAS for the EGTSP-k-GC.
2. For k = O(log n), Algorithm 2 is PTAS for this problem with time complexity of
O(n(log n)4(log logn)O(1/ε)).
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Algorithm 2 Extended Arora’s scheme

Input: a given instance of the Euclidean GTSP on k grid clusters and a required accuracy ε.
Output: a (1 + ε)-approximate solution.

1: assign to the given instance the appropriate well-round instance enclosed in bouding box
of size L′;

2: for all a, b ∈ N
0

L′ do

3: construct the shifted guadtree T (a, b) and find C(a, b) by dynamic procedure like pro-
posed in [1] except that, for any internal node of the T (a, b), the corresponding task
along with conventional parameters depend on clusters Vi1 , . . . , Vit assigned to this
node. Therefore, any child subtask of the Arora’s DP produces up to 4t copies accord-
ing to all possible assignments of these clusters to this child (see Fig. 2);

4: end for

5: output the cheapest (m,r)-approximation C(a, b).

Fig. 2. Arrangement example of clusters among cells of the shifted quadtree

4 The case of fast growing k

Suppose now that k grows much faster. To this end we propose another approach
(Algorithm 3) based on the famous S.Arora’s PTAS [1] for the Euclidean TSP.

To prove the correctness of Algorithm 3, denote by ti the number of nodes belonging
to the i-th cluster. The number of ways to specify a TSP instance taking one node from
each cluster is t1× . . .×tk. Maximizing this number subject to

∑k
i=1 ti = n we conclude

that it does not exceed the value (n/k)k attained at point ti = n/k.
Since, for any ε > 0, time complexity of the Arora’s PTAS for k-node instance of

the Euclidean TSP is O(k3(log k)O(log(1/ε))), the time complexity of Algorithm 3 is

(n

k

)k

k3(log k)O(1/ε). (3)
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Algorithm 3 Scheme based on the classic Arora’s PTAS

Input: a given instance of the Euclidean GTSP on k grid clusters and a required accuracy ε.
Output: a (1 + ε)-approximate solution.

1: consider a partition V1 . . . Vk of the node set V of the given instance produced by the grid;
2: for all (v1, . . . , vk) ∈ V1 × . . .× Vk do

3: find an (1 + ε)-approximate solution S(v1, . . . , vk) of the corresponding TSP instance
using Arora’s PTAS;

4: end for

5: output the cheapest solution S(c1, . . . , ck).

Evidently, for any fixed k, equation (3) depends on n polynomially and Algorithm 3
is a PTAS for the Euclidean GTSP on k grid clusters. To prove the same claim for k
depending on n, we need to restrict k = k(n) such that

(n

k

)k

≤ nD (4)

for some constant value D > 0. Suppose that n−k(n)
k(n) → 0 as n → ∞. Since, in this

case,
(

n

k(n)

)k(n)

=

(

1 +
n− k(n)

k(n)

)k(n)

≤ en−k(n),

the inequality k(n) ≥ n−D logn implies equation (4).

Theorem 5. 1. For any fixed k and ε > 0, Algorithm 3 finds a (1 + ε)-approximate
solution of the Euclidean GTSP on k grid clusters in time of nk(log k)O(1/ε).
2. If k = n−D logn, then time complexity of Algorithm 3 is nD+3(log n)O(1/ε).

5 Conclusion

In this paper, we present three approximation schemes (Algorithms 1-3) for the Eu-
clidean GTSP on k grid clusters. All proposed algorithms are PTAS for any fixed k > 4.
Although none of the proposed algorithms has time complexity bound depending on
n and k polynomially, we found two settings, for which such polynomial bounds exist.
Actually, Algorithm 1 and 2 are PTAS for k = O(log n) while Algorhtm 3 is a PTAS
for k = n−O(log n).

As for the future work, it would be interesting to answer the question ‘Does the
EGTSP-k-GC belong to PTAS or it is APX-complete?’. Also, it would be interesting
to extend the developed schemes to the case of clustered cycle cover problems (see, e.g.
[7, 13]).
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