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Abstract. We consider a strongly NP-hard Euclidean problem of finding a sub-
sequence in a finite sequence under the criterion of the minimum sum of squared
distances from the elements of sought subsequence to its geometric center (cen-
troid). It is assumed that the sought subsequence contains a given number of
elements. In addition, sought subsequence has to satisfy the following condition:
the difference between the indexes of each previous and next points is bounded
with given lower and upper constants. We present an approximation algorithm
for the problem and prove that it is a fully polynomial-time approximation
scheme when the space dimension is bounded by a constant.
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Introduction

In this paper we study one strongly NP-hard problem of searching a subsequence in a
finite sequence of points from Euclidean space. Our aim is to provide an approximation
algorithm for this problem.

This work was motivated by poor study of the problem. The problem is also interest-
ing because of its importance for applications, in particular, for mathematical problems
of time series analysis, approximation problems and also for applications dealing with
data mining problems (see, for example, [1–4] and references therein).

The paper is organized as follows. In the next section the formal definition of the
problem under study is given; an example of application (origin) of the problem is also
presented. In Section 3, we provide a review of the previous results and announce the
obtained algorithmic result. Basic definitions and statements that provide necessary
elements to prove the properties of the proposed algorithm are presented in Section 4.
Finally, in Section 5 we construct an approximation algorithm for solving the problem
under study and prove that our algorithm is a fully polynomial-time approximation
scheme (FPTAS) when the space dimension is fixed.
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1 Problem formulation and its origin

Everywhere below R denotes the set of real numbers, ∥ · ∥ denotes the Euclidean norm
in Rq.

Problem under consideration has the following formulation (see [5], [6], [7]).

Problem 1 (Finding a subsequence in a sequence). Given a sequence
Y = (y1, . . . , yN ) of points from Rq and positive integer numbers Tmin, Tmax and
M > 1. Find a subset M = {n1, . . . , nM} ⊆ N = {1, . . . , N} of indexes of the se-
quence Y elements such that

F (M) =
∑
j∈M

∥yj − y(M)∥2 → min, (1)

where y(M) = 1
|M|

∑
i∈M yi is a geometric center (centroid) of the subsequence {yi ∈

Y | i ∈ M} subject to constraints

1 ≤ Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M, (2)

on the elements of the tuple (n1, . . . , nM ).
Problem 1 has the following interpretation (see [5], [6]). There is a time series con-

taining N measurements y1, . . . , nN of q numerical characteristics of some objects. Each
measurement result in the time series has an error, and no correspondence is known
between the elements of the time series and the objects. Some of this objects have
identical characteristics (or one can say that in the time series there are several mea-
surements of one significant object). Other objects are distinguished and have different
characteristics (or one can say that in the time series there are some measurements
that are treated as ”trash” which could be presented in this time series). The number
of measurements for identical objects is known. In addition, it is known that the time
interval between every two consequent results of measuring characteristics of the identi-
cal objects is bounded from above and below with some constants Tmax and Tmin. The
characteristics of identical objects in contrast to the characteristics of other objects
have basic information value. It is required to find the subsequence of measures which
corresponds to the identical objects using the criterion of minimum sum of squared
distances and to estimate the characteristics of these objects (taking into account the
measuring errors in the data).

2 Previous and obtained results

Problem 1 is among poorly studied discrete optimization problems. A special case of
this problem when Tmin = 1 and Tmax = N is equivalent [5] to the strongly NP-hard
problem of searching points subset. In this case at the input there is a set of points
instead of a sequence and time-related constraints (2) are absent.

First, let us recall the results obtained for the searching subset problem because it
is a simple particular case of Problem 1.

In general, the searching subset problem is strongly NP-hard [8]. But in the case of
fixed dimension q of the space this problem could be solved [9] in O(Nq+1) time.
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Moreover, by this time for the searching subset problem the following algorithms
have been presented. In [10] a 2-approximation polynomial algorithm is proposed, it’s
time complexity is O(qN2). A polynomial-time approximation scheme (PTAS) is sub-
stantiated in [11]. This scheme allows to solve the searching subset problem for arbitrary
relative error ε in O(qN2/ε+1(9/ε)3/ε) time. For the case of fixed dimension q of the
space and integer-valued points coordinates an exact pseudo-polynomial algorithm is
constructed [12]. The running time of this algorithm is O(N(MD)q), where D is max-
imal absolute input point coordinate value. It is established [13], that the searching
subset problem has no FPTAS, unless P=NP. In cited paper, an FPTAS was proposed
for the case of fixed space dimension. This scheme allows to solve the problem with
arbitrary relative error ε in O(N2(M/ε)q) time.

By this time for the considered Problem 1 the following results were obtained. First,
we should note that as far as the Problem 1 is generalization of strongly NP-hard
subset problem, there are neither exact polynomial-time, nor pseudo-polynomial-time
algorithms or FPTAS schemes, unless P=NP.

The case when Tmin and Tmax are parameters of Problem 1 is analyzed in [5]. In this
work the authors showed that this problem is strongly NP-hard for any Tmin < Tmax.
In the trivial case when Tmin = Tmax this problem can be solved through a polynomial
time.

In [6] a 2-approximation polynomial-time algorithm is proposed; the running time
of the algorithm is O(N2(MN +q)). In the case of Problem 1 with integer components
of the sequence elements and fixed dimension q of the space in [7] an exact pseudo-
polynomial-time algorithm is substantiated. This algorithm finds an optimal solution
of Problem 1 in O(N3(MD)q) time.

Among the highest interest is the question of approximability of Problem 1. In
particular, the question of FPTAS construction for the special case of Problem 1 (sub-
class of problem) has a great importance because in general case such a scheme does
not exist. In the present work such scheme is presented for the case of fixed space
dimension.

The main result of this work is an approximation algorithm which allows to find
a (1 + ε)–approximate solution for arbitrary relative error ε > 0 in O(N2(M(Tmax −
Tmin + 1) + q)(

√
2q
ε + 1)q) time. If the dimension q of the space is fixed then the

time complexity of our algorithm is equal to O(MN3(1/ε)q/2), and it implements an
FPTAS.

3 Algorithm foundations

In order to substantiate our algorithm we’ll need a few basic assertions and auxiliary
problem with exact polynomial-time algorithm for this problem.

Lemma 1. For an arbitrary point x ∈ Rq and a finite set Z ⊂ Rq it is true that∑
z∈Z

∥z − x∥2 =
∑
z∈Z

∥z − z∥2 + |Z| · ∥x− z∥2,

where z is a centroid of set Z.
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Lemma 2. In assumptions of Lemma 1, if some point u ∈ Rq is closest (by distance)
to the centroid z of set Z among all points from this set, then∑

z∈Z

∥z − u∥2 ≤ 2
∑
z∈Z

∥z − z∥2 .

Both lemmas are well-known. Their proofs are presented in many publications (for
example, in [12], [13]).

Lemma 3. Let

S(M, x) =
∑
n∈M

∥yn − x∥2, x ∈ Rq, M ⊆ N , (3)

where yn ∈ Y, and M = {n1, . . . , nM} satisfies the restrictions (2). Then for any fixed
M the constrained minimum of S(M, x) over x is reached at the point x = y(M) and
is equal to F (M).

This assertion could be easily verified by differentiation of S over x and also follows
from Lemma 1.

In addition to Lemma 3 for an arbitrary fixed point x ∈ Rq the restriction of the
function S(M, x) to M we denote as Sx(M) and argument of its minimum we denote
as Mx.

Lemma 4. Let M∗ be the optimal solution of Problem 1, and y(M∗) be the centroid
of the set {yi|i ∈ M∗}. Then for any point x ∈ Rq the following inequality holds

F (Mx) ≤ F (M∗) +M∥x− y(M∗)∥2. (4)

Proof. Let y(Mx) = 1
|Mx|

∑
i∈Mx yi be a centroid of {yi | i ∈ Mx}. Then from defini-

tions (1), (3) and Lemma 3 we obtain

F (Mx) =
∑

i∈Mx

∥yi − y(Mx)∥2 ≤
∑

i∈Mx

∥yi − x∥2 = Sx(Mx). (5)

In addition, from the definition of the set Mx we have

Sx(Mx) ≤ Sx(M∗). (6)

Further, Lemma 1 applied up to the point x and the set {yi | i ∈ M∗} implies

Sx(M∗) =
∑

i∈M∗

∥yi − x∥2 =
∑

i∈M∗

∥yi − y(M∗)∥2 + |M∗| · ∥x− y(M∗)∥2. (7)

Finally, combining (5)–(7) we obtain

F (Mx) ≤ Sx(Mx) ≤ Sx(M∗)

=
∑

i∈M∗

∥yi − y(M∗)∥2 + |M∗| · ∥x− y(M∗)∥2

= F (M∗) +M∥x− y(M∗)∥2.

⊓⊔
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Lemma 4 shows that quality of feasible solution Mx obtained by some point x ∈
Rq could be estimated via distance from this point to (unknown) optimal centroid
y(M∗). The closer considered point x up to the optimal centroid, the less absolute
approximation error of an obtained solution.

Lemma 5. Let M∗ be the optimal solution of Problem 1, and let

t = arg min
y∈{yi | i∈M∗}

∥y − y(M∗)∥

be the point of the optimal set {yi|i ∈ M∗} closest to its centroid, then

∥t− y(M∗)∥2 ≤ 1

M
F (Mt), (8)

where Mt supplies minimum to St(M) over M ⊆ N under constraints (2) on elements
of M.

Proof. From the definition of the point t it follows that

∥t− y(M∗)∥2 ≤ ∥yi − y(M∗)∥2

for any i ∈ M∗. Summing up both sides of this inequality for all i ∈ M∗ we obtain

M∥t− y(M∗)∥2 ≤
∑

i∈M∗

∥yi − y(M∗)∥2. (9)

From the fact that Mt is a feasible solution of Problem 1 and M∗ is the optimal
solution we have the following bound

F (M∗) ≤ F (Mt). (10)

Combining (9) and (10) we obtain final estimation

M∥t− y(M∗)∥2 ≤
∑

i∈M∗

∥yi − y(M∗)∥2 = F (M∗) ≤ F (Mt).

⊓⊔

Lemma 6. Assume that conditions of Lemma 5 are held. Then for Mx to be a (1+ε)–
approximate solution of the Problem 1 for fixed ε > 0, it is enough to take such point
x that satisfies the inequality

∥x− y(M∗)∥2 ≤ ε

4M
F (Mt). (11)

Proof. Let y(Mt) = 1
|Mt|

∑
i∈Mt yi be a centroid of the set {yi | i ∈ Mt}. From the

fact that Mt = argminM St(M) and definitions (1), (3) we have

F (Mt) ≤ St(Mt). (12)
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In addition, from the optimality of the set Mt we have inequality

St(Mt) ≤ St(M∗). (13)

Further, since the set {yi | i ∈ M∗} and the point t satisfy the conditions of Lemma 2,
the following estimate holds∑

i∈M∗

∥yi − t∥2 ≤ 2
∑

i∈M∗

∥yi − y(M∗)∥2

and, therefore,

St(M∗) =
∑

i∈M∗

∥yi − t∥2 ≤ 2
∑

i∈M∗

∥yi − y(M∗)∥2 = 2F (M∗). (14)

Combining (11)–(14) we obtain

∥x− y(M∗)∥2 ≤ ε

2M
F (Mt) ≤ ε

2M
St(Mt) ≤ ε

2M
St(M∗) ≤ ε

M
F (M∗). (15)

Finally, applying (15) up to the right side of inequality (4) we obtain inequality

F (Mx) ≤ (1 + ε)F (M∗),

that completes the proof of Lemma 6. ⊓⊔

Computational base of the proposed algorithm is an exact polynomial-time algo-
rithm for solving the auxiliary problem. In this auxiliary problem for any point x ∈ Rq

one needs to find such a set Mx that supplies minimum to Sx(M) while elements from
M are under constraints (2).

This auxiliary problem can be formulated as follows:

Problem 2. Given a sequence Y = (y1, . . . , yN ) of points from Rq, point x ∈ Rq, positive
integer numbers Tmin, Tmax and M > 1. Find a subset M = {n1, . . . , nM} ⊆ N of
indexes of the sequence elements such that

Sx(M) =
∑
i∈M

∥yi − x∥2 → min,

while elements of the tuple (n1, . . . , nM ) satisfy the constraints (2).
A dynamic programming scheme is presented in the next lemma and its corollary.

This scheme allows to find the optimal solution Mx of Problem 2. The presented
scheme is based on results from [6], [14] and given here for completeness.

Lemma 7. For any positive integer M > 1, such that (M − 1)Tmin ≤ N − 1, and for
arbitrary point x ∈ Rq the optimum Sx

min = minM Sx(M) of Problem 2 could be found
as

Sx
min = min

n∈ωM

Sx
M (n), (16)
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where the values of the functions Sx
M (n), n ∈ ωM , are calculated using the following

recurrence formulas

Sx
m(n) =

{∥yn − x∥2, if n ∈ ω1, m = 1;
∥yn − x∥2 + max

j∈γ−
m−1(n)

Sx
m−1(j), if n ∈ ωm, m = 2, . . . ,M, (17)

where

ωm =
{
n | 1 + (m− 1)Tmin ≤ n ≤ N − (M −m)Tmin

}
,m = 1, . . . ,M,

γ−
m−1(n) =

{
j | max{1 + (m− 2)Tmin, n− Tmax} ≤ j ≤ n− Tmin

}
,

n ∈ ωm, m = 2, . . . ,M.

Corollary 1. Elements nx
1 , . . . , n

x
M of the optimal tuple Mx could be found by the

formulas:
nx
M = arg min

n∈ωM

Sx
M (n), (18)

nx
m−1 = arg min

n∈γ−
m(nx

m)
Sx
m(n), m = M,M − 1, . . . , 2. (19)

Let us show the algorithm implementing above scheme in a step-by-step description.
A l g o r i t hm A1.
Input : sequence Y, point x, numbers Tmin, Tmax and M .
Step 1. Compute the values ∥yn − x∥2 for each n ∈ N .
Step 2. Using formulas (17), calculate the values Sx

m(n) for each n ∈ ωm while
m = 1, . . . ,M .

Step 3. Find the minimum Sx
min of the objective function Sx using (16) and the

optimal tuple Mx = (nx
1 , . . . , n

x
M ) by formulas (18), (19).

Output : tuple Mx = (nx
1 , . . . , n

x
M ).

In [6], it was proved that the algorithm A1 finds an optimal solution of Problem 2 in
O(N(M(Tmax−Tmin+1)+ q)) time. In this expression, the value Tmax−Tmin+1 is at
most N . Therefore, the running time of the algorithm is estimated as O(N(MN + q)).

4 Approximation algorithm

Proposed approximation algorithm for Problem 1 can be schematically described as
follows. For all points from the input sequence we define a special box (cube with cen-
ter in this point) such that at least one of these boxes contains unknown centroid of
the optimal subsequence. By the given value of the relative error we construct mul-
tidimensional grid with uniform step by all coordinates. For all nodes of the grid we
solve the auxiliary problem using dynamic programming scheme, and obtain a feasible
solution of Problem 1. Finally, among all obtained feasible solutions we select one with
minimal value of the objective function of Problem 1.

For an arbitrary point z ∈ Rq and positive numbers h and H we define a set of
points

D(z, h,H) = {d | d = z + h(j1, . . . , jq), ji ∈ Z, |h · ji| ≤ H, i = 1, . . . , q}.



FPTAS for One Problem of Finding a Subsequence 523

Note that points from this set are placed in the nodes of the uniform multidimensional
rectangular grid with size 2H and step h between nodes. The center of this grid is at
the point z.

For the number of nodes of this grid the following bound holds

|D(z, h,H)| ≤ (2
H

h
+ 1)q.

Herewith, for any point x ∈ Rq, such that ∥z − x∥ ≤ H, the distance up to the closest

node of the grid D(z, h,H) does not exceed
h
√
q

2 .
Lemma 5 (right-hand side of inequality (8)), in fact, defines the size of the cube

which guaranteed contains the unknown centroid of the optimal subsequence. So the
size of the grid can be defined as follows:

H(y) =

√
1

M
F (My), y ∈ Y. (20)

Moreover, Lemma 6 defines the condition on the value of the grid spacing, wherein
there is a node closed enough to the centroid of the optimal subsequence (in sense of
guaranteed error ε). Therefore, define the grid spacing as follows:

h(y, ε) =

√
2ε

qM
F (My), y ∈ Y, ε > 0. (21)

Let us present the algorithm for solving Problem 1.
A l g o r i t hm A.
Input : sequence Y of points, numbers Tmin, Tmax, M and ε.
For all points y ∈ Y execute the steps 1–5.
Step 1. Using Algorithm A1 find the optimal solution My of Problem 2 with x = y.
Step 2. Compute F (My), h and H by the formulas (1), (21) (20).
Step 3. If F (My) = 0, then set My is declared as a result of the algorithm; Exit.

Otherwise go to the next step.
Step 4. Build the grid D(y, h,H).
Step 5. For all points d from the grid D(y, h,H) using Algorithm A1 find the

optimal solution Md of Problem 2 (with x = d) and compute the value F (Md).
Step 6. In the set of solutions {Md | d ∈ D(y, h,H), y ∈ Y} as a result select the

tuple Md∗
supplying the minimal value for the objective function F (Md).

Output : tuple Md∗
.

Theorem 1. For an arbitrary ε > 0 Algorithm A finds a (1+ε)–approximate solution

of Problem 1 in O(N2(M(Tmax − Tmin + 1) + q)(
√

2q
ε + 1)q) time.

Proof. Let t = argminy∈{yi | i∈M∗} ∥y−y(M∗)∥ be the point from the set {yi | i ∈ M∗},
that is closest to the centroid of this set. If for this point on step 3 we have equality
F (Mt) = 0, then the set Mt is an optimal solution of Problem 1, because the value of
the objective function F is always nonnegative.

Now we consider the second case, when F (Mt) > 0.
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In accordance with Lemma 5, there is an inequality (8) for the point t. This inequal-
ity and definition (20) of the H(·) implies ∥t− y(M∗)∥ ≤ H. In other words, centroid
y(M∗) of the optimal subsequence is inside area bounded by the grid D(t, h,H).

Take the point

d∗ = arg min
d∈D(t,h,H)

∥d− y(M∗)∥

from the grid, that is closest to the optimal centroid. Since distance from y(M∗) to the

closest node d∗ from the grid D(t, h,H) does not exceed
h
√
q

2 , we obtain the estimate

∥d∗ − y(M∗)∥2 ≤ h2q

4

ε

2M
F (Mt).

Thus, the point d∗ satisfies the conditions of Lemma 6. Therefore, the set Md∗
is a

(1 + ε)–approximate solution of Problem 1.

Note, that either on step 3 optimal solution will be found or the point d∗ and the
set Md∗

will be considered during operation of the algorithm in step 5. Therefore, at
the end the algorithm is guaranteed to obtain at least (1 + ε)–approximate solution.

Let us now estimate the time complexity of the algorithm. On step 1 to solve
auxiliary problem O(N(M(Tmax−Tmin+1)+q)) operations is required. Step 2 requires
O(qN) operations, and step 3 could be performed in O(1) time.

To generate the grid D(y, h,H) on step 4 it needs to perform O(q · |D(y, h,H)|)
operations. The cost of constructing the sets Md on step 5 and computing the values
F (Md) is equal to (as on step 1) O(N(M(Tmax − Tmin + 1) + q)).

As a result, for each of N points from the sequence Y performing steps 1–5 required
O(N(M(Tmax − Tmin + 1) + q) · |D(y, h,H)|) operations. Finally, on step 6 to choose
the best solution it needs to perform O(

∑
y∈Y |D(y, h,H)|) operations.

It remains to note that the size of the grid D(y, h,H) is bounded by

|D(y, h,H)| ≤ (2
H

h
+ 1)q ≤ (

√
2q

ε
+ 1)q.

Therefore, the total time complexity of the entire algorithm is O(N2(M(Tmax−Tmin+

1) + q)(
√

2q
ε + 1)q). ⊓⊔

Let us show that if the dimension q of the space is fixed, then presented algorithm
implements an FPTAS. Indeed, if ε ∈ (0, 2q], then one of the factors in final complexity
can be estimated as follows(√

2q

ε
+ 1

)q

≤ 2q

(√
2q

ε

)q

= 2
3q
2 q

q
2

(
1

ε

) q
2

= O

((
1

ε

) q
2

)
.

Therefore, as the value Tmax −Tmin +1 does not exceed N , the time complexity of the
algorithm is O(MN3(1/ε)q/2). Thus, the proposed algorithm implements an FPTAS.
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5 Conclusion

In this work we have constructed an approximation algorithm for one problem of finding
a subsequence in the given sequence of points from the Euclidean space. The proposed
algorithm implements a fully polynomial-time approximation scheme in the case when
the dimension of the space is fixed (is not a parameter of the input).
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